
No Single Silver Bullet:
Measuring the Accuracy of Password Strength Meters

Ding Wang, Xuan Shan, Qiying Dong
Nankai University

{wangding, shanxuan, dqy}@nankai.edu.cn

Yaosheng Shen
Peking University

ysshen@pku.edu.cn

Chunfu Jia
Nankai University

cfjia@nankai.edu.cn

Abstract
To help users create stronger passwords, nearly every re-

spectable web service adopts a password strength meter
(PSM) to provide real-time strength feedback upon user regis-
tration and password change. Recent research has found that
PSMs that provide accurate feedback can indeed effectively
nudge users toward choosing stronger passwords. Thus, it is
imperative to systematically evaluate existing PSMs to facili-
tate the selection of accurate ones. In this paper, we highlight
that there is no single silver bullet metric for measuring the
accuracy of PSMs: For each given guessing scenario and strat-
egy, a specific metric is necessary. We investigate the intrinsic
characteristics of online and offline guessing scenarios, and
for the first time, propose a systematic evaluation framework
that is composed of four different dimensioned criteria to rate
PSM accuracy under these two password guessing scenarios
(as well as various guessing strategies).

More specifically, for online guessing, the strength mis-
judgments of passwords with different popularity would have
varied effects on PSM accuracy, and we suggest the weighted
Spearman metric and consider two typical attackers: The
general attacker who is unaware of the target password distri-
bution, and the knowledgeable attacker aware of it. For offline
guessing, since the cracked passwords are generally weaker
than the uncracked ones, and they correspond to two disparate
distributions, we adopt the Kullback-Leibler divergence met-
ric and investigate the four most typical guessing strategies:
brute-force, dictionary-based, probability-based, and a combi-
nation of above three strategies. In particular, we propose the
Precision metric to measure PSM accuracy when non-binned
strength feedback (e.g., probability) is transformed into easy-
to-understand bins/scores (e.g., [weak, medium, strong]). We
further introduce a reconciled Precision metric to characterize
the impacts of strength misjudgments in different directions
(e.g., weak→strong and strong→weak) on PSM accuracy.
The effectiveness and practicality of our evaluation frame-
work are demonstrated by rating 12 leading PSMs, leveraging
14 real-world password datasets. Finally, we provide three
recommendations to help improve the accuracy of PSMs.

1 Introduction
Passwords firmly remain the dominant mechanism for user
access control on the Web, ranging from low-value news
portals [1], moderate-value e-commerce and email services
[2] to highly-sensitive genomic data protection [3]. It is well
known that users tend to choose weak passwords which are
prone to guessing attacks [4, 5]. To deal with such vulnerable
behaviors, almost every respectable web service now employs
a password strength meter (PSM) to encourage users toward
strong passwords, see Fig. 1 for examples (i.e., 12306-PSM
and Google-PSM). PSMs with accurate strength feedback can
indeed play a positive role in the password creation stage, but
inaccurate PSMs do more harm than good [6–9]: If a weak
password is rated as strong, it will give users an unrealistic
sense of security and compromise password security [10, 11];
Whereas, if a strong password is evaluated as weak, users
need to spend longer creating their passwords and are prone
to feel frustrated or annoyed [6, 8].

Over the past decades, academia and industry have made
impressive efforts to design PSMs (e.g., rule-based [12, 13],
pattern-based [14, 15], and guessability-based [16–20]) with
accurate strength feedback. Although dozens of PSMs have
been proposed one after another, it is unclear which one
is most suitable for which scenario, especially when there
are various guessing attacks (e.g., online guessing and of-
fline guessing) and application scenarios (e.g., e-banking and
cloud). To answer this question, a more fundamental issue
needs to be first addressed: how to measure the accuracy
of PSMs. At NDSS’12, Castelluccia et al. [16] proposed a
new PSM and the first metric (i.e., the Spearman rank cor-
relation) to measure PSM accuracy, but they only focused
on the online guessing scenario. At IEEE TIFS’17, Galbally
et al. [19] proposed a new multimodal-based PSM, and sug-
gested using the single metric Kullback-Leibler divergence to
measure PSM accuracy, but they only considered the offline
guessing scenario. Like these two works, most existing works
(e.g., [13, 14, 17]) present new PSMs with assertions of the
superior aspects over previous ones, while (unconsciously)
overlooking dimensions on which their schemes fare poorly.
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1.1 Motivations
Accuracy is the most essential property of a PSM, yet few
studies have paid attention to the fundamental accuracy eval-
uation criteria framework that allows for a systematic and
thorough assessment of the accuracy of existing (highly het-
erogeneous) PSMs. Without a systematic methodology, a fair
comparison is unlikely, and there is no basis for diversified
PSM schemes to be rated across a common spectrum. As far
as we know, Golla and Dürmuth’s work [10] at CCS’18 may
be the closest to our paper: They proposed a single metric
(i.e., weighted Spearman correlation coefficient, which is only
applicable to online guessing scenarios) for measuring PSM
accuracy, and compared 45 PSMs on only three English pass-
word datasets. In a nutshell, little existing work pays attention
to the evaluation framework for PSMs, and the following key
research questions (RQs) remain to be answered:
RQ1: Though the characteristics of online and offline guess-

ing scenarios are vastly different (e.g., allowed guessing
attempts), whether PSMs can be evaluated by using the
same criterion under these two guessing scenarios?

RQ2: As attackers in different guessing scenarios have var-
ied knowledge of the targets and suffers from different
constraints (and thus adopts different attacking strate-
gies), should specific evaluation metrics be selected ac-
cordingly? Or, is there a single silver bullet metric?

RQ3: Since the strength misjudgments in different direc-
tions (e.g., weak→strong vs. strong→weak) have varied
impacts on PSM accuracy, how should the evaluation
metric be adjusted accordingly?

RQ4: How will the accuracy of a PSM change when it is
deployed on sites of a different language from which
it is originally designed for? For instance, how will the
widely adopted Zxcvbn [14] perform on Chinese sites,
while it is primarily designed for English sites?

RQ5: How will the accuracy of a PSM change when its non-
binned strength feedback (e.g., entropy or guess number)
is converted to easy-to-understand (and widely used)
bins/scores (e.g., [weak, medium, strong])?

It is imperative to address the above research questions
to facilitate the design, evaluation and selection of a proper
PSM for a given site, and our work takes the first step towards
addressing these questions.

1.2 Contributions
We first investigate the intrinsic characteristics of online and
offline guessing scenarios (and various guessing strategies),
and explicitly reveal that “there is no single silver bullet met-
ric” for evaluating PSM accuracy. Accordingly, we, for the
first time, propose a systematic evaluation framework com-
posed of four different dimensioned criteria to rate PSM ac-
curacy under both guessing scenarios (and various guessing
strategies). The effectiveness and practicality of this frame-
work are demonstrated by rating 12 leading PSMs, leveraging

Figure 1: Inaccurate (see P@ssword123!) and inconsistent (see password
123_ ) PSM feedback: Google (https://myaccount.google.com/) and
China Railway 12306 (https://www.12306.cn/en/register.html).

218.79 million passwords from 14 high-profile English and
Chinese sites. Note that our evaluation framework can also be
applied to targeted online/offline scenarios with minor adjust-
ments. Though not cast in stone, our framework is expected
to help better evaluate current/future PSMs, and to inform
future PSMs designs. In summary, our contributions are:

• Metrics for online guessing. While the strength rank-
ings of popular passwords can be approximated by their
frequency rankings, the misjudgment of the strength of
passwords with different popularity would have varied
effects on PSM accuracy. Thus, we use the weighted
Spearman correlation coefficient (WSpearman) metric
for online guessing scenarios, and investigate the two
most typical online attackers: 1) The general attacker,
who is unaware of the target distribution and will mainly
traverse common popular passwords [4]; and 2) The
knowledgeable attacker, who is well-informed of the tar-
get password distribution and will give priority to these
most popular passwords (e.g., top-104) [4, 21, 22]. We
also investigate and compare the characteristics of six
WSpearman calculation methods and adopt the best one.

• Metrics for offline guessing. We consider the four
most typical offline guessing attackers: Brute-force,
dictionary-based, probability-based, and the combined
one with the aforementioned three attacking strategies
[23, 24]. We use the Kullback-Leibler divergence met-
ric to measure the differences between the strength dis-
tributions of the cracked passwords and the remaining
(uncracked) passwords. In particular, we propose a new
metric, namely Precision, to measure the accuracy of
a PSM when its non-binned strength feedback (e.g.,
entropy or guess number) is transformed into easy-to-
understand (and widely used) bins/scores (e.g., [weak,
medium, strong]). Further, we design a reconciled Preci-
sion metric (i.e., PrecisionSecurity) that can characterize
the strength misjudgments in different directions (e.g.,
weak→strong and strong→weak) on PSM accuracy.
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• Extensive evaluation. We utilize our evaluation frame-
work to systematically measure 12 state-of-the-art PSMs:
seven foremost academic PSMs (i.e., fuzzyPSM [17],
MultiPSM [19], PCFG-PSM [25], Markov-PSM [16],
RNN-PSM [18], LPSE [13] and CNN-PSM [20]), four
representative commercial PSMs (i.e., Zxcvbn [14],
KeePSM [15], 12306-PSM [26] and Microsoft-PSM
[27]), and our modified ZxcvbnC. We conduct exper-
iments on 139.71 million passwords from seven English
sites and 79.08 million passwords from seven Chinese
sites, filling the gap in [10, 28] which only focused on
how PSMs perform on English passwords. Results show
that, in online guessing scenarios, fuzzyPSM [17] is the
most accurate PSM, and pattern detection-based PSMs
(especially Zxcvbn [14]) are more accurate than attack
algorithm-based PSMs. In offline scenarios, multimodal-
based MultiPSM [23] performs the best, and Markov-
PSM [16] and Zxcvbn [14] also show good accuracy.

• Some insights. We gain a number of insights from our
experiments and provide a few suggestions to help im-
prove PSMs. We find that, adaptive score conversion
methods can be used to facilitate PSM application. Be-
sides offline scenarios, PSMs can also be effectively in-
tegrated to perform better in online scenarios. Through
cross-language evaluations, we also provide the first con-
crete evidence from extensive empirical experiments
that PSMs (and their training sets) need to be adapted
to accommodate different languages/services (e.g., we
modify the English-originated Zxcvbn [14] to construct
a more accurate ZxcvbnC for Chinese sites).

2 Related work

Early password-strength meters (PSMs) are dated back to
the 1990s, and they are named proactive password checkers
(see [29, 30]). Their basic idea is to check each user-chosen
password candidate against a dictionary of weak passwords.
However, Yan [31] pointed out that these checkers often miss
weak passwords (e.g., 12a34b5) that do not fall into the dictio-
nary. Thus, he proposed to adopt entropy-based checking as a
complementary method to improve dictionary-based checking.
In 2006, the influential NIST authentication guideline [12]
followed this idea and suggested a password strength meter
(PSM) based on heuristic estimations of password entropy
(e.g., “a bonus of 6 bits of entropy is assigned for a compo-
sition rule that requires both upper case and non-alphabetic
characters” and “a bonus of up to 6 bits of entropy is added
for an extensive dictionary check”). Because such heuristics
are too coarse to capture users’ highly predictable tricks to
improve password complexity, entropy is unsuitable for as-
sessing user-generated password strength.

Although NIST-PSM [12] has been abandoned by the lat-
est version of NIST SP800-63B since 2017 [32], most high-
profile services (e.g., Google and 12306; see Fig. 1) are still

following the entropy idea of NIST-PSM [2, 28, 33]. We take
Google-PSM as a concrete example. The strength feedback
of Google-PSM is an ad-hoc combination of password length,
character types used, and dictionary checking (see Sec. V-B
of [28] for details). Although their design ideas are similar,
the strength feedback of different sites’ meters has a large
variance. It has been shown that meters of different sites
produce highly inconsistent results when checking the same
password [28, 33] (see Fig. 1 for examples). Inaccurate and
misleading feedback would not only impair security, but also
confuse/frustrate users, defeating the purpose of PSMs [28].

The heuristic entropy metric has been replaced by “guess-
ability”, because the formers on the basis of some simple rules
have been reported are insufficiently reflecting the resistance
of passwords to advanced guessing attacks [34, 35]. Pass-
word guessability measures the ability to withstand guessing
by a particular password cracker, which is generally instan-
tiated by the guess number, the time required for guessing,
and so on. However, it is usually expensive to compute the
exact guess number of an unpopular password. At CCS’15,
Dell’Amico and Filippone [36] introduced the Monte Carlo
sampling method to efficiently and accurately estimate the
guess number of a password. This method applies to a broad
set of probabilistic password models such as probabilistic
context-free grammars (PCFG) [37] and Markov chains [38],
making the guess number a feasible metric in reality.

All these bring out a number of recent academic PSMs (see
more information in Table 3) that are based on “guessability”,
and they all show advantages over existing entropy-based
PSMs (e.g., Microsoft-PSM [27]). For example, Markov-
PSM [16] has a higher Spearman correlation coefficient than
the NIST-PSM [12] and its variations (e.g., Google-PSM and
Microsoft-PSM), when an ideal PSM is adopted as the bench-
mark for strength reference; Wang et al. [17] employed both
the Spearman and Kendall correlation coefficients to empir-
ically demonstrate the superiority of fuzzyPSM [17] over
Markov-PSM [16], Zxcvbn [14] and PCFG-PSM [25], when
considering online guessing attacks (i.e., the guess number
allowed is small, usually<104); Melicher et al. [18] compared
the number of “unsafe errors” (caused by overestimating the
Password strength) produced by RNN-PSM [18], Zxcvbn [14]
and Yahoo-PSM, indicating that RNN-PSM [18] is more accu-
rate due to fewer unsafe errors. Pasquini et al. [20] proposed
a PSM with character-level feedback based on Convolutional
Neural Network (denoted as CNN-PSM), and it was shown to
be more accurate than RNN-PSM [18] and Markov-PSM [16].

A significant drawback of guessability-based PSMs is that
(simulated) guessing algorithms may not be as effective as
those adopted by real attackers, thus introducing a strong
bias in the guessability/strength estimation [11, 39]. In 2017,
Galbally et al. [19] pointed out that no existing PSM can
be applied to all guessing strategies. In response, they pre-
sented a multimodal-based MultiPSM, whose output is a fu-
sion score that heuristically combines four heterogeneous
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Table 1: Basic information about trawling guessing scenarios.
Guessing

Guessing strategies
Allowed Interact Main Efficacy

scenarios guesses with server constraint metric
Online

Popularity-based ≤104‡ Yes
Detection, Cracked%,

[34, 40, 43] lockout # of guesses needed

Offline
[37, 38, 44]

Brute-force >109

No Attacker
power

Cracked%,
Dictionary-based >109 # of guesses needed,
Probability-based >109 Attacking time†

†Attacking time = guesses needed × attacker power (i.e., how many times of pass-
word guesses can be computed per second).

‡ We provide the rationality of selecting 104 as the online threshold in Appendix A.

strength scores to benefit from each guessing model’s advan-
tages (see Sec. 4.2 for more details). Their results show that,
in terms of Kullback-Leibler divergence, MultiPSM [19] out-
performs NIST-PSM [12], Yahoo-PSM and Google-PSM in
the brute-force attack, dictionary-based attack and dictionary
with rules attack scenarios. Despite this, it is still unknown
the performance of MultiPSM [19] in more effective proba-
bility guessing scenarios (e.g., Markov [38]). Similarly, it is
also unknown whether MultiPSM [19] can provide accurate
strength evaluation results in online guessing (the primary
threat that users need to mitigate [40, 41]).

3 Systematic evaluation framework

3.1 Architecture and adversary model
Without loss of generality, we consider password-based au-
thentication with a client-server architecture. Each user U first
registers at the server S, and S keeps U’s password (in a salted
hash as recommended [32]). When the underlying authentica-
tion protocol (e.g., OPAQUE [42]) is secure, the adversary A
has to obtain U’s password to break U’s account (e.g., through
guessing, keylogging and shoulder surfing). In this work, we
mainly explore the trawling guessing attacks for three reasons:
(1) Other threats (e.g., keylogging) are unrelated to password
strength; (2) Mainstream PSMs (e.g., [14, 16–19, 25]) are
designed to help users generate secure passwords that can
withstand trawling guessing attacks; (3) Due to the sensitive
nature of personal data, it is highly controversial for sites
to collect and maintain the user’s personal information (and
passwords leaked from other sites). Trawling guessing attacks
aim to crack as many passwords as possible, not to crack the
password of a specific user. According to where the attack is
performed, trawling guessing scenarios can be divided into
online and offline attacks. The basic information of the two
kinds of attacks is shown in Table 1.

In online guessing scenarios, the attacker A checks her
guesses by constantly attempting to login as legitimate users,
while an offline attacker checks her guesses by searching for
collisions of password hashes on the hardware she controls.
Therefore, a well-designed server S can reduceA’s advantage
by limiting the login rate [5, 45] (see Appendix A for more
details), forcing users to reset their passwords when the failed
attempts exceed a threshold [45], and activating multi-factor
authentication mechanisms. On the contrary, in offline guess-
ing scenarios, the attacker A has already obtained all the data
that can be used to locally verify her guesses: It is usually

a salt-hashed password file obtained through database leaks.
Here, rate-limiting (at the server side) is inapplicable, and A
is only constrained by her local computing resources and the
time allowed [17, 41, 46].

Different application scenarios may suffer from different
kinds of guessing attacks. For instance, e-banking is more
prone to online guessing attacks than offline attacks, because
the backend bank server is generally better guarded than com-
mon sites and its password files are less likely to be leaked;
In contrast, portals like Yahoo are more likely to suffer offline
guessing attacks, because their backend servers/systems are
so complex that it is virtually impossible to keep them safe.
Actually, Yahoo has suffered at least three major user account
data breaches, with more than 3 billion victims [47].

For offline guessing, traditional heuristic attacks mainly
include brute-force and dictionary-based attacks, and they
have been adopted by automatic password-cracking tools
such as John the Ripper (JtR) [48] and HashCat [49]. In 2009,
Weir et al. [37] proposed a seminal probability-based guess-
ing algorithm, and it can crack 28%∼129% more passwords
than JtR [48]. Since then, several probability-based guess-
ing algorithms (e.g., [18, 21, 24, 38]) have been proposed,
which have higher cracking rates than traditional heuristic at-
tacks. However, these algorithms cannot substitute traditional
(brute-force and dictionary-based) attacks because the latter
are faster, cheaper and easier to deploy [11, 39, 50]. Thus, a
powerful realistic attacker is likely to adopt both traditional
and advanced probability-based attacks.

As the attacker in different guessing scenarios suffers from
essentially different constraints, the focus of a PSM should
also differ accordingly. In the online guessing scenario where
the number of guesses is limited, a PSM should accurately
detect popular passwords (also the preferred guessing pass-
words of attackers), especially the most popular passwords
(e.g., 123456). In offline guessing scenarios, a PSM needs to
prevent easy-to-crack passwords (including but not limited
to popular passwords and their simple variants) from register-
ing as much as possible, reducing the number of passwords
an attacker can successfully crack within given computing
resources. As different guessing scenarios entail the attacker
A with different abilities and resources, a sound PSM should
reflect the extent to which a password would consume A’s
resources in the given scenario. This implies that the accu-
racy of PSMs should be evaluated with different criteria in
different guessing scenarios, giving RQ1 a negative answer.

3.2 Guessing strategies
Since a realistic attacker would implement guessing in line
with her abilities and resources [40], we consider the follow-
ing most typical attackers with specific guessing strategies:

In online guessing, an attacker can only perform very lim-
ited guessing attempts due to the protection measures (e.g.,
risk-based account lockout [51]) deployed on the server. Since
the protection measures are quite diverse, the exact value of
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Figure 2: Our proposed systematic evaluation framework for measuring PSM accuracy.
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the online guessing threshold T depends on the target sys-
tem’s risk analysis results. Without loss of generality, we set
T =104 according to our manual test (see Appendix A) and
rule-of-thumb recommendations in [17, 40, 41, 52]. Given T ,
for an attacker well-informed of the target password distribu-
tion, her sensible strategy is to try the most popular passwords
(e.g., top-104) in the known distribution [4]. We call her a
knowledgeable attacker. In contrast, for an attacker unaware
of the target distribution, her sensible strategy is to traverse
common popular passwords [4, 21] (e.g., constructed from
leaked password corpus), and we call her a general attacker.

In offline guessing scenarios, it is not difficult for attackers
to make more than billions of guesses by using GPUs [53,54].
Generally, offline password attacks fall into three main groups:
brute-force, dictionary-based and probability-based attacks.
A brute-force attacker performs an exhaustive search over
all possible passwords in a given search space, and she will
soon reach the limit of her computational budget (e.g., money
and time) when the sought password is long or has multiple
charsets [48]. A dictionary-based attacker typically generates
a guess list that contains diversified wordlists (e.g., common
natural words, numeric patterns and first names) and candidate
passwords extended through a predefined mangling ruleset
[48,49]. A probability-based attacker attempts to describe the
target password distribution by parametric probability models
(e.g., Markov [38]), then search the entire key space in the
descending order of probability to produce guesses. Note that
real-world attackers are likely to try all these three guessing
strategies to achieve higher cracking rates, and we refer to
such a powerful attacker as the combined attacker.

Due to the intrinsically different characteristics of various
guessing strategies, the guessabilities/strength of the same
password in different scenarios will inevitably have a large
gap. Even using the same training data, guessability results
per password can differ by many orders of magnitude be-
tween approaches. For example, for an attacker who adopts
JtR [48] with Tianya as the wordlist, she can hit the pass-
word 111222tianya after 10 guessing attempts (see Table
10); However, for an attacker using the Markov algorithm,
even if she adopts the entire Tianya dataset as the training set,
it will take her 83,120 attempts to hit 111222tianya. Such
a large gap in guessability estimates is due to different pass-
word guessing models used by attackers, which define which

guesses should be tried and in which order [11,40]. Therefore,
the answer to RQ2 is negative: There is not a single silver
bullet metric to evaluate PSM in different guessing strategies.

We, for the first time, propose a systematic evaluation
framework containing four different dimensioned criteria to
measure PSM accuracy (see Fig. 2). Further, this framework
can be extended to targeted guessing scenarios after minor
modification. More specifically, in targeted online guessing
scenarios, one can modify the ideal PSM with respect to each
user (instead of the entire user group in trawling guessing
scenarios); In targeted offline guessing scenarios, one can
directly add targeted guessing strategies (e.g., [5,41]) without
proposing new metrics or altering the framework.

3.3 Metrics for online guessing
Measuring password strength hinges on determining the order
in which an attacker would make guesses. Due to the limited
attempts allowed in online guessing scenarios (e.g.,≤104; see
Appendix A), guessing passwords in the order of decreasing
probability is the optimal strategy [16, 21]. Consequently,
popular passwords are weaker because they are tried before
unpopular ones. That is, the higher the frequency, the lower the
strength. Based on such an optimal guessing strategy, an ideal
PSM can be regarded as a good benchmark for evaluating
PSM accuracy in online guessing scenarios, for it uses the
frequency of passwords in a real-world dataset to indicate their
strength [10,16,17]. In such a case, the accuracy of a PSM can
be measured as its distance from the ideal PSM, by calculating
the correlation between its evaluated strength rank list and the
referred rank list of the ideal PSM. The more accurate a PSM
is, the ranking of its output of password strength/probability
will be closer to the ranking of the ideal PSM. Under this
rationale, Kendall and Spearman correlations have long been
used to rate PSM accuracy [10, 16, 17].

Classic correlation coefficients (e.g., Spearman and
Kendall) are not suitable for measuring the accuracy of
PSMs because they mistakenly treat all passwords as equally
weighted data points [10]. Since the strength evaluation error
of frequent passwords will impact more accounts, it is neces-
sary to weight the correlation coefficients. After comparing
19 weighted metrics, Golla and Dürmuth [10] revealed that
weighted Spearman correlation coefficient (WSpearman) is
currently the most ideal metric to measure the accuracy of
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PSM for online guessing scenarios. Hence, we use WSpear-
man to measure PSM accuracy in online scenarios. The range
of WSpearman is [0,1], and the higher the value, the more
accurate the PSM in online guessing scenarios.
�Weighted Spearman correlation coefficient

To the best of our knowledge, there has been no publicly-
known method for calculating the WSpearman. Accordingly,
we investigate six different methods and experimentally an-
alyze their rationality for evaluating PSM accuracy (see Ap-
pendix B for details). We prefer the best one from [55], which
is also adopted in [10].

We define the weighted rank vectors of the ideal PSM and
the tested PSM as X and Y, respectively. The i-th (1≤ i ≤n)
members of X and Y are called xi and yi. Then WSpearman
is calculated as

WSpearman =

∑n
i=1 [wi(xi− x̄)(yi− ȳ)]√∑n

i=1[wi(xi− x̄)2]
∑n

i=1[wi(yi− ȳ)2]
, (1)

where wi is the weight, equal to the i-th password frequency,
x̄ and ȳ are the weighted means of X and Y respectively (see
Appendix C for more details).

Note that, Golla and Dürmuth [10] mainly report discrete,
numerical WSpearman values of tested passwords with two
specific ranks (i.e., 1,000-th and 10,000-th of their sample
set). Their approach is hard to provide the whole picture of
WSpearman values of tested passwords at every rank. For
instance, it is unknown how the WSpearman value changes
as the password ranking increases. Besides, under different
online guessing thresholds, the accuracy ranking of PSMs
will change, so discrete Wspearman values are unlikely to
provide much valuable reference for administrators to select
a proper PSM on demand. Thus, we show WSpearman values
of tested passwords vary with the whole rank scale in the form
of a curve (but not discrete values), see Figs. 4 and 9.

3.4 Metrics for offline guessing
As shown in Table 1, an attacker can perform large-scale
(usually>109) guesses under offline guessing scenarios. Thus,
unlike online scenarios, she does not care about whether any
specific guess is hit or not, but pursues a higher cracking rate
on the whole under the constraints of computing resources and
time. Under this circumstance, the main focus of a PSM is to
accurately distinguish passwords that are easy to be cracked.
Specifically, a good PSM shall give differentiated strength
ratings between the cracked and remaining (uncracked) pass-
words, so we use KL-divergence to quantify such differences
to measure the PSM accuracy in offline scenarios.

Notably, the strength of an unpopular password cannot
be estimated by its frequency [10, 17, 21]. The password
probability distributions (see Fig. 3) output by fuzzyPSM
[17] and PCFG-PSM [25] substantiate this: for a password
with count=1, the password guessing probability ranges from
10−47 to 10−5, meaning that an unpopular password is not
necessarily a secure password. In such a circumstance, the

ideal PSM is no longer a good reference in offline scenarios.
�Kullback-Leibler divergence

KL-divergence [56] (also known as relative entropy), mea-
sures how different one probability distribution is from an-
other (benchmark) probability distribution, and its range is
[0,∞). For PSM accuracy, higher KL-divergence reflects bet-
ter distinguishing ability (i.e., accuracy) of a PSM. Given
two discrete password strength distributions P and Q, the
KL-divergence from Q to P is defined as

KL (P ‖ Q) =
∑

i

P(i) · log
P(i)
Q(i)

. (2)

We calculate KL-divergences of three offline guess-
ing strategies, including brute-force, dictionary-based and
probability-based guessing, covering the most representatives
of main-stream guessing ideas in reality. Moreover, we pro-
pose a powerful attacker (denoted as a combined attacker)
who will take full advantage of various attacks to obtain a
higher coverage rate, and calculate the corresponding KL-
divergence. However, this realistic attacker is out of the con-
sideration of Galbally et al. [23]. Particularly, they ignored the
more threatening probability-based guessing, which has been
shown to be more effective than all attack strategies they con-
sidered (i.e., brute-force guessing, dictionary guessing and
dictionary with rules guessing [11, 22]). Summing up, we
consider the attacker who adopts a single attacking strategy
(i.e., brute-force, dictionary-based or probability-based) and
a combined strategy, and calculate the corresponding four
KL-divergence respectively to evaluate PSM accuracy, which
is more realistic and systematic.
�Precision and PrecisionSecurity

Well-performed academic PSMs (e.g., [16–18, 25]) usually
adopt fine-grained password probabilities or guess numbers
as strength feedback. However, this is not friendly to users’
intuition of password strength [57]. In contrast, commercial
PSMs (e.g., [14, 15, 27]) generally take coarse-grained but
easy-to-understand binning/scoring feedback (e.g., [Weak,
Fair, Good, Strong]; see Fig. 1) [7, 10, 57, 58]. Therefore, a
new question arises: How will the PSM accuracy change in re-
sponse when a fine-grained feedback (of a PSM) is converted
into a coarse-grained score/bin.

To address this question, we introduce the Precision metric
for multi-class classification to evaluate the accuracy of a
converted PSM. Specifically, an accurate scoring PSM will
rate the strength of a secure password as a higher score (and
that of an insecure password as a lower score). Thus, we
mainly explore the most representative passwords with the
lowest and highest scores. This is because the former is often
rejected for being too weak, reflecting the baseline strength
that the site will tolerate [2, 28, 33]; The latter one with the
highest score represents the site’s highest expectations for
password strength. The more accurate a PSM is, the more
passwords with the lowest score will be cracked, and the fewer
passwords with the highest score will be cracked.

We denote the set of passwords with the lowest score as L,
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where the number of the cracked passwords and the remaining
uncracked ones are NCL and NRL respectively; and the set of
passwords with the highest score as H, where the number of
the cracked passwords and the uncracked ones are NCH and
NRH respectively. The weight of L is defined as

WL =
NRL +NCL

NRL +NCL +NRH +NCH
, (3)

and the weight of H is

WH =
NRH +NCH

NRL +NCL +NRH +NCH
. (4)

Thus Precision is calculated as

Precision = WL ·
NCL

NRL +NCL
+WH ·

NRH

NRH +NCH

=
NCL +NRH

NRL +NCL +NRH +NCH
.

(5)

We note that strength misjudgments in different directions
(e.g., weak→strong or strong→weak) would have varied se-
curity impacts. Specifically, the strong→weak misjudgment
is prone to impose a burden (frustration/fatigue) on users and
thus reduce PSM usability [28]. In contrast, the weak→strong
misjudgment will mislead the user that her weak password
is strong enough, which has a much more negative security
impact than strong→weak misjudgment. Thus, a PSM should
strive to prioritize the reduction of the weak→strong misjudg-
ments. Comparatively, the misjudgment of medium-strength
passwords has a much smaller impact. To deal with this, we
propose the reconciled Precision metric (i.e., PrecisionSecurity)
to characterize the impacts of strength misjudgments in dif-
ferent directions on PSM accuracy:

PrecisionSecurity = β ·WL ·
NCL

NRL +NCL
+(1−β) ·WH ·

NRH

NRH +NCH
.

(6)
Assigning a higher weight to events with a higher risk (or

more likely to occur) is a common approach in risk manage-
ment and decision-making under uncertainty [59]. For linear
weighting, the value 0.8 is widely preferred [60–62]. Without
loss of generality, we also set the reconciled misjudgment
parameter β=0.8 corresponding to the more serious misjudg-
ment weak→strong, which indicates a four times higher sig-
nificance than the strong→weak misjudgment. It is worth
noting that the value of β can be adjusted according to the
system’s risk perceived and usability analysis, and how to
optimize it is out of our scope.

4 Experimental methodology
We now show the basic information about our password
datasets, introduce twelve state-of-the-art PSMs for compari-
son, and detail our experimental setups.

4.1 Datasets and ethical considerations
Our experiments are built on 14 widely used real-world pass-
word datasets (see details in Table 2). These datasets have
different password strengths, languages and services, and have
been widely used in relevant research on PSM design and eval-

uation (e.g., [10,13,14,17]). We select passwords with lengths
no longer than 30 and only contain ASCII characters for eval-
uation, following the same preprocessing method in prior
studies (e.g. [17, 18, 24]). This is because non-ASCII pass-
words and length>30 passwords are unlikely to be chosen
by users, they may be junk information or randomly gener-
ated by password managers [24], while PSMs are designed to
evaluate user-chosen passwords. In all, 0.00%∼2.71% (avg.
0.43%) of passwords are removed from the original datasets.

Our testing sets are quite diverse, covering services with
various security requirements. For instance, CSDN requires
passwords to be with length≥8, and 000webhost requires
passwords with length≥6 and at least a letter and a digit (see
Appendix D for more details). Besides, since the language is
an important factor that affects password strength [24, 63, 64],
our work evaluates passwords from both English and Chinese
sites, filling the gap in [10, 28] that only focus on how PSMs
perform on English passwords.

Though publicly available and widely used [10, 17, 24, 38,
39], these datasets are sensitive. We store and process them
on computers disconnected to the Internet, and only report the
aggregated statistics to ensure that no identifiable information
can be linked to the corresponding victim.

4.2 Leading PSMs to be evaluated
The effectiveness and practicality of our framework are
demonstrated and examined by rating 12 leading academic
and industrial PSMs. The selection of these 12 PSMs is based
on the preliminary results of 45 meters (81 variants) stud-
ied in [10], 50 meters studied in [33] and 22 meters studied
in [65]. Each of them is a representative of one PSM family in
terms of the deployability, design idea, training method and
time, storage space, blocklist adoption, feedback form, and
quantization (see Table 3). Below are some necessary details.
PCFG-PSM/fuzzyPSM. Weir et al. [37] proposed a seminal
password guessing model based on probabilistic context-free
grammars (PCFG). Houshmand and Aggarwal [25] then put
forward PCFG-PSM that estimates a password’s probability
for users to choose them. Considering users’ ubiquitous pass-
word reuse behaviors, Wang et al. [17] designed fuzzyPSM on
the basis of the fuzzy-PCFG algorithm. At the training stage,
fuzzyPSM [17] parses each password pair in the training
sets, and learns which and how mangling rules are employed
by users to construct new passwords from their old ones.
As the server generally does not have users’ old passwords,
fuzzyPSM [17] overcomes this problem by approximation:
it requires a relatively weak training set and an additional
stronger training set with languages, services and password
policies similar to the target website.
MultiPSM. Galbally et al. [19] believed that “no password
strength metric by itself is better than all other metrics for
every possible password”. Their MultiPSM [19] combines
the scores provided by a blocklist, a brute-forceable password
detection mechanism, and two heterogeneous Markov chains
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Table 2: Basic information about the fourteen real-world password datasets (PWs stands for passwords).†
Language Dataset Web service Leaked time Original PWs Miscellany Length>30 Removed % After cleaning Unique PWs Role

Chinese

Tianya Social forum Dec. 2011 31,761,424 860,183 5 2.71% 30,901,241 12,898,437 Training set
Dodonew E-commerce Dec. 2011 16,283,140 10,774 13,475 0.15% 16,258,891 10,135,260 Test set
Taobao E-commerce Jan. 2012 15,073,116 0 86 0.00% 15,073,030 11,634,170 Training set B
CSDN Programmer forum Dec. 2011 6,428,632 0 355 0.01% 6,428,277 4,037,605 Test set
TPYDL IT portal Dec. 2011 5,444,441 0 26 0.00% 5,444,415 2,884,441 Training set B
Weibo Social forum Dec. 2011 4,730,662 0 420 0.01% 4,730,242 2,828,618 Test set
Renren Social forum Dec. 2011 3,257,831 0 19 0.00% 3,257,812 1,904,776 Training set B

English

Rockyou Social forum Dec. 2009 32,603,387 18,377 3,140 0.07% 32,581,870 14,257,653 Training set
LinkedIn Professional social May 2016 54,638,863 0 17,154 0.03% 54,621,709 24,681,306 Test set
Twitter Social forum June 2016 40,669,963 0 282,149 0.69% 40,387,814 10,583,709 Training set B
000webhost Website service Oct. 2015 15,299,590 0 955 0.01% 15,298,635 10,583,709 Test set
Hostinger Website service May 2015 15,299,590 0 955 0.01% 15,298,635 717,641 Training set B
Yahoo Web portal July 2012 453,491 10,657 0 2.35% 442,834 337,136 Test set
Gmail Email Sep. 2014 4,926,650 0 3,120 0.06% 4,923,530 3,132,028 Training set B

† To characterize users’ password reuse behaviors, fuzzyPSM [17] requires two training sets: a relatively weak password dataset, called training set A and a relatively strong training set B.

Table 3: Basic information about the leading PSMs for comparison (PW stands for password; Tr for training).
Source Leading PSM Deployed in Design idea Tr method Storage (MB)† Blocklist Feedback form Quantization‡

Academic

fuzzyPSM [17] Server Attack algorithm (fuzzy-PCFG) Adaptive 198.66 × PW probability N/A
MultiPSM [19] Server Multimodal Adaptive 75.10 X Fusion score N/A
PCFG-PSM [25] Server Attack algorithm (PCFG) Adaptive 108.54 × PW probability N/A
Markov-PSM [16] Server Attack algorithm (Markov) Adaptive 101.23 × PW probability N/A
RNN-PSM [18] Server/Client Attack algorithm (RNN) Adaptive 20.12 × PW probability N/A
LPSE [13] Client Rules (Vector similarity) Static N/A × Vector similarity Q3
CNN-PSM [20] Server Probabilistic models (CNN) Adaptive 36.00 × PW probability N/A

Industrial

Zxcvbn [14] Client Pattern detection Static N/A X Guess number Q5
KeePSM [15] Client Pattern detection Static N/A X Entropy Q5
12306-PSM [26] Client Rules N/A N/A × Rating Q3
Microsoft-PSM [27] Client Rules N/A N/A × Rating Q4

† The results shown here are measured with the canonical Rockyou dataset (see Table 2) as the training set.
‡ Q3=[Weak, Medium, Strong]; Q4=[Very weak, Weak, Strong, Perfect]; Q5=[Very weak, Weak, Medium, Strong, Perfect].

into the final fusion as the final multimodal strength feed-
back. In our evaluation, we adopt their executable graphical
application JRC-PaStMe [66].

Markov-PSM. Castelluccia et al. [16] designed an adaptive
PSM based on the Markov model. Then Ma et al. [38] im-
proved Markov with normalization and smoothing techniques.
We adopt the setting recommended by Wang et al. [24]: 4-
order Markov with End-symbol Normalization and Laplace
Smoothing (with δ=0.01 as suggested in [38]).

RNN-PSM. Melicher et al. [18] presented a probabilistic
model based on Recurrent Neural Networks (i.e., RNN-PSM)
to measure password guessability. RNN-PSM [18] predicts
the next character of a password fragment and outputs the
probability. It outperforms its counterparts under large guess
numbers (usually≥1010 [18, 22]).

LPSE. Guo and Zhang [13] employed two kinds of simi-
larity to measure the strength of a given password, namely
cosine-length similarity and password edit distance. Unlike
other rule-based PSMs (e.g., 12306-PSM), LPSE [13] rep-
resents a password by a vector containing password charset
and length. Then, it evaluates password strength by calcu-
lating the similarity between the two vectors of the user’s
password and the standard strong password (randomly gener-
ated, length≥16). We choose the recommended cosine length
metric of LPSE [13] for evaluation.

CNN-PSM. Pasquini et al. [20] proposed an interpretable
probabilistic PSM, using a lightweight deep learning frame-
work from Convolutional Neural Network. We call it CNN-
PSM. In particular, CNN-PSM [20] disentangles the security
contribution of each character in the password, and provides

explicit fine-grained character-level strength feedback. But
as shown in Table 3, CNN-PSM [20] requires much more
(overwhelming) computing resources and training time than
other PSMs (such as RNN-PSM [18]).

Zxcvbn. This PSM has been adopted by well-known services
such as Dropbox and WordPress [14]. It decomposes an en-
tered password into several patterns that may overlap, and then
estimates the number of guesses required by the attacker to
hit the password, and outputs the strength score. However, the
original Zxcvbn [14] is primarily designed for English users
(so we call it ZxcvbnE ), ignoring users in other languages.
Thus, we replace some of its built-in English dictionaries with
the corresponding Chinese dictionaries (see Appendix E), and
get the modified ZxcvbnC to explore RQ4.

KeePSM. KeePSM is the built-in PSM of the popular pass-
word manager KeePass [15]. KeePSM [15] expresses the
password strength as an entropy score in bits and a colored
progress bar. Similar to Zxcvbn [14], KeePSM [15] detects
specific patterns of a given password. Then, it takes an opti-
mal static entropy encoder to calculate the minimum encod-
ing cost of pattern combinations. Compared to other PSMs,
KeePSM [15] is somehow too strict. For example, a random
password O*IghdA9i?P1 containing 12 characters of four
charsets is only rated as 78 bits (rate it as “weak”).

12306-PSM/Microsoft-PSM. 12306.cn is the official tick-
eting website of China Railway, and is used by six hundred
million users in their real names. 12306-PSM rates users’ pass-
words into three levels: A “weak” password is with length≤7
and composed only of letters, digits or the underscore char-
acter ‘_’; A “strong” password contains mixed-case letters,
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digits and at least one ‘_’; the remaining passwords are labeled
as “medium”. Microsoft-PSM has been adopted by popular
services such as Outlook and Skype. Microsoft-PSM divides
passwords into four levels: “very weak”, “weak” and “strong”
if the password length is < 8, within 8∼14 and >14, respec-
tively; a “strong” password will be upgraded to “perfect” if it
contains 2+ charsets. Such heuristic rule-based PSMs mainly
consider password composition, are far from accurate and of-
ten provide misleading feedback for weak passwords [28, 65].

4.3 Experimental setup
Among the 12 PSMs to be evaluated, five of them (i.e.,
Markov-PSM [16], MultiPSM [19], PCFG-PSM [25], RNN-
PSM [18], and CNN-PSM [20]) need one training set, and one
(i.e., fuzzyPSM [17]) needs two training sets. To make our
experiments as realistic as possible, our choices of the training
set(s) for a given test set (simulating the target site) adhere
to three rules: (1) They never come from the same service;
(2) They are of the same language; and (3) The training set(s)
shall be as large as possible. Rule (1) prevents our experiments
from the overfitting issue, while rules (2) and (3) ensure the
effectiveness of each algorithm. This gives rise to the dataset
setup in Table 2. Two training sets (i.e., Tianya and Rockyou)
are used by all six PSMs, and four additional datasets are used
as Training set B (simulating password reuse behaviors) for
fuzzyPSM [17]. Our training sets are also widely used in
various PSM-related literature [10, 13, 14, 17].

For a fair comparison, we further make sure that all 12
PSMs work on the same test set, and manage to obtain their
codes shared (implemented) by the original authors or direct-
edly from target sites. For all parameters, we follow the best
recommendations of the original authors. We adopt the entire
dataset for training for the six attack algorithm-based PSMs
(see Table 3). This is because, for such PSMs, their accuracy
is related to the training set size. Particularly, we explored the
impact of training set size on PSM accuracy (see Appendix
F for detailed experimental results). We find that compared
with PSMs trained with sub-sample (i.e., smaller) datasets,
the PSMs trained with the entire dataset perform better in
both online and offline scenarios.

4.3.1 Online guessing scenarios
According to rule-of-thumb recommendations of [40, 41, 52]
(with no concrete, real-world empirical evidence) and our
manual test (see Appendix A), we choose 104 as the online
guessing threshold. The ideal strength ranking of a popu-
lar password can be approximated as its frequency ranking
of a large enough password corpus [10, 17, 21]. However,
this straightforward idea is hard to apply to approximate the
strength of unpopular passwords [4]. To mitigate approxima-
tion errors, we first select passwords with frequency≥10 (as
recommended by [10]) from each target password dataset to
form the set D. Then, we use D as the basis of the test set,
and adopt two different strategies to select testing passwords

from D for accuracy comparison in online scenarios:
� For knowledgeable online attacker. Since many sites
(e.g., Yahoo [47], Twitter [67]) have leaked their user pass-
words more than once, a powerful (yet realistic) attacker can
learn the actual password distribution of the targeted website.
Due to limited guess attempts allowed, the attacker will prior-
itize the most popular passwords of this distribution within
the throttling threshold. Thus, we take the top-104 popular
passwords in D as the test set to calculate WSpearman.
� For general online attacker. For a general attacker un-
aware of the target password distribution, her sensible strategy
is to traverse common popular passwords (rather than the most
popular ones) of the target site. The general attacker is further
confined to submitting passwords in the target password set
for online guessing, while any real attacker does not have
(but can only approximate) this ability. That is, our general at-
tacker has the upper-bound capabilities of all online attackers
who are unaware of the target distribution. To characterize
her behavior, we randomly select 104 passwords from D as
the test set and calculate the WSpearman value.

PSMs that feedback coarse-grained bins/scores (e.g., 12306
-PSM and Microsoft-PSM) often measure passwords with
obviously different strengths to have the same strength
level/score. However, under the experimental method in which
the ideal PSM is the benchmark, such PSMs seem easier
to evaluate popular passwords accurately. This is because
they have orders of magnitude of fewer strength options (e.g.,
[weak, medium, strong]) than PSMs whose feedback is fine-
grained password probabilities or guesses. To explore whether
this phenomenon leads to an unfair evaluation of PSMs under
the WSpearman metric, we construct an artificial Pseudo-
PSM, which has only one strength rating, representing the
extreme case of coarse-grained PSMs. That is, Pseudo-PSM
rates the strength of all passwords with the same score (and
thus is highly inaccurate). If its WSpearman is always very
high, this indicates that our WSpearman metric cannot fairly
evaluate coarse-grained PSM accuracy; If its WSpearman
is always close to 0, it indicates no correlation between the
password strength given by Pseudo-PSM and the ideal PSM.
That is, our adopted WSpearman metric can effectively mea-
sure these coarse-grained PSMs (e.g., Microsoft-PSM [27],
12306-PSM [26], including apparently unreasonable Pseudo-
PSM). Our experimental results well fit the latter case (see
Fig. 4), indicating our adopted Wspearman has avoided giving
coarse-grained PSMs an inappropriate advantage.

4.3.2 Offline guessing scenarios
We consider four most representative offline attackers (or
strategies) and their configurations are as follows:
� For brute-force offline attacker. The guess number of the
brute-force attack is related to password charset and length.
We follow the method in [23] to implement 1012 guesses.
� For dictionary-based offline attacker. We select the fa-
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mous JtR [48] as the dictionary-based guessing tool, adopt the
training set in Table 2 as the wordlist, and conduct 109 guesses.
As for the mangling rules, following the recommendation of
Ur et al. [11], we choose Spiderlabs ruleset [68].

� For probability-based offline attacker. We train 4-gram
Markov [38] (using end-symbol normalization and Laplace
Smoothing) suggested by Wang et al. [24] on our training sets,
and generate 109 guesses in decreasing order of probability.

� For combined offline attacker. This attacker is powerful
enough to conduct the above three guessing attacks simultane-
ously to achieve a higher cracking rate, so we take the union
of the above three generated sets as her guessing set.

Under each guessing strategy, we calculate the strength
distributions of the cracked passwords and the remaining (un-
cracked) passwords, and use KL-divergence to evaluate the
differences between the two distributions to measure PSM
accuracy. Particularly, the higher the KL-divergence, the more
accurate the PSM is in offline guessing scenarios.

To simulate the transformation from fine-grained strength
feedback (e.g., entropy, guess number or probability) to easy-
to-understand (widely used) bins/scores, we take the follow-
ing methods to convert the output of PSMs: (1) For PSMs with
their own scoring/binning strategies (i.e., LPSE [13], Zxcvbn
[14], KeePSM [15], 12306-PSM and Microsoft-PSM), we
directly take their scoring results; (2) Regarding probability-
based fuzzyPSM [17], PCFG-PSM [25], Markov-PSM [16]
and RNN-PSM [18], we first use the Monte Carlo method [36]
to calculate the guess number of each testing password, and
then obtain the strength scores of testing passwords using
the guess number-score conversion method of Zxcvbn [14],
namely: <103 (score 0), 103∼106 (score 1), 106∼108 (score
2), 108∼1010 (score 3) and >1010 (score 4); (3) MultiPSM
[19] outputs a fusion score from 0 to 10 as the strength. We lin-
early map this score to an integer from 0 to 4 as the converted
score for the sake of comparison; and (4) CNN-PSM [20]
does not conform to the probability model, so the Monte
Carlo method [36] is inapplicable. As a solution, we divide
the password probability interval 10−200∼1 evenly into five
parts, corresponding to the strength scores 0∼4. We choose a
score range 0∼4 because this is the strength scale setting for
most commercial PSMs [28, 33].

To measure the accuracy of converted PSMs with the feed-
back of coarse-grained bins/scores, we calculate Precision
and PrecisionSecurity (see Sec. 3.4). The higher the metrics,
the fewer misjudgments of password strength and the more
accurate the PSM examined.

5 Experimental results and analysis

We now provide a comprehensive, comparative evaluation of
the accuracy of 11 leading PSMs as listed in Table 3, as well
as our modified ZxcvbnC (see Sec. 4.2).

5.1 Results in online guessing scenarios
As explicated in Sec. 3, we take WSpearman as the metric to
evaluate PSM accuracy under the general and knowledgeable
guessing strategies in online guessing scenarios. The higher
the WSpearman value, the more accurate the PSM in online
scenarios. The results on Dodonew, Weibo and LinkedIn are
shown in Fig. 4. Due to space constraints, the results on
CSDN, 000webhost and Yahoo are shown in Appendix F.

As defined in Sec. 3.2, the knowledgeable attacker is well-
informed of the target password distribution, and she will
prioritize the most popular passwords (e.g., top-104) of this
distribution [4, 21]. Almost all PSMs (excluding LPSE [13],
KeePSM [15] and RNN-PSM [18]) can accurately evaluate
these extremely popular passwords under the knowledgeable
guessing strategy, so the WSpearman value usually starts
around 1.0 (see Fig. 4). In contrast, the WSpearman value is
significantly lower under the general guessing strategy where
the attacker is unaware of the target password distribution.

FuzzyPSM [17] always performs the best in online guess-
ing scenarios. Under the knowledgeable guessing strategy, its
WSpearman is always greater than 0.5, usually the highest.
Under the general guessing strategy, it still has a significant
advantage in accuracy over all other PSMs. The intrinsic rea-
son behind its good performance is that fuzzyPSM [17] can
well capture users’ password reuse behavior without users’
old/leaked passwords (while all other PSMs cannot).

For pattern detection-based PSMs, the WSpearman val-
ues of ZxcvbnC and ZxcvbnE [14] are significantly higher
than KeePSM [15]. The reason is that Zxcvbn [14] has
a comprehensive set of methods for detecting/recognizing
common patterns in weak passwords, including keyboard
patterns, dates and names, etc. In online guessing sce-
narios, ZxcvbnC performs better than ZxcvbnE [14] on
Chinese datasets, while the opposite is true on English
datasets. For example, ZxcvbnC measures the 18th-ranked
password woaini1314 (which is a popular password that
means “I love you forever” in Chinese Pinyin) in Dodonew
as guess_number=63. However, ZxcvbnE [14] evaluates its
strength as guess_number=85,143,792. The significant gap
between these two guess numbers suggests the necessity of
adapting the dictionaries of a pattern detection-based PSM to
the language of the targeted service. This suggests that the
performance of pattern-based PSMs are language dependent.
We further explore whether this holds on six attack algorithm-
based PSMs (see Table 3), and find they all perform worse
on services in languages different from which it is originally
designed for (see Appendix F for details). This answers RQ4.

Among attack algorithm-based PSMs, fuzzyPSM [17] per-
forms slightly better than Markov-PSM [16] and RNN-PSM
[18], significantly better than PCFG-PSM [25]. Though both
fuzzyPSM [17] and PCFG-PSM [25] are based on the PCFG
algorithm [37], fuzzyPSM [17] captures real users’ password
reuse behaviors and common modification methods in its
fuzzy-PCFG algorithm, which is the essential reason for its
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Figure 4: Weighted spearman correlation coefficient of state-of-the-art PSMs in online guessing scenarios (tr: Training set; ts: Test set).

high accuracy. However, in most cases, attack algorithm-based
PSMs (except for fuzzyPSM [17]) perform slightly worse than
pattern detection-based ZxcvbnC and ZxcvbnE [14]. This is
mainly because the former has a lower ability in measuring
short (or simple-composed) passwords and does not deploy
the blocklist or dictionary to detect common weak passwords.
On the contrary, ZxcvbnE [14] and ZxcvbnC are good at
characterizing such passwords due to their built-in popular-
password dictionaries. Although MultiPSM [19] fuses a block-
list module and two heterogeneous Markov modules, its per-
formance is worse than that of the single-model Markov-
PSM [16] in the online guessing scenario. This implies that
its heuristic fusion strength score does not fully exploit the
advantages of each constituent module.

The accuracy of CNN-PSM [20] is mediocre under the
knowledgeable guessing strategy, but it seems to be worse
under the general guessing strategy (WSpearman<0.5). This
suggests that CNN-PSM [20] can more accurately measure
top-ranked passwords than measure common ones. The ad-
vanced rule-based LPSE [13] usually performs not very well,
indicating that its heuristic construction of password vectors
is somewhat unreasonable, or its adopted cosine-length simi-
larity is not suitable. Rule-based 12306-PSM and Microsoft-
PSM simply output the heuristic strength bin/score of a pass-
word instead of the fine-grained password probability or guess
number. In online scenarios, these PSMs usually perform the
worst, indicating that the crude rule-based PSMs are far from
accurate. For instance, they do not rate the common popular
password 111222tianya (rank=10 in Tianya dataset; see Ta-
ble 10) as weak, just because it is composed of two charsets
and its length=12. The WSpearman value of Pseudo-PSM

is almost 0. This in turn demonstrates that the correction
strategies in our adopted WSpearman have avoided giving
coarse-grained PSMs an inappropriate advantage.
Summary. In online guessing scenarios, fuzzyPSM [17] per-
forms the best, followed by Zxcvbn [14]. Pattern-based and
attack-algorithm-based PSMs need to be adapted for evaluat-
ing passwords in different languages.

5.2 Results in offline guessing scenarios
Among our proposed three metrics for offline scenarios (see
Sec. 3.4), KL-divergence can reveal the distinguishing ability
of a PSM; Precision can measure PSM accuracy when its
non-binned strength feedback is transformed to widely used
bins/scores; and PrecisionSecurity can characterize the impacts
of misjudgments in different directions on PSM accuracy. The
higher the metric value, the more accurate the PSM is under
the corresponding offline strategy.

5.2.1 KL-divergence
In Table 4, we summarize the KL-divergence of leading PSMs
under various attacking strategies, and identify the best PSM
under each guessing strategy with the background color. For
brute-force, MultiPSM [19] performs the best, because it con-
tains a brute-force detection model. Rule-based LPSE [13]
and Microsoft-PSM are also noteworthy: Their KLB f a are
the second and only lower than MultiPSM [19] in most
cases. This is mainly because these rule-based PSMs evaluate
password strength by password complexity (i.e., length and
charsets), which just defines the password space for brute-
force guessing [69]. That is, the intrinsic mechanisms of rule-
based PSMs and brute-force attacks are interlinked.
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Table 4: KL-divergence of leading PSMs in offline guessing scenarios. Multi-
PSM [19] performs best under brute-force and combined guessing strategies.†

Chinese EnglishPSM KL
Dodonew CSDN Weibo LinkedIn 000web. Yahoo

KLB f a 1.0788 2.5179 3.1533 0.8308 0.9268 0.7865
KLDic 2.1009 6.7767 0.9021 3.0155 4.3028 3.7928
KLProb 1.2467 1.1164 0.4478 1.3486 2.4993 1.5537

fuzzyPSM [17]

KLAll 1.6193 3.1912 3.9749 2.2784 2.1186 3.3429
KLB f a 7.8006 2.0598 1.1105 8.5515 10.8753 6.4370
KLDic 0.3519 0.2727 0.1161 0.5221 1.0597 0.2488
KLProb 1.6762 1.8614 1.1436 5.4648 2.0630 2.0235MultiPSM [19]

KLAll 8.8994 7.2047 5.3692 7.5933 4.6160 3.9984
KLB f a 3.0046 1.4362 2.3564 2.2791 2.3951 1.2541
KLDic 5.5556 5.9258 1.1966 3.4309 3.0581 1.8182
KLProb 0.5047 1.1080 1.0369 1.2626 1.4452 0.9729

PCFG-PSM [25]

KLAll 4.4277 2.3542 5.2805 6.0787 6.5533 2.9720
KLB f a 1.2793 2.7560 3.8787 1.1933 0.9148 0.9439
KLDic 3.0063 6.6061 3.8439 1.1163 1.6300 1.0145
KLProb 2.0506 2.0341 0.7793 6.9454 6.9880 6.7100

Markov-PSM [16]

KLAll 2.2533 3.4217 3.8988 5.8993 1.3360 2.3893
KLB f a 0.6410 0.9677 1.1538 1.0628 0.9133 0.6623
KLDic 1.8715 2.9528 1.5388 3.4172 5.6578 2.0859
KLProb 0.9765 1.6174 0.9335 2.6606 3.0942 1.7423

RNN-PSM [18]

KLAll 1.1992 1.5318 2.8269 4.1227 3.2999 6.3708
KLB f a 8.6483 6.7929 3.6468 4.0480 1.7946 1.3838
KLDic 0.6029 0.6291 0.3974 0.3833 0.5417 0.3120
KLProb 0.3492 0.4390 0.3814 1.8581 1.1519 1.2526

LPSE [13]

KLAll 6.7505 1.8783 0.9242 6.7797 6.5693 4.6571
KLB f a 1.2415 1.7885 1.3490 0.3299 0.7236 0.5631
KLDic 4.1313 6.3760 4.1089 2.2732 2.6128 2.6266
KLProb 0.3446 0.6661 0.5040 1.1542 2.5521 1.7725

CNN-PSM [20]

KLAll 3.0218 3.3403 2.8551 3.5520 2.1229 2.4907
KLB f a 2.1916 3.6398 2.9347 1.1732 1.7442 1.1001
KLDic 2.6813 5.8958 2.7036 1.0440 2.1223 2.0496
KLProb 0.7428 1.1549 0.7512 0.9996 1.7949 1.2733

ZxcvbnC

KLAll 2.8681 3.8673 4.4639 1.6443 2.0144 2.3132
KLB f a 2.8831 4.2145 2.7957 1.4231 1.5154 1.2219
KLDic 4.3938 7.6722 4.0757 2.0382 3.7266 2.8444
KLProb 0.9770 1.5533 1.1632 1.3931 1.8223 1.4169

ZxcvbnE [14]

KLAll 4.3930 4.6782 5.4262 4.7708 2.6660 2.6944
KLB f a 2.5697 2.2666 3.9500 2.8319 2.2526 2.8474
KLDic 1.0812 2.0236 0.8438 0.1939 0.5237 0.3673
KLProb 0.2886 0.4965 0.9081 1.0141 0.9805 0.9177

KeePSM [15]

KLAll 2.2322 2.6261 3.9691 1.6662 0.8765 1.3227
KLB f a 1.6920 1.6607 0.3271 0.6190 1.6402 0.3176
KLDic 0.2456 0.3219 0.1479 0.1504 0.1692 0.2607
KLProb 0.0058 0.0127 0.0080 0.1873 0.4803 0.0319

12306-PSM

KLAll 1.4990 1.3592 0.2232 0.3698 0.8558 0.2026
KLB f a 3.7802 0.2433 0.3576 3.6622 5.6669 3.2280
KLDic 0.6652 0.0574 0.1811 0.4127 0.4552 0.0112
KLProb 0.0545 0.0364 0.0688 0.9957 0.8549 0.1223

Microsoft-PSM

KLAll 3.3667 0.2370 0.2617 2.7974 3.0522 2.6380
†KL=KL-divergence; Bfa=Brute-force attack; Dic=Dictionary-based guessing;
Prob=Probability-based guessing; All=The combined guessing. A line with back-
ground color means the corresponding PSM is the best under the given strategy.

Under the dictionary-based guessing strategy, ZxcvbnE
[14] is quite accurate, benefiting from its well-designed pat-
tern detection mechanism, which covers common popular
passwords and various password mangling rules (e.g., leet
and reverse) as well as patterns (e.g., keyboard pattern, birth-
day). Unlike online guessing scenarios, our modified ZxcvbnC
does not show an advantage compared to ZxcvbnE [14] on
Chinese datasets under dictionary-based attacks. It is believed
that, ZxcvbnC will be more accurate on Chinese sites, by fur-
ther modifying its dictionaries according to Chinese users’
password construction habits.

In probability-based attacks, Markov-PSM [16] performs
the best as expected, because such attacks use the Markov
model [38]. Similarly, MultiPSM [19] contains two hetero-

Table 5: Precision of leading PSMs with the feedback of (transformed)
bins/scores in offline guessing scenarios. LPSE [13], ZxcvbnE [14], Markov-
PSM [16] and MultiPSM [19] perform the best under brute-force, dictionary-
based, probability-based and combined guessing strategies, respectively.†

Chinese EnglishPSM Prec
Dodonew CSDN Weibo LinkedIn 000web. Yahoo

PrecB f a 0.6593 0.7356 0.9622 0.8099 0.9136 0.9182
PrecDic 0.8320 0.8828 0.7896 0.8118 0.9722 0.9941
PrecProb 0.7636 0.7042 0.1239 0.8738 0.9575 0.9750

fuzzyPSM [17]

PrecAll 0.6842 0.7631 0.9811 0.7544 0.9604 0.9569
PrecB f a 0.8738 0.8608 0.9582 0.9676 0.6753 0.8721
PrecDic 0.6134 0.6435 0.6653 0.9598 0.9358 0.9791
PrecProb 0.3248 0.1462 0.1736 0.8842 0.9189 0.8433MultiPSM [19]

PrecAll 0.9971 0.9917 0.9978 0.9962 0.9918 0.9975
PrecB f a 0.9331 0.8492 0.8829 0.9122 0.9507 0.9057
PrecDic 0.9706 0.9793 0.7531 0.9523 0.9792 0.9460
PrecProb 0.3522 0.9895 0.2680 0.9886 0.9891 0.9945

PCFG-PSM [25]

PrecAll 0.9241 0.8305 0.8136 0.8747 0.9344 0.8594
PrecB f a 0.5706 0.5967 0.9214 0.6284 0.8954 0.7478
PrecDic 0.7933 0.8058 0.8520 0.5314 0.9519 0.6039
PrecProb 0.9333 0.9534 0.6133 0.9900 0.9991 0.9799

Markov-PSM [16]

PrecAll 0.5647 0.6038 0.9181 0.4347 0.8707 0.5056
PrecB f a 0.6514 0.6425 0.5042 0.8778 0.9527 0.9180
PrecDic 0.9535 0.9359 0.7356 0.9682 0.9961 0.9667
PrecProb 0.9050 0.8540 0.7709 0.8609 0.9580 0.8537

RNN-PSM [18]

PrecAll 0.6270 0.6301 0.4788 0.8715 0.9503 0.9796
PrecB f a 1.0000 1.0000 0.5467 0.9999 0.9998 0.9992
PrecDic 0.3505 0.6817 0.3272 0.5878 0.7074 0.6786
PrecProb 0.2349 0.6326 0.0986 0.8030 0.7956 0.8243

LPSE [13]

PrecAll 0.9993 0.9866 0.5465 0.9974 0.9968 0.9755
PrecB f a 0.6975 0.7272 0.7046 0.7142 0.2628 0.5030
PrecDic 0.4363 0.4505 0.4425 0.7951 0.2505 0.4415
PrecProb 0.1963 0.0656 0.1274 0.6746 0.2675 0.4129

CNN-PSM [20]

PrecAll 0.7966 0.7869 0.7475 0.9231 0.4199 0.6666
PrecB f a 0.8926 0.8912 0.9586 0.8251 0.8707 0.9162
PrecDic 0.8485 0.9206 0.8159 0.8404 0.9827 0.9711
PrecProb 0.3210 0.2329 0.1856 0.8268 0.9728 0.9367

ZxcvbnC

PrecAll 0.9866 0.9794 0.9938 0.8831 0.9866 0.9943
PrecB f a 0.9561 0.9326 0.9752 0.9191 0.6990 0.9206
PrecDic 0.9254 0.9325 0.8770 0.9609 0.9866 0.9796
PrecProb 0.2639 0.1055 0.1942 0.9160 0.9385 0.9216

ZxcvbnE [14]

PrecAll 0.9881 0.9802 0.9970 0.9962 0.9976 0.9986
PrecB f a 0.6622 0.6939 0.9085 0.6967 0.2375 0.4374
PrecDic 0.4281 0.4853 0.5685 0.7807 0.3105 0.3785
PrecProb 0.2232 0.0879 0.1679 0.6598 0.2953 0.3510

KeePSM [15]

PrecAll 0.7805 0.7753 0.9678 0.9158 0.4442 0.5766
PrecB f a 0.9105 0.8295 0.4205 0.6799 0.9406 0.9978
PrecDic 0.2400 0.2859 0.2519 0.4339 0.3958 0.8217
PrecProb 0.1208 0.0657 0.0655 0.4389 0.5917 0.9210

12306-PSM

PrecAll 0.9341 0.8643 0.4320 0.7403 0.9399 0.9995
PrecB f a 0.9979 0.9985 0.5161 0.9952 0.9822 0.9937
PrecDic 0.5596 0.3134 0.3082 0.6488 0.4385 0.7556
PrecProb 0.1531 0.1345 0.0837 0.7743 0.5624 0.8476

Microsoft-PSM

PrecAll 0.9982 0.9929 0.5164 0.9948 0.9806 0.9937
† Prec=Precision; Other abbreviations are the same with Table 4. A line with back-
ground color means the corresponding PSM is the best under the given strategy.

geneous Markov modules and obtains the higher KLProb on
English datasets. Attack algorithm-based RNN-PSM [18] per-
forms slightly better than PCFG-PSM [25], but both of them
perform quite mediocre. This can be explained by the fact that
though RNN is better than Markov in large guesses (usually
≥ 1010) [18], and PCFG is better in small guesses [24], but
none is always better than Markov.

As expected, MultiPSM [19] generally performs the best
under the combined guessing strategy (denoted as All). This is
because MultiPSM [19] includes the brute-force password de-
tection mechanism, blocklist, and two heterogeneous Markov
models [38], consistent with our two (single) guessing strate-
gies. The final multimodal score of these modules, which can
reflect the password strength under the combined attacks.
Summary. In offline scenarios, MultiPSM [19] generally
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Table 6: PrecisionSecurity of leading PSMs with the feedback of (transformed)
bins/scores in offline guessing scenarios. MultiPSM [19] is still the most
accurate PSM under brute-force and combined guessing strategies.†

Chinese EnglishPSM PrecSec
Dodonew CSDN Weibo LinkedIn 000web. Yahoo

PrecSec
B f a 0.2993 0.3226 0.7526 0.2772 0.2139 0.3551

PrecSec
Dic 0.3228 0.3576 0.6121 0.2861 0.2586 0.3907

PrecSec
Prob 0.2066 0.1582 0.0736 0.2915 0.2452 0.3767fuzzyPSM [17]

PrecSec
All 0.3249 0.3462 0.7702 0.2791 0.2571 0.3868

PrecSec
B f a 0.7978 0.7519 0.4118 0.7809 0.7303 0.7930

PrecSec
Dic 0.4884 0.5142 0.5270 0.7666 0.7235 0.7832

PrecSec
Prob 0.2574 0.1163 0.1336 0.7061 0.7100 0.6745MultiPSM [19]

PrecSec
All 0.7883 0.7836 0.7923 0.7987 0.7729 0.7988

PrecSec
B f a 0.5760 0.1749 0.6153 0.3078 0.1913 0.1878

PrecSec
Dic 0.5751 0.2008 0.5245 0.3134 0.1970 0.1958

PrecSec
Prob 0.0717 0.1979 0.0582 0.3183 0.1986 0.2055PCFG-PSM [25]

PrecSec
All 0.5742 0.1712 0.6014 0.3003 0.1881 0.1785

PrecSec
B f a 0.1732 0.2026 0.3295 0.2845 0.2009 0.3108

PrecSec
Dic 0.2047 0.2407 0.2686 0.2672 0.2203 0.2922

PrecSec
Prob 0.2017 0.1833 0.1732 0.3375 0.2209 0.3425Markov-PSM [16]

PrecSec
All 0.1796 0.2156 0.3331 0.2523 0.2056 0.2764

PrecSec
B f a 0.1588 0.1543 0.3561 0.2476 0.1959 0.7231

PrecSec
Dic 0.2174 0.2118 0.3675 0.2679 0.2051 0.7651

PrecSec
Prob 0.1919 0.1964 0.1554 0.2738 0.2057 0.7682RNN-PSM [18]

PrecSec
All 0.1543 0.1539 0.3533 0.2514 0.1960 0.7780

PrecSec
B f a 0.7748 0.4265 0.4191 0.7554 0.4563 0.6329

PrecSec
Dic 0.2555 0.1779 0.2437 0.4272 0.2240 0.3905

PrecSec
Prob 0.1630 0.1377 0.0608 0.5980 0.2932 0.4942LPSE [13]

PrecSec
All 0.7747 0.4239 0.4191 0.7549 0.4557 0.6284

PrecSec
B f a 0.5580 0.5817 0.5636 0.5713 0.1951 0.4023

PrecSec
Dic 0.3490 0.3604 0.3540 0.6361 0.1852 0.3532

PrecSec
Prob 0.1570 0.0524 0.1019 0.5397 0.1989 0.3303CNN-PSM [20]

PrecSec
All 0.6373 0.6295 0.5980 0.7385 0.3208 0.5333

PrecSec
B f a 0.6983 0.6399 0.7586 0.6306 0.2743 0.6610

PrecSec
Dic 0.6599 0.6580 0.6442 0.6534 0.3687 0.7073

PrecSec
Prob 0.2376 0.1064 0.1398 0.6316 0.3560 0.6773ZxcvbnC

PrecSec
All 0.7739 0.7107 0.7869 0.6876 0.3719 0.7260

PrecSec
B f a 0.7560 0.7253 0.7679 0.7314 0.3725 0.7027

PrecSec
Dic 0.7314 0.7237 0.6890 0.7670 0.6053 0.7506

PrecSec
Prob 0.2030 0.4632 0.1431 0.7290 0.5645 0.7035ZxcvbnE [14]

PrecSec
All 0.7900 0.7742 0.7867 0.7953 0.6095 0.7649

PrecSec
B f a 0.5297 0.5551 0.7268 0.5573 0.1900 0.3499

PrecSec
Dic 0.3425 0.3883 0.4548 0.6245 0.2484 0.3028

PrecSec
Prob 0.1785 0.0703 0.1343 0.5278 0.2362 0.2808KeePSM [15]

PrecSec
All 0.6244 0.6202 0.7742 0.7326 0.3553 0.4613

PrecSec
B f a 0.7250 0.6603 0.3360 0.5419 0.6981 0.7981

PrecSec
Dic 0.1886 0.2255 0.2011 0.3451 0.2627 0.6573

PrecSec
Prob 0.0934 0.0493 0.0519 0.3492 0.4200 0.736712306-PSM

PrecSec
All 0.7440 0.6882 0.3451 0.5903 0.6988 0.7995

PrecSec
B f a 0.6968 0.6880 0.7613 0.7728 0.5150 0.6976

PrecSec
Dic 0.4471 0.2071 0.2455 0.5041 0.2976 0.6025

PrecSec
Prob 0.1219 0.0622 0.0659 0.6044 0.3963 0.6762Microsoft-PSM

PrecSec
All 0.7981 0.7508 0.4121 0.7812 0.7320 0.7930

†PrecSec=PrecisionSecurity; Other abbreviations are the same with Table 4. Back-
ground color indicates the corresponding PSM is the best under the given strategy.

performs the best. Markov-PSM [16] and Zxcvbn [14] are the
most accurate PSMs under probability-based and dictionary-
based guessing, respectively.

5.2.2 Precision and PrecisionSecurity

Commercial PSMs (e.g., 12306-PSM) usually adopt intuitive
color bars with bins/scores as feedback to promote users’ un-
derstanding of password strength [7, 10, 57, 58]. A natural
question arises: What is the status quo when transforming the
feedback of a well-performing non-binned academic PSM
into an easy-to-understand (widely used) bins/scores [10]. To
this end, we apply the conversion method in Sec. 4.3.2 and ob-
tain the intuitive score distribution figures of the cracked and
remaining (uncracked) passwords. Due to space constraints,
here we only show the score distributions on Weibo under the

combined guessing strategy in Fig. 5. For the distributions on
Weibo and LinkedIn under the other typical offline guessing
strategies, see Figs. 14 and 15. 1

As mentioned in Sec. 3.2, the focus of PSMs in offline
guessing scenarios is preventing weak passwords from regis-
tering successfully as much as possible, reducing the number
of passwords an attacker can successfully crack with limited
computing resources. In this direction, an accurate scoring
PSM shall follow: A higher score corresponds to a smaller
proportion of the cracked passwords and a larger proportion
of the remaining passwords. In a score distribution figure,
the upper and lower parts of the X-axis are score distribu-
tions of the cracked and remaining (un-cracked) passwords.
Under this criterion, Markov-PSM [16] and RNN-PSM [18]
perform better. Specifically, KeePSM [15] has a particularly
high proportion of passwords with score=0 (i.e., very weak),
indicating that its strength evaluation method is overly strict.
CNN-PSM [20] is also slightly strict, which reminds us that
our score conversion method (i.e., linear mapping) for CNN-
PSM [20] may need to be adjusted.

Further, to precisely quantify PSM accuracy when its fine-
grained strength feedback is transformed to a coarse-grained
score, we adopt our proposed Precision and show the re-
sults in Table 5. We also calculate our designed reconciled
PrecisionSecurity value for each PSM, considering the security
impact of strength misjudgments in different directions on
PSM accuracy, and show the results in Table 6.

Regarding Precision, LPSE [13], ZxcvbnE [14] and
Markov-PSM [16] perform the best under brute-force,
dictionary-based and probability-based attacks, respectively.
It is surprising because the non-binned LPSE [13] has a rel-
atively low KL-divergence under all four offline guessing
strategies. But the binned-LPSE’s [13] Precision is markedly
higher than its counterparts under brute-force attacks, when
its feedback is converted to scores. One possible reason is
that scoring can, to some extent, mitigate strength misjudg-
ments of a fine-grained PSM, if the score conversion method
is suitable. We confirmed this conjecture through experiments
and see Sec. 6 for more details.

Regarding PrecisionSecurity, MultiPSM [19] is the most ac-
curate PSM under brute-force guessing, and ZxcvbnE shows
its advantage under dictionary-based and probability-based
guessing strategies. Especially, MultiPSM [19] still has the
highest Precision and PrecisionSecurity under the combined
attacks, indicating that our adopted score conversion method
has good robustness in offline guessing scenarios.

6 Insights and suggestions
In this section, we share some insights obtained from our
experiments, and provide a few workable suggestions to help
design a more accurate, practical, and reliable PSM.

1In Figs. 5, 14 and 15, some seemingly empty bins correspond to tiny
proportions of passwords and cannot be noticeably observed.
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Figure 5: Password score distributions (on Weibo) of leading PSMs under the combined guessing strategy. The larger fractions of cracked low-score and
remaining high-score passwords indicate a more accurate PSM. For more results under other guessing strategies on Weibo and LinkedIn, see Figs. 14 and 15.

� Adaptive score conversion methods can be used to fa-
cilitate PSM application.

Commercial PSMs often quantify password strength with
coarse-grained 3∼5 bins/scores (see Fig. 1) [28,33,65]. Even
in the absence of guidance, such PSMs can still provide users
with a concrete, intuitive indication of when they are doing
well or bad [6, 70]. Academic PSMs (e.g., fuzzyPSM [17])
are more accurate than commercial PSMs, and often take fine-
grained probability, guess number, or entropy as strength feed-
back. Such probability or guess number can finely reflect how
subtle changes in a password affect its strength [10, 20, 28].
However, due to the lack of the “existing motivator” (whether
the password is “weak”, “medium,” or “strong”) [8], it is
difficult for users to understand such abstract feedback intu-
itively. Therefore, an adaptive score conversion method (i.e.,
fine-grained feedback→coarse-grained feedback) is helpful
for the vast majority of non-expert users, and is expected to
facilitate the adoption of more accurate academic PSMs.

When attempting to convert the fine-grained strength feed-
back of academic PSMs into understandable (but coarse-
grained) scores, a key concern is whether this conversion will
lead to accuracy reduction. Our evaluation results in Sec. 5.2
show that the non-binned LPSE [13] performs poorly (with
lower KL-divergence), but surprisingly, its binned version has
higher Precision and PrecisionSecurity than its counterparts
under brute-force guessing attacks. This implies that a score
conversion method can partially mitigate the inaccuracies of
some fine-grained PSMs in offline guessing. Furthermore, we
confirm this conjecture by comparing the KL-divergence of
fine-grained PSMs and their binned versions (see Sec. 4.3.2
for conversion methods), and the results are summarized in
Table 12 in Appendix F. Table 12 shows that the performance
of binned fuzzyPSM [17] and binned LPSE [13] increases
over corresponding fine-grained versions under the combined
strategy, when they evaluate English passwords.

We now further explore whether score conversion still
works in online guessing scenarios. Since our results on dif-
ferent test sets are similar/robust, here we only show the result
on the knowledgeable guessing strategy using the LinkedIn
dataset in Fig. 6 (see more results in Fig. 10). By com-
paring Fig. 6 with Fig. 4(c), one can find that, overall, the
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Figure 6: WSpearman of binned-PSMs under the knowledgeable online
guessing strategy (tr: Rockyou, ts: LinkedIn). Binning degrades accurate
PSMs while improving inaccurate ones. See Appendix F for more results.

binned RNN-PSM [18] performs better than their correspond-
ing non-binned versions, while binned fuzzyPSM [17] and
Zxcvbn [14] degrades. Our results call for effective, adaptive
score conversion methods to balance PSMs’ accuracy and
feedback granularity, and to facilitate their application. In par-
ticular, our proposed Precision and PrecisionSecurity can well
quantify the accuracy of converted PSMs. In summary, we an-
swer RQ5 with concrete evidence that proper adaptive score
conversion methods can, to some extent, mitigate inaccurate
strength evaluation of a fine-grained PSM by quantization,
and may facilitate the popularity of academic PSMs.

� PSMs can be effectively integrated to perform better.
Essentially, password strength should indicate the effort the

attacker has to pay to guess the password. However, with the
continuous advancement of computing technologies and the
increasing diversity of guessing scenarios as well as guessing
strategies, attackers often adopt various guessing methods
[19, 50]. Therefore, the estimation of guessing effort (i.e.,
password strength) varies greatly depending on password
guessing scenarios (and strategies) considered [18, 39, 65].

A desirable PSM should always provide accurate strength
feedback in every guessing scenario and strategy. However,
PSM designers usually only evaluate their proposed PSM
under a specific guessing scenario (or strategy) that they pri-
marily concern, and claim that this PSM is superior to other
PSMs (e.g., [13, 17, 19]). Such unsystematic and unfair evalu-
ations would confuse web administrators. According to our
results in Sec. 5, none of the existing leading PSMs is exclu-
sively better than the others. For example, fuzzyPSM [17]
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Figure 7: Weighted spearman correlation coefficient of Integrated-PSM and
other 12 PSMs under the knowledgeable online guessing strategy (tr: Rock-
you, ts: LinkedIn). See Appendix F for more results.

performs the best in online guessing, while Zxcvbn [14] is the
most accurate PSM under dictionary-based offline guessing.

By combining the advantages of different strength evalu-
ation methods, it is possible to design a hybrid strength me-
ter that can overcome the shortcomings of individual PSMs.
Galbally et al. [19] took the first step. Their proposed Multi-
PSM [19, 23] has two heterogeneous Markov modules. Be-
sides, the built-in blocklist and brute-force detection mech-
anisms of MultiPSM [19, 23] can identify many popular
passwords. Unfortunately, we find that there is still a con-
siderable gap between MultiPSM [19] and the most accurate
fuzzyPSM [17] in online guessing scenarios (see Sec. 5.1).

Our evaluation results in Sec. 5 show that fuzzyPSM [17]
performs the best in online guessing scenarios, for it adopts
the sophisticated password reuse detection algorithm (i.e.,
fuzzy-PCFG) to more accurately capture users’ “clever” mod-
ification behaviors [5, 14, 17], while the blocklist and dictio-
nary detection mechanisms in MultiPSM cannot. Therefore,
properly integrating the online-best fuzzyPSM [17] into the
offline-best MultiPSM [19] will hopefully significantly im-
prove MultiPSM’s accuracy in online guessing scenarios.

Through a preliminary exploration, we show the feasibility
of the above conjecture. To construct an Integrated-PSM, we
perform a simple yet effective operation on the outputs of Mul-
tiPSM [19] (denoted as StrengthMulti(·)) and fuzzyPSM [17]
(denoted as Strengthfuzzy(·)). More specifically, the pass-
word strength output by the Integrated-PSM is calculated
as StrengthInteg(·) = StrengthMulti(·)− lg

(
Strengthfuzzy(·)

)
.

The higher the StrengthInteg(·), the higher the password
strength. The intuitions underlying this heuristic formula to
calculate StrengthInteg(·) are that: (1) FuzzyPSM [17] outputs
the password probability p ∈[0, 1] as its feedback, while Mul-
tiPSM [19] takes the multimodal score s ∈[0, 10] as its feed-
back and the strength increasing trend of its output is the op-
posite of fuzzyPSM [17]; (2) To make Strengthfuzzy(·)=p∈[0,
1] have a similar scale (i.e., no order of magnitude difference)
and the same monotonicity with StrengthMulti(·)=s ∈[1, 10],
a viable solution is to take − lg

(
Strengthfuzzy(·)

)
as the out-

put of the fuzzyPSM module of the Integrated-PSM.
We have evaluated this Integrated-PSM in the online guess-

ing scenario (see Fig. 7; more results are shown in Fig. 11).
Though simple, this Integrated-PSM does significantly out-

perform all examined PSMs in online guessing scenarios,
including fuzzyPSM [17] and MultiPSM [19], especially in
online knowledgeable strategy. We further evaluate its effec-
tiveness in the offline guessing scenario by comparing its KL-
divergence with other examined PSMs. Table 13 shows that,
in most cases, Integrated-PSM has a higher KL-divergence
under brute-force, probability-based and combined attacks
compared with its components, i.e., fuzzyPSM [17] and Mul-
tiPSM [19]. This implies that our integration method will
not lead to a significant loss of accuracy of PSM in offline
guessing scenarios. Summing up, integrating the advantages
of different PSMs is a practical way to improve the accuracy
of password strength evaluation.

� PSMs need to be modified and adapted to accommo-
date different languages.

It has been well known that English and Chinese passwords
have significant differences in characteristics [24, 38, 63, 64].
In this regard, it is unsuitable to apply the existing PSMs orig-
inally designed for English-speaking users (e.g., Zxcvbn [14])
to passwords chosen by non-English speakers. Fortunately,
pattern detection-based PSM (e.g., Zxcvbn [14]) can be sim-
ply tuned to be more effective, since they do not require a
time-consuming and computationally expensive training pro-
cess. Within limited modification cost, we replace specific dic-
tionaries (i.e., common passwords, surnames and first names)
in Zxcvbn [14] with appropriate Chinese dictionaries to con-
struct ZxcvbnC (see Appendix E). Compared with the original
Zxcvbn [14], ZxcvbnC can more accurately evaluate Chinese
password strength under online guessing scenarios. To further
improve Zxcvbn [14], especially in offline guessing scenarios,
we recommend adding appropriate dictionaries (such as com-
mon Chinese words). These recommendations can also be
applied to modify other pattern-based PSMs to accommodate
different languages.

By exploiting the knowledge of the target user’s linguistic
background, attackers can speed up password guessing and
achieve higher cracking rates [41,64,71,72]. Wang et al. [24]
have confirmed this and recommended that password guessing
algorithms should be trained on datasets similar to the target
password, by considering the confounding factors in the order
of language, service, and password policies. Naturally, this
principle can be applied to configure or train PSMs based on
attack algorithms (such as fuzzyPSM [17]) to ensure accuracy.
To support this, we conduct a cross-language evaluation to
explore the performance of six attack algorithm-based PSMs.
Specifically, we use Tianya-trained PSMs to evaluate pass-
words from English speakers, and Rockyou-trained PSMs to
evaluate passwords from Chinese speakers, then calculate the
corresponding Wspearman values and KL-divergence (see
Appendix F for detailed results).

By comparing Figs. 4, 9 and 12, we can see that the change
of training sets’ language reduces the accuracy of six tested
PSMs to different degrees in online scenarios. In the offline
guessing scenario, the language change in the training set
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reduces the overall KL-divergence value of all tested PSMs,
indicating that these PSMs cannot accurately distinguish be-
tween cracked and uncracked passwords (see Table 14). All
this suggests that well-designed PSMs need to be configured
and adapted to accommodate different languages.

7 Conclusion
In this paper, we have provided a negative answer to the ques-
tion of whether there is a single metric that can thoroughly
(and fairly) measure the accuracy of a password strength me-
ter (PSM). Accordingly, we, for the first time, proposed a
systematic evaluation framework composed of four different
dimensioned criteria to measure PSM accuracy in various
guessing scenarios and strategies. Considering the ubiquitous
usage and crucial role of PSMs, we believe that a thorough
and fair evaluation of the accuracy of PSMs is of practical sig-
nificance, and our work takes a substantial step forward and
will trigger research interest in PSM design and evaluation.
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A Online guessing threshold
To resist online password guessing, services are recommended
to deploy rate-limiting mechanisms, such as account lockout
and login throttling [32]. Account lockout policy aims at
resisting potential online guessing attacks, by disabling the
account for a preset period of time [51]. Login throttling aims
to prevent high-rate login attempts, by using CAPTCHA, mo-
bile phone verification code, etc [73]. However, the adversary
could bypass lockout by changing the IP address or clearing
the browser cookies [74]. Worse, most CAPTCHA systems
can be easily solved by automated tools [75, 76], so the rate-
limiting mechanism fails to play its expected role in the real
world. As revealed by Lu et al. [74], 131 out of 182 (72%)
investigated high-profile sites “allow frequent, unsuccessful
login attempts without account lockout or login throttling”
and for these sites, attackers can achieve an attack rate higher
than 85 login attempts per day (significantly more than the
NIST recommended threshold of 100 attempts for 30 days).

Table 7: Rate-limiting mechanisms of Alexa top-10 websites and estimated
number of login attempts per day and month.†
Alexa
rank Website Rate-limiting mechanisms Attempts

per day
Attempts
per month

1 Google
After 15 consecutive fail logins,
solving CAPTCHA for subsequent login is required.

1,440 43,200

2 Baidu
After 10 consecutive fail logins,
solving CAPTCHA for subsequent login is required.

1,440 43,200

3 Facebook Allow only 20 consecutive failed logins per hour. 480 14,400

4 Bilibili Allow only 10 consecutive failed logins per hour. 240 7,200

5 Reddit Allow only 10 consecutive failed logins in 10 minutes. 720 21,600

6 QQ Solve CAPTCHA for each login. 1,440 43,200

7 Bing Allow only 10 consecutive failed logins per hour. 240 7,200

8 Yahoo Solve re-CAPTCHA for each login. 1,440 43,200

9 Twitter Allow only 15 consecutive failed logins per hour. 360 10,800

10 Amazon Allow only 5 consecutive failed logins per hour. 120 3,600

† We set the interval between consecutive guesses as 1 min, and use this interval to estimate
the number of login attempts allowed per day and month. In reality, various automated tools
can help attackers shorten the interval (even to 19.93s [77]), so an attacker can submit more
guessing attempts (compared with the number listed in this table) per day and month.

Since the authentication system has to balance online guess-
ing attacks and denial-of-service (DoS) attacks, the failed lo-
gin threshold T should not be too small or too large [40]. With-
out loss of generality, we set T = 104 according to [34,40,43],
and this threshold T = 104 has been widely preferred, see
[5, 52, 78]. To further support our threshold selection, we
manually investigate the rate-limit mechanisms of sites2 with
Alexa rank top-10, collect the rate-limit mechanism of each
site and examine the maximum number of online guessing

2https://www.expireddomains.net/alexa-top-websites/,
accessed on Aug. 20, 2022.

attempts allowed (see Table 7). During the testing process,
we strictly followed ethical guidelines: We use accounts cre-
ated by ourselves (no other users’ accounts are involved) for
testing, and all login attempts are manually submitted to the
website to avoid overwhelming normal requests and perfor-
mance degradation to the web servers.

According to Table 7, we find that all of the investigated
sites allow more than 103 guessing attempts in a month. Dis-
turbingly, even these high-profile sites do not properly im-
plement the rate-limiting mechanisms, and are vulnerable to
diverse online guessing attacks. Among these ten websites,
Amazon adopts the strictest lockout policy, allowing only five
failed login attempts in one hour. Even so, an attacker can
still submit 3,600 guessing attempts in a month. Without loss
of generality, we set the online guessing threshold T = 104.

B Analysis of six different WSpearman calcu-
lation methods

The widely used Spearman correlation coefficient is calcu-
lated as

Spearman = 1− 6d
n(n2−1)

, (7)

where d is the distance between two rank vectors of length
n. When measuring PSM accuracy, the Spearman coefficient
assigns the same weight to all passwords (regardless of their
frequencies). At this time, the distance between two rank
vectors T and M of the tested PSM and the idea PSM is

d =

n∑
i=1

|ti−mi|2, (8)

where ti and mi are the ith members of T and M, respectively.
Spearman undesirably considers the deviations in infre-

quent passwords as important as those in frequent ones, but the
latter actually has a more significant impact on PSM accuracy
[10]. Accordingly, we adopt the weighted Spearman correla-
tion coefficient (WSpearman) as a reasonable metric that pass-
words with different frequencies are assigned varied weights.
To our knowledge, there has been no widely accepted method
for how to calculate the WSpearman (and the weight). Accord-
ingly, we have investigated the literature and summarized six
different methods, denoted as WSpearman1∼WSpearman5,
and the WSpearmanour adopted in [10] and this paper3.
Among them, WSpearman1∼WSpearman3 all replace the
rank vectors T and M with the weighted rank vectors X and
Y (see the following Eqs. 9 and 10) and use Eq. 7 to calculate
the corresponding WSpearman, but they have varied weighted
rank vectors and distances. WSpearman4 and WSpearmanour
own the same WSpearman calculation formula, but they adopt
distinct weight calculation strategies. WSpearman5 is differ-
ent from all the other five methods. The detailed calculation
methods of the six WSpearman are as follows:

3We find that Golla et al. [10] have adopted WSpearmannour by reading
the R codes at their accompanying site https://bit.ly/3IAWZS4. How-
ever, they neither explicitly detail how to calculate WSpearman_our, nor
explain why they choose it but not other methods
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� WSpearmanour.
We have introduced the calculation of our chosen

WSpearmanour in detail in Sec. 3.3 and Appendix C, and
we omit it here.
� WSpearman1.

One intuitive way to quantify the impact of errors on pass-
words with different frequencies is to use these frequencies
directly in constructing weighted rank vectors, that is, the
weight wi is equal to the frequency of the ith password in the
test set. Thus the ith members of the weighted rank vectors X
and Y are calculated by

xi = wi · ti (9)
and

yi = wi ·mi, (10)

where ti and mi are the i-th elements of the rank vectors T and
M. For a test set with n elements, the distance between X and
Y is calculated as

d =

n∑
i=1

|xi− yi|2 =
n∑

i=1

w2
i (ti−mi)

2. (11)

Substituting Eq. 11 into Eq. 7, we can calculate the
WSpearman1.
� WSpearman2.

Different from WSpearman1, WSpearman2 uses the pass-
word frequency ranking to calculate the weight4, which is

wi =
1

log2(mi +1)
. (12)

The weighted rank vectors and the distance are calculated by
Eqs. 9, 10 and 11, same as WSpearman1.
� WSpearman3.

WSpearman3 differs from WSpearman2 only in the dis-
tance5 between X and Y, which is

d =

n∑
i=1

wi(ti−mi)
2. (13)

� WSpearman4.
The WSpearman4 adopted by Pasquini et al. [20] is calcu-

lated as

WSpearman4 =

∑n
i=1 [wi(ti− t̄)(mi− m̄)]√∑n

i=1
[
wi(ti− t̄)2

]∑n
i=1
[
wi(mi− m̄)2

] , (14)

where an item with the bar notation (e.g., t̄ and m̄) is the
weighted mean of the vector (containing n elements) with
the weights w. It can be observed that they used the same
WSpearman calculation formula (i.e., Eq. 1) as Golla and
Dürmuth [10], as well as us, but they applied password fre-
quency ranking instead of password frequency to calculate
the weight. To be precise, their weight is calculated as the
normalized inverse of the password frequency ranking of the

4https://stats.stackexchange.com/questions/
235418/how-to-weight-a-spearman-rank\
-correlation-by-statistical-errors

5http://mlwiki.org/index.php/Rank_Correlation#Spearman
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Figure 8: Results of our collected six different WSpearman calculation meth-
ods of Zxcvbn [14] on top-104 passwords in LinkedIn.

ideal PSM, that is
wi =

qi∑n
i=1 qi

, (15)

where qi =
1

mi+1 .
� WSpearman5.

Costa and Soares [79] proposed a linear function of two
ranks to weigh the distance, giving more importance to higher
ranks than lower ranks. They defined the distance between T
and M as

d =

n∑
i=1

[(n− ti +1)+(n−mi +1)](ti−mi)
2, (16)

and the WSpearman5 is calculated as

WSpearman5 = 1− 6d
n4 +n3−n2−n

. (17)

We select the widely used Zxcvbn [14] as the tested PSM,
and calculate the above six WSpearman on the same test sets
as those in Figs. 4 and 9. We find the results on different test
sets are similar, so we only show the results on the test set of
Fig. 4(c) (i.e., top-104 passwords in LinkedIn) in Fig. 8.

It can be observed that, as the number of top-ranked pass-
words used for testing increases, WSpearman1∼WSpearman3
are always very close to 1, especially WSpearman1. The
WSpearman value equals 1 means the two distributions of
the tested PSM and the ideal PSM are exactly the same, i.e.,
the tested Zxcvbn [14] can accurately measure the strength
of all passwords, which is not in line with the actual situa-
tion. Thus, WSpearman1∼WSpearman3 are unsuitable for
measuring PSM accuracy. From the curves, WSpearman4,
WSpearman5 and WSpearmanour all seem reasonable. How-
ever, WSpearman4 and WSpearman5 do not consider the tied
elements with the same value, which are not suitable for eval-
uating PSMs with coarse-grained feedback, such as Google-
PSM. On the contrary, WSpearmanour adopts specific strate-
gies (see Appendix C for details) to deal with such a case,
and it is robust to monotonic transformations, disturbances
and quantization [10]. To sum up, WSpearmanour is the best
metric among all six weighted Spearman metrics.

C Formulas of our adopted weighted Spear-
man correlation coefficient

The weighted Spearman correlation coefficient (WSpearman)
refers to the weighted Pearson coefficient of two weighted
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rank vectors. Generally, for an unweighted rank vector, the
highest rank value is 1, the second-highest rank value is 2, and
so on until the nth value. The rank values of elements with the
same value should be the same. A feasible method is to use the
mean of all tied ranks. For n tied elements with the same value,
the vector of the tied ranks is v = [a j +1,a j +2, . . . ,a j +n]T ,
and their ranks are the same, which are

rank j =
1
n

n∑
i=1

(
a j + i

)
=

1
n
[na j +

n(n+1)
2

] = a j +
n+1

2
. (18)

However, for a weighted rank vector, the weighted rank
of a single element is calculated by two items. For the jth
element, the rank is

rank j = a j +b j. (19)

The first item a j is the sum of the weights of all elements
which are less than or equal to the ranked value (ξ j), and it is
calculated as

a j =

n∑
i=1

wi1
(
ξi < ξ j

)
, (20)

where 1(·) is the indicator function which is 1 when the
condition is true and 0 otherwise, wi is the ith weight, and
ξi and ξ j are the ith and jth values to be ranked, respec-
tively. The second item b j is designed to deal with elements
with the same value. Considering the weight, for n tied ele-
ments with the same value, the vector of their tied ranks is
v = [a j +w1,a j +w1+w2, . . . ,a j +

∑n
k=1 wk]

T . Nevertheless,
if we still take the mean of v to calculate the ranks of these
tied elements (i.e., Eq. 18), the ordering of their weights will
have a significant impact on the above results. To correct this
deviation,

b j =
n+1

2
w̄ j (21)

is adopted as the overall mean of all possible permutations of
the weights of n tied elements, where w̄ j is the mean weight
of these tied elements with the ranks

rank j = a j +
n+1

2
w̄ j. (22)

It is evident if w j=1 for all j, Eq. 19 is equivalent to Eq. 22.
Through the above Eqs. 19, 20 and 21, one can calculate

the weighted rank vectors of the ideal PSM and the tested
PSM, and then obtain the corresponding WSpearman using
Eq. 1. To our knowledge, how to calculate the WSpearman
remains an open question in password research, and see why
we choose the above method in Appendix B.

D Detailed information of datasets
The effectiveness and practicality of our PSM evaluation
framework are demonstrated by rating 12 leading PSMs, lever-
aging 219 million real-world passwords from 14 English and
Chinese sites. These datasets have different composition poli-
cies, strengths, languages and services.

The password policy affects password composition to a
large extent [24]. Table 8 shows character compositions of

Table 8: Character compositions about password datasets.†

Dataset ^[a-z]+$
^[a-zA-

[a-zA-Z] ^[0-9]+$ [0-9]
^[a-zA- ^[a-zA-Z] ^[a-z]+

-Z]+$ Z0-9]+$ +[0-9]+$ 1+$

Tianya 9.91% 10.24% 35.66% 63.77% 89.49% 98.08% 15.73% 0.29%
Dodonew 10.30% 10.92% 69.05% 30.76% 88.52% 98.33% 45.74% 2.00%
Taobao 15.68% 16.11% 70.73% 29.18% 83.51% 98.93% 46.26% 1.17%
CSDN 11.64% 12.35% 54.33% 45.01% 87.10% 96.31% 28.45% 0.58%
TPYDL 10.98% 11.43% 41.14% 58.35% 88.26% 97.87% 19.10% 0.38%
Weibo 19.07% 12.55% 46.71% 53.04% 78.78% 97.79% 18.74% 1.24%
Renren 10.98% 11.53% 32.05% 67.71% 88.23% 98.23% 14.64% 0.29%

Rockyou 41.82% 44.19% 83.85% 15.98% 54.16% 96.52% 30.26% 5.44%
LinkedIn 31.71% 34.14% 79.53% 20.34% 65.07% 96.31% 33.47% 4.87%
Twitter 25.90% 29.48% 79.92% 19.44% 68.26% 94.79% 30.40% 3.41%
000webhost 0.04% 0.26% 99.57% 0.02% 98.41% 93.08% 60.95% 6.32%
Hostinger 0.23% 0.33% 99.47% 0.08% 98.17% 94.25% 67.75% 7.72%
Yahoo 32.39% 33.91% 94.34% 5.61% 65.48% 97.13% 42.57% 6.15%
Gmail 39.84% 39.84% 84.14% 15.69% 59.35% 98.03% 31.31% 4.31%

† The first row shows the corresponding regular expressions of passwords. For
instance, ^[a-z]+$ means passwords composed of only lowercase letters; ^[a-zA-
Z]+[0-9]+$ means passwords start from letters, followed by digits.

Table 9: Length distributions of passwords in datasets.
Dataset 1∼5 6 7 8 9 10 11 12 13 14 ≥15

Tianya 1.79% 33.62% 13.95% 18.08% 9.68% 10.28% 5.59% 2.90% 1.45% 1.33% 1.34%

Dodonew 2.46% 12.31% 15.87% 20.86% 22.89% 16.37% 5.21% 1.76% 0.89% 0.56% 0.83%
Taobao 1.14% 12.55% 13.91% 17.64% 18.68% 16.38% 9.52% 5.31% 2.34% 1.40% 1.13%

CSDN 0.63% 1.29% 0.26% 36.38% 24.15% 14.48% 9.78% 5.75% 2.61% 2.41% 2.26%
TPYDL 0.64% 31.38% 15.21% 18.78% 12.44% 8.40% 6.40% 2.72% 1.37% 1.14% 1.53%

Weibo 6.64% 25.36% 18.18% 20.24% 12.05% 7.37% 6.80% 1.44% 0.75% 0.49% 0.67%
Renren 3.48% 26.11% 17.75% 18.93% 13.62% 7.90% 8.99% 1.51% 0.84% 0.55% 0.33%

Rockyou 4.32% 26.11% 19.32% 20.01% 12.11% 9.05% 3.54% 2.08% 1.30% 0.85% 1.30%

LinkedIn 0.03% 20.01% 13.28% 25.82% 12.79% 9.51% 4.48% 2.75% 1.38% 0.81% 9.13%
Twitter 5.03% 20.61% 14.73% 24.72% 11.97% 9.48% 4.31% 3.05% 1.51% 0.96% 2.87%

000web. 0.02% 5.70% 7.92% 21.81% 15.41% 14.51% 10.49% 7.67% 4.14% 3.14% 9.17%
Hosting. 0.20% 11.00% 11.95% 21.22% 15.61% 13.06% 8.28% 6.27% 3.76% 2.63% 5.98%

Yahoo 0.00% 18.34% 15.11% 27.43% 15.19% 12.61% 4.89% 5.00% 0.61% 0.34% 0.48%
Gmail 4.12% 18.72% 13.49% 28.93% 13.85% 13.85% 3.10% 1.89% 0.86% 0.50% 0.62%

passwords in our datasets. It can be observed that most En-
glish passwords contain letters, more than half contain digits,
and few contain symbols; and most Chinese passwords con-
tain digits, and nearly half consist of only digits. Besides, there
are very few Chinese passwords consisting of only letters or
containing special symbols. These results show that Chinese
and English users have different charset preferences, resulting
in distinct password compositions. The attacker can adapt
this information to speed up guessing. In particular, 99.57%
of passwords in 000webhost contain letters and digits, but
only 0.28% consist of only letters or digits. These results
show that 000webhost implements the “letter + digit with
length≥6” password composition policy. So it is stronger than
other datasets. The smallest proportion of top-10 passwords
in 000webhost (i.e., 0.79%) in Table 10 also corroborates this.

The password length distributions are shown in Table 9,
and they are mainly affected by websites’ password compo-
sition policies. There are few passwords with length<8 in
CSDN, and it can be inferred that the CSDN website im-
poses the length≥8 policy. Moreover, services also affect
password length distributions. For example, 000webhost pro-
vides website-building services, and most of its users are ad-
ministrators with strong security awareness. Therefore, there
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Table 10: Top-10 most popular passwords of datasets.†
Rank Tianya Dodonew Taobao CSDN TPYDL Weibo Renren

1 123456 123456 123456 123456789 123456 123456 123456
2 111111 a123456 123456789 12345678 111111 123456789123456789
3 000000 123456789111111 11111111 123123 111111 111111
4 123456789 111111 123123 dearbook 123456789 0 5201314
5 123123 5201314 000000 00000000 000000 123123 123123
6 123321 123123 5201314 123123123 5201314 5201314 12345
7 5201314 a321654 aaaaaa 1234567890 zzb19860526 12345 12345678
8 12345678 12345 a123456 88888888 123321 12345678 1314520
9 666666 000000 123321 111111111 qazwsx 123 123321

10 111222tianya 123456a 7758521 147258369 831213 123321 7758521

% 7.43% 3.28% 3.29% 10.43% 10.16% 7.17% 9.00%

Rank Rockyou LinkedIn Twitter 000webhost Hostinger Yahoo Gmail
1 123456 123456 123456 abc123 abc123 123456 123456
2 12345 linkedin 123456789 123456a 123456a password password
3 123456789 123456789qwerty 12qw23we 123abc welcome 123456789
4 password password password 123abc a123456 ninja 12345
5 iloveyou 12345678 1234567 a123456 123qwe abc123 qwerty
6 princess 111111 1234567890 123qwe asd123 12345678912345678
7 123321 1234567 123321 secret666 qwe123 12345678 111111

8 rockyou 654321 0
YfDbUfNjH10
305070 1q2w3e4r sunshine abc123

9 12345678 000000 12345 asd123 1q2w3e princess 123123
10 abc123 qwerty 1q2w3e4r5t qwerty123 1qaz2wsx qwerty 1234567

% 2.05% 1.15% 3.48% 0.79% 1.20% 1.01% 2.07%
† Popular passwords in different datasets are similar except for 000webhost, because 000webhost
forces users to create passwords with "letter+digit with length≥ 6". YfDbUfNjH10305070 may be
the default or recommended password. Sum means the overall proportion of top-10 passwords.

Table 11: Statistical strength of 14 distributions (in bits).†

Dataset Online guessing Offline guessing
H∞ λ̃10 λ̃100 λ̃1000 G̃0.1 H1 G̃0.2 G̃0.3 G̃0.5 G̃0.7

Tianya 4.65 7.07 9.76 12.61 8.73 20.22 13.92 15.79 19.44 21.61
Dodonew 6.11 8.25 10.80 13.51 14.42 21.76 17.97 19.97 21.65 22.41
Taobao 6.05 8.27 10.99 13.82 16.38 22.39 20.49 21.65 22.75 23.01
CSDN 4.77 6.58 9.56 12.56 6.09 19.47 13.94 17.41 20.30 21.07
TPYDL 4.29 6.62 9.29 12.13 6.58 18.40 10.94 14.60 18.56 20.16
Weibo 3.28 5.66 8.47 11.35 3.28 13.53 5.69 8.91 12.80 14.24
Renren 4.29 6.80 9.66 12.60 7.72 18.66 14.11 16.18 18.77 19.84

Rockyou 6.80 8.92 11.10 13.11 12.77 21.06 14.87 16.76 19.78 21.93
LinkedIn 6.97 9.46 11.90 13.90 15.01 22.65 17.57 19.35 22.06 23.37
Twitter 7.41 9.58 11.72 14.03 15.58 22.71 17.87 19.60 22.24 23.30
000webhost 9.26 10.30 12.07 14.51 17.95 22.54 20.12 21.12 22.25 22.70
Hostinger 8.38 9.71 11.59 13.95 15.40 18.91 16.99 17.71 18.53 18.90
Yahoo 8.03 9.98 11.77 13.55 13.93 17.86 15.72 16.64 17.67 17.92
Gmail 6.69 8.91 11.34 13.50 13.88 20.26 16.17 17.90 20.03 20.74

† The larger the value, the higher the security of the corresponding password distribu-
tion. The variable with a wavy line indicates that it is in the bit representation of the
metric (as recommended in [21]). A value in bold green means that: it is the largest min-
entropy H∞ among all Chinese (resp. English) datasets; A value in bold blue means
that: it is the smallest min-entropy H∞ among all Chinese (resp. English) datasets.

are 9.17% of passwords with length≥15 in 000webhost.
Table 10 shows top-10 popular passwords in our datasets.

The most popular (rank=1) password of all datasets is 123456
except 000webhost, Hostinger and CSDN. This is because
000webhost and Hostinger require that no password be com-
posed of only one charset, and CSDN requires passwords with
length≥8. Other popular passwords include 111111, 123321,
abc123 and qwerty, which comply with simple patterns like
repetition, palindrome and keyboard patterns. Besides, cer-
tain meaningful letter strings (e.g., iloveyou and princess)
are also popular passwords, especially password. Other fac-
tors like the website’s name (e.g., rockyou and linkedin)
also impact users when they create their passwords. This is
why NIST [32] recommends filtering users’ weak passwords
according to common patterns, context-specific words, etc.

At IEEE S&P’12, Bonneau [21] adopted a series of metrics
(including Shannon entropy H1, min entropy H∞, β-success-
rate λβ and α-guesswork Gα) to measure the strength of pass-

word distributions. We adopt these metrics in our measure-
ment and show the evaluation results in Table 11. Among
these metrics, min-entropy [80], β-success-rate [81] and α-
guesswork [21] with lower success rates are suitable for online
guessing; while Shannon entropy [80] and α-guesswork [21]
with higher success rates are suitable for offline guessing. In
Table 11, Weibo is the weakest Chinese dataset in both online
and offline guessing scenarios, while Taobao is the strongest.
As for English datasets, Rockyou is the weakest and 000web-
host is the strongest to resist online guessing, while Yahoo
is the weakest and Twitter is the strongest to resist offline
guessing, respectively. These results confirm that the service
is also the primary factor affecting password strength: Pass-
word datasets from social forums (e.g., Weibo and Rockyou)
seem to be very weak, and those from e-commerce (e.g.,
Taobao and Dodonew) and website-building services (e.g.,
000webhost and Hostinger) are stronger.

E Adapt Zxcvbn to Chinese scenarios
As introduced in Sec. 4.2, Zxcvbn [14] can detect common
patterns in a password and give the password strength rating
by adding up the scores of all found patterns. Zxcvbn [14]
mainly considers three types of patterns: 1) Keyboard patterns,
like QWERT, ASD and zxcvbn; 2) Common semantic patterns,
like dates and names; and 3) Sequences, like 123456 and
gfedcba. These patterns are used to identify weak passwords
and are assigned lower scores. What’s more, Zxcvbn [14] also
contains the string detection algorithm with several dictionar-
ies: It can match password substrings with a few constructed
dictionaries (such as popular English passwords and common
English male and female names), and assign the correspond-
ing scores in the light of the matching results.

Nevertheless, the original Zxcvbn [14] builds dictionar-
ies only based on the characteristics of English passwords,
ignoring users in other languages, who usually have differ-
ent password constructing habits [24] (e.g., preferring digits
than letters). Zxcvbn [14] adopts popular passwords from
the English password datasets Rockyou, Yahoo and Xato.
Meanwhile, it divides the names and surnames from the 1990
United States Census6 into three categories: Surnames, female
names and male names.

To adapt Zxcvbn [14] to Chinese websites, we rebuild the
above dictionaries. For Chinese users’ names, they can be
regarded as a combination of all Chinese words due to cul-
tural factors [24], so we do not consider this case. Instead, we
use the 504 Chinese surnames from “The Hundred Family
Surnames”7 and the Chinese full names in “20 Million Hotel
Reservations Dataset”8 to construct two dictionaries “family

6https://www.census.gov/topics/population/genealogy/
data/1990_census/1990_census_namefiles.html

7https://en.wikipedia.org/wiki/Hundred_Family_Surnames
8https://www.itnews.com.au/news/

data-on-20m-chinese-hotel-guests-dumped-online\
-by-hackers-367205
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Table 12: KL-divergence of binned PSMs in offline guessing scenarios.†

PSM KL
Chinese English

Dodonew CSDN Weibo LinkedIn 000web. Yahoo

Binned
fuzzyPSM [17]

KLB f a 1.7957 3.3642 1.9770 0.6560 0.8419 0.6878
KLDic 0.4150 6.4276 0.2066 2.7009 3.2845 5.5462
KLProb 0.9796 0.6840 0.1078 0.9845 1.7068 1.8523
KLAll 0.5503 1.7250 5.8180 5.9950 4.2331 4.1711

Binned
MultiPSM [19]

KLB f a 4.2847 0.3845 0.1891 2.0833 4.5396 1.9286
KLDic 0.1302 0.0669 0.0069 0.1236 1.0133 0.0348
KLProb 0.0721 0.0706 0.0720 1.9737 2.2866 0.2072
KLAll 8.2183 3.8779 3.0472 1.7787 2.9932 1.6034

Binned
PCFG-PSM [25]

KLB f a 2.7903 1.0957 8.0131 5.1792 1.3660 0.0497
KLDic 4.3886 4.9938 0.1643 9.9780 0.0794 0.0022
KLProb 1.3263 0.9181 0.5766 2.0117 0.1041 0.0093
KLAll 4.0064 1.5684 5.0083 4.7579 1.0439 0.0364

Binned
Markov-PSM [16]

KLB f a 0.7922 1.0551 0.1564 7.3933 5.1944 0.1613
KLDic 1.1672 2.4443 1.7814 0.2616 5.3424 0.8325
KLProb 2.1503 0.6006 0.4034 6.1062 1.7687 0.3076
KLAll 1.9765 1.5216 3.8966 0.9837 1.0980 0.1690

Binned
RNN-PSM [18]

KLB f a 0.3775 0.3247 0.8511 0.5346 0.5229 0.1619
KLDic 1.2516 1.3720 0.2920 5.2125 2.0123 1.9846
KLProb 0.3597 1.2138 0.4083 1.8891 3.8697 1.2917
KLAll 0.8855 1.6453 2.5894 0.5531 4.8117 5.7800

Binned
LPSE [13]

KLB f a 8.4816 5.8293 5.5245 7.7647 2.4811 3.0549
KLDic 0.2719 0.0285 0.0905 1.1570 0.2627 0.1036
KLProb 0.0520 0.0126 0.0140 1.5345 0.9797 1.0234
KLAll 5.7240 5.5185 0.2911 7.0912 9.9038 5.2924

Binned
CNN-PSM [20]

KLB f a 0.1856 0.4779 0.1822 0.0241 0.2712 0.2963
KLDic 0.1671 0.4427 0.3317 0.1041 1.1627 0.6895
KLProb 0.0516 0.0856 0.0086 0.0250 0.5626 0.2987
KLAll 0.2603 2.0244 0.1832 0.3986 0.5357 0.5103

Binned
ZxcvbnC

KLB f a 1.5528 2.7197 1.2256 0.8944 1.3443 0.9686
KLDic 2.4028 5.5263 1.4147 0.8587 2.7093 2.4473
KLProb 0.1433 0.1089 0.0177 0.3541 1.0642 0.9028
KLAll 3.9736 5.1400 3.5940 2.4819 2.5123 3.9662

Binned
ZxcvbnE [14]

KLB f a 2.7710 3.2033 1.8850 0.7971 0.8974 1.0670
KLDic 1.1406 1.0718 0.8697 0.3176 2.3502 2.2614
KLProb 0.0593 0.2183 0.1215 0.4516 0.8777 0.9343
KLAll 4.9995 3.1732 6.1665 1.1223 3.3755 4.7487

Binned
KeePSM [15]

KLB f a 0.0021 0.0312 0.0133 0.0130 0.0866 0.0436
KLDic 0.0001 0.0147 0.0002 0.0007 0.0172 0.0046
KLProb 0.0002 0.0028 0.0001 0.0030 0.0315 0.0099
KLAll 0.0021 0.0457 0.0299 0.0179 0.0398 0.0254

† Bfa=Brute-force attack; Dic=Dictionary-based guessing; Prob=Probability-based
guessing; All=The combined guessing; A bold value indicates the KL-divergence
of binned PSM is higher than the corresponding PSM under the given strategy.

name” and “full name” respectively. It is worth pointing out
that we employ the Pypinyin package9 to convert Chinese
characters into non-tonal pinyin and perform deduplication.
For the popular-password dictionary, we combine the seven
Chinese datasets in Table 2 and select the top-1,000 pass-
words, keeping their original frequency order.

F Additional key experimental results
� Additional results on online guessing and offline guess-
ing scenarios. The evaluation results (i.e., WSpearman val-
ues) for online guessing scenarios on CSDN, 000webhost and
Yahoo are shown in Fig. 9. Password score distributions on
Weibo and LinkedIn are shown in Figs. 14 and 15, and those
on other datasets are not shown due to space constraints.
� Performance of binned PSMs. To show the practicality
of our adaptive score conversion suggestions, we summa-

9https://pypi.org/project/pypinyin/

Table 13: KL-divergence of fuzzyPSM [17], MultiPSM [19] and our proposed
Integrated-PSM. Integrated-PSM performs better than its components.†

PSM KL
Chinese English

Dodonew CSDN Weibo LinkedIn 000web. Yahoo

fuzzyPSM [17]

KLB f a 1.0788 2.5179 3.1533 0.8308 0.9268 0.7865
KLDic 2.1009 6.7767 0.9021 3.0155 4.3028 3.7928
KLProb 1.2467 1.1164 0.4478 1.3486 2.4993 1.5537
KLAll 1.6193 3.1912 3.9749 2.2784 2.1186 3.3429

MultiPSM [19]

KLB f a 7.8006 2.0598 1.1105 8.5515 10.8753 6.4370
KLDic 0.3519 0.2727 0.1161 0.5221 1.0597 0.2488
KLProb 1.6762 1.8614 1.1436 5.4648 2.0630 2.0235
KLAll 8.8994 7.2047 5.3692 7.5933 4.6160 3.9984

Integrated-PSM

KLB f a 8.2858 3.3781 4.0845 6.3886 11.4628 13.7336
KLDic 0.5479 0.2455 2.1118 1.7112 1.2068 0.3340
KLProb 2.3865 3.9533 1.3915 8.0426 1.2102 2.1179
KLAll 9.1274 2.4857 5.7832 2.5356 6.9474 2.4715

† A bold value indicates that the KL-divergence of Integrated-PSM is higher than
fuzzyPSM [17] and MultiPSM [19] under the given strategy.

rize the KL-divergence of binned PSMs in offline guessing
scenarios in Table 12 and show the Wspearman values of
the binned PSMs in Fig. 10. Table 12 shows that the per-
formance of binned LPSE [13] and binned fuzzyPSM [17]
under the combined guessing strategy is better than that of
their original fine-grained versions (corresponding to higher
KL-divergence), when they evaluate English passwords. By
comparing Fig. 10 with Figs. 9 and 4, we can see that the
binned RNN-PSM [18] performs better than their non-binned
versions. Thus, adaptive score conversion can, to some extent,
mitigate inaccurate strength evaluation of a fine-grained PSM.
� Performance of Integrated-PSMs We integrate the most
accurate fuzzyPSM [17] in online guessing scenarios with the
offline-best MultiPSM [19] to overcome the shortcomings of
individual PSMs. See Sec. 6 for more integration details. We
evaluate the Integrated-PSM in the online guessing scenario
(see Fig. 11). It can observe that this Integrated-PSM does sig-
nificantly outperform all examined PSMs in online guessing
scenarios (corresponding to higher WSpearman), including
fuzzyPSM [17] and MultiPSM [19].

Furthermore, we evaluate the effectiveness of our integra-
tion method in the offline guessing scenario, by comparing
the KL-divergence of Integrated-PSM and other examined
PSMs (see Table 13). It can be observed that, in most cases,
Integrated-PSM has a higher KL-divergence compared with
its components. This implies that our integration method will
not lead to a significant loss of accuracy of PSM in offline
guessing scenarios. In a nutshell, integrating the advantages
of different PSMs is a feasible way to improve the accuracy
of password strength evaluation.
� Impact of training set size. We reduce the size of the
training set to 1/2, 1/4, and 1/8 of the original training set
respectively and explore how training set size affects the ac-
curacy of six attack algorithm-based PSMs. The evaluation
results in the online scenario are shown in Fig. 13, and the
evaluation results in the offline scenario are shown in Table
15. It is evident that with the reduction of the training set
size, all attack algorithm-based PSMs have been significantly
affected: the smaller the training set size, the worse the per-
formance. Therefore, when evaluating the accuracy of attack
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Figure 9: Weighted spearman correlation coefficient of state-of-the-art PSMs in online guessing scenarios (tr: Training set; ts: Test set).

algorithm-based PSMs, this work uses the entire dataset to
train PSM to ensure that the training set size is sufficient.

In addition, as can be seen from Fig. 13, in the online guess-
ing scenario, when the training set size is reduced to 1/2 of the
original set, RNN-PSM [18] receives a relatively small impact
(corresponding to higher Wspearman), compared with other
PSMs. In the offline guessing scenario, the KL-divergence of
fuzzyPSM [17] and RNN-PSM [18] decreases less (see Table
15), indicating less accuracy reduction.

� Impact of training set language. We conduct a cross-
training evaluation for the Chinese and English passwords
to explore how training set language impacts the accu-
racy of six attack algorithm-based PSMs. Specifically, we
use Tianya-trained PSMs to evaluate passwords on the En-
glish datasets (i.e., LinkedIn, 000Webhost, and Yahoo), and
Rockyou-trained PSMs to evaluate passwords on the Chinese
datasets (i.e., Dodonew, CSDN, and Weibo). Then we calcu-
late the corresponding Wspearman values and KL-divergence
(see Fig. 12 and Table 14). Comparing Figs. 4, 9 and 12, we
can see that changing the language of the training set signifi-
cantly reduces the accuracy of attack algorithm-based PSMs
in online scenarios. For example, when testing the passwords
of 000webhost, the Wsperaman values of PCFG-PSM [25]
are approximately equal to 0 at a rank of 104. In addition,
among all the six PSMs examined, Markov-PSM [16] is rela-
tively less affected by the language change of the training set
in the online guessing scenario.

In the offline guessing scenario, the language change in the
training set reduces the overall KL-divergence value of all
tested PSMs, implying that PSM cannot accurately distinguish

Table 14: KL-divergence of six attack algorithm-based PSMs in the cross-
language training evaluation.The language change in the training set reduces
the overall KL-divergence value of all examined PSMs.†

PSM KL Rockyou (English) Tianya(Chinese)
Dodonew CSDN Weibo LinkedIn 000web. Yahoo

fuzzyPSM [17]

KLB f a 2.7308 3.5264 3.1937 1.0820 0.6507 0.6782
KLDic 4.6684 7.1889 3.5179 1.3337 2.6054 1.0207
KLProb 1.0125 1.3507 0.9785 1.2845 1.6590 0.6769
KLAll 3.4762 3.9236 5.8781 1.7554 1.3821 3.0457

MultiPSM [19]

KLB f a 0.9169 2.3949 2.0128 0.8674 0.3527 0.7319
KLDic 4.2243 6.3303 3.7375 1.2411 1.5956 0.7702
KLProb 0.5606 0.8170 0.6506 0.9924 1.3958 0.5758
KLAll 1.1344 2.4207 2.1115 1.2136 0.6963 1.5700

PCFG-PSM [25]

KLB f a 0.9169 2.3949 2.0128 0.8674 0.3527 0.7319
KLDic 4.2243 6.3303 3.7375 1.2411 1.5956 0.7702
KLProb 0.5606 0.8170 0.6506 0.9924 1.3958 0.5758
KLAll 1.1344 2.4207 2.1115 1.2136 0.6963 1.5700

Markov-PSM [16]

KLB f a 1.4017 2.8237 2.3326 1.2172 1.0387 0.5741
KLDic 4.3764 7.0710 3.7648 1.2977 2.8611 0.9549
KLProb 0.6591 0.9453 0.7045 2.1156 2.6120 1.0809
KLAll 1.6427 2.7077 3.5515 2.1314 1.9116 3.3456

RNN-PSM [18]

KLB f a 0.6402 2.1123 1.8692 0.8427 0.7941 0.5648
KLDic 4.9891 1.5338 1.1862 1.0840 1.8966 0.8047
KLProb 0.5261 0.5468 0.6497 1.6998 2.0133 1.1482
KLAll 2.7455 0.8127 0.6468 2.0353 1.6342 3.5271

CNN-PSM [20]

KLB f a 0.7120 0.5703 0.8802 0.2137 0.0794 0.2229
KLDic 1.7838 2.5666 3.2747 2.8801 1.9746 0.4456
KLProb 0.3035 1.0796 1.2751 0.7851 1.1410 0.2716
KLAll 1.2685 13.4486 1.3658 3.8324 0.6240 0.9531

† A bold value indicates that the KL-divergence of the PSM trained with the
changed-language dataset is lower than its original version.

between cracked and remaining passwords. fuzzyPSM [17],
Markov-PSM [16] and MultiPSM [19] are relatively less
affected than other ones. All this demonstrates that well-
designed PSMs need to be modified and adapted to accom-
modate different languages.
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Figure 10: WSpearman of binned PSMs under the knowledgeable online guessing strategy (tr: Training set; ts: Test set).
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Figure 11: WSpearman of Integrated-PSM and other 12 PSMs under the knowledgeable online guessing strategy (tr: Training set; ts: Test set).
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(a) Knowledgeable strategy, tr: Rockyou, ts: CSDN
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(b) Knowledgeable strategy, tr: Rockyou, ts: Dodonew
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(c) Knowledgeable strategy, tr: Rockyou, ts: Weibo
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(d) Knowledgeable strategy, tr: Tianya, ts: LinkedIn
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(e) Knowledgeable strategy, tr: Tianya, ts: 000webhost
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(f) Knowledgeable strategy, tr: Tianya, ts: Yahoo

Figure 12: Influence of training set language on the accuracy of six attack algorithm-based PSMs under the knowledgeable online guessing strategy.

Table 15: KL-divergence of six attack algorithm-based PSMs trained with datasets of different sizes. With the reduction of the training set size, all attack
algorithm-based PSMs have been significantly affected: the smaller the training set size, the worse the performance †.

PSM KL
1/2 Tianya 1/2 Rockyou 1/4 Tianya 1/4 Rockyou 1/8 Tianya 1/8 Rockyou

Dodon. CSDN Weibo Linked. 000web. Yahoo Dodon. CSDN Weibo Linked. 000web. Yahoo Dodon. CSDN Weibo Linked. 000web. Yahoo

fuzzyPSM [17]

KLB f a 1.5130 3.8072 3.1407 0.9737 0.8353 0.6751 2.6061 3.8332 3.1751 0.9811 0.8227 0.6507 2.6752 3.8878 3.2254 1.0083 0.8304 0.6776
KLDic 3.0894 5.9795 2.2336 3.3065 4.4779 2.0775 3.1054 6.0025 2.2632 3.1926 4.3756 2.0279 3.1144 6.1016 2.2758 3.1079 4.2084 1.9430
KLProb 1.2058 1.3946 0.5461 1.7627 2.3873 1.5745 1.2461 1.3754 0.5686 1.7486 2.3819 1.5582 1.2670 1.3948 0.5964 1.7481 2.3742 1.5700
KLAll 2.8277 3.8901 3.9618 3.3971 2.4177 6.5156 2.8915 3.8981 3.9622 3.3267 2.3372 6.4637 2.9335 3.9332 4.0170 3.2742 2.2962 6.4994

MultiPSM [19]

KLB f a 2.5398 0.6661 2.0230 1.0141 1.9973 1.7435 2.0128 3.7375 0.6506 2.1115 2.3326 3.7648 3.4237 0.4737 4.4604 2.2282 1.3627 0.8855
KLDic 0.5143 0.7089 0.6702 0.2924 0.8376 0.5957 0.8674 1.2411 0.9924 1.2136 1.2172 1.2977 3.0559 2.8987 3.7378 1.0906 3.1771 2.9304
KLProb 0.6305 1.2223 0.8174 0.2755 1.0117 0.9100 0.3527 1.5956 1.3958 0.6963 1.0387 2.8611 5.0052 3.3241 3.2121 0.9625 4.8670 3.1965
KLAll 0.7428 1.1549 0.7512 0.9996 1.7949 1.2733 0.7319 0.7702 0.5758 1.5700 0.5741 0.9549 1.6589 2.4636 5.9489 0.6597 2.5154 2.0166

PCFG-PSM [25]

KLB f a 1.2216 2.9418 2.8137 0.9069 0.3388 0.7750 1.1660 2.8887 2.7965 0.8969 0.3301 0.7635 1.1444 2.9217 2.8080 0.9064 0.3000 0.7641
KLDic 3.2717 6.2868 3.2533 2.8682 2.4126 1.4189 3.2560 6.2721 3.2533 2.6983 2.3018 1.3272 3.2379 6.2684 3.2590 2.5824 2.1667 1.2561
KLProb 0.9425 1.1481 0.4550 1.5068 1.7519 1.5422 0.9312 1.1002 0.4542 1.4732 1.6769 1.5408 0.9165 1.0852 0.4437 1.4596 1.5679 1.5600
KLAll 1.5535 3.1414 2.7234 1.9569 0.9531 3.9576 1.4744 3.0821 2.7547 1.9176 0.8854 3.7668 1.3916 3.0278 2.6904 1.8768 0.8085 3.6899

Markov-PSM [16]

KLB f a 1.2895 2.7986 3.0326 1.1365 0.8637 0.8784 1.2918 2.8305 3.0220 1.1260 0.8780 0.8543 1.3134 2.8716 3.0336 1.1224 0.9472 0.8400
KLDic 3.3052 7.2647 3.4261 3.0979 5.0561 1.5692 3.2886 7.2335 3.4237 3.0559 5.0052 1.6589 3.3044 7.3732 3.4558 3.0718 5.0161 1.8197
KLProb 1.4190 1.5989 0.4840 2.9176 3.3696 2.4602 1.3739 1.5745 0.4737 2.8987 3.3241 2.4636 1.2967 1.5439 0.4786 2.8849 3.3076 2.5147
KLAll 2.1374 3.5161 4.3549 3.7610 3.2848 5.8991 2.1438 3.5695 4.4604 3.7378 3.2121 5.9489 2.1486 3.6061 4.4715 3.6889 3.2017 5.8217

RNN-PSM [18]

KLB f a 0.8629 1.4741 2.3223 1.1374 0.9932 0.8116 0.7931 1.0502 2.2282 1.0906 0.9625 0.6597 0.7785 1.0529 2.1042 1.1879 1.0201 0.8732
KLDic 1.5829 2.4670 1.0999 3.3624 5.1133 2.1271 1.6304 2.5217 1.3627 3.1771 4.8670 2.5154 1.5073 2.7443 1.2938 2.8010 4.3688 2.2780
KLProb 0.9814 1.8360 0.9651 2.9047 3.2281 2.0402 0.9762 1.6212 0.8855 2.9304 3.1965 2.0166 0.9264 1.9015 0.8131 3.2814 3.3501 2.7479
KLAll 1.3602 1.9490 3.0072 4.0089 3.2179 6.1369 1.3475 1.8171 3.1657 3.9535 3.2180 5.8502 1.4065 1.9002 3.4841 3.6241 3.2385 5.4362

CNN-PSM [20]

KLB f a 0.9169 2.3949 2.0128 0.8674 0.3527 0.7319 3.1937 3.5179 0.9785 5.8781 2.0128 3.7375 3.2533 0.4550 2.7234 3.1751 2.2632 0.5686
KLDic 4.2243 6.3303 3.7375 1.2411 1.5956 0.7702 1.0820 1.3337 1.2845 1.7554 0.8674 1.2411 2.8682 1.5068 1.9569 0.9811 3.1926 1.7486
KLProb 0.5606 0.8170 0.6506 0.9924 1.3958 0.5758 0.6507 2.6054 1.6590 1.3821 0.3527 1.5956 2.4126 1.7519 0.9531 0.8227 4.3756 2.3819
KLAll 1.1344 2.4207 2.1115 1.2136 0.6963 1.5700 0.6782 1.0207 0.6769 3.0457 0.7319 0.7702 1.4189 1.5422 3.9576 0.6507 2.0279 1.5582

† A bold value indicates that the KL-divergence of the PSM trained with a sub-sample set is lower than the corresponding PSM trained with the entire set under the given strategy.
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(a) Knowledgeable strategy, tr: 1
2 Tianya, ts: Dodonew
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(b) Knowledgeable strategy, tr: 1
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(c) Knowledgeable strategy, tr: 1
8 Tianya, ts: Dodonew
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(d) Knowledgeable strategy, tr: 1
2 Tianya, ts: CSDN
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(e) Knowledgeable strategy, tr: 1
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(f) Knowledgeable strategy, tr: 1
8 Tianya, ts: CSDN
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(g) Knowledgeable strategy, tr: 1
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(h) Knowledgeable strategy, tr: 1
4 Rockyou, ts: 000webhost

100 101 102 103 104

Top k passwords in the test set

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

W
ei

gh
te

d 
Sp

ea
rm

an
 c

oe
ffi

ci
en

t

fuzzyPSM
MultiPSM
Markov-PSM

RNN-PSM
PCFG-PSM
CNN-PSM

(i) Knowledgeable strategy, tr: 1
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(j) Knowledgeable strategy, tr: 1
2 Rockyou, ts: LinkedIn
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(k) Knowledgeable strategy, tr: 1
4 Rockyou, ts: LinkedIn
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(l) Knowledgeable strategy, tr: 1
8 Rockyou, ts: LinkedIn

Figure 13: Influence of different training set sizes on the accuracy of six attack algorithm-based PSMs under the knowledgeable online guessing strategy.
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(a) Password score distributions (on Weibo) of leading PSMs under the brute-force guessing strategy.
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(b) Password score distributions (on Weibo) of leading PSMs under the dictionary-based guessing strategy.
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(c) Password score distributions (on Weibo) of leading PSMs under the probability-based guessing strategy.
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(d) Password score distributions (on Weibo) of leading PSMs under the combined guessing strategy.

Figure 14: Password score distributions (on Weibo) of leading PSMs in offline guessing scenarios. Some PSMs have their own scoring methods which we
directly adopt: ZxcvbnE [14], ZxcvbnC and KeePSM [15] with 5-graded scores; Microsoft-PSM with 4-graded scores; LPSE [13] and 12306-PSM with 3-graded
scores. For fuzzyPSM [17], MultiPSM [19], Markov-PSM [16], PCFG-PSM [25], RNN-PSM [18] and CNN-PSM [20], their feedback [18] is converted to
5-graded scores (see Sec. 4.3.2). Larger fractions of cracked low-score and remaining high-score passwords indicate a more accurate PSM.
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(a) Password score distributions (on LinkedIn) of leading PSMs under the brute-force guessing strategy.
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(b) Password score distributions (on LinkedIn) of leading PSMs under the dictionary-based guessing strategy.
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(c) Password score distributions (on LinkedIn) of leading PSMs under the probability-based guessing strategy.
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(d) Password score distributions (on LinkedIn) of leading PSMs under the combined guessing strategy.

Figure 15: Password score distributions (on LinkedIn) of leading PSMs in offline guessing scenarios. Some PSMs have their own scoring methods which we
directly adopt: ZxcvbnE [14], ZxcvbnC and KeePSM [15] with 5-graded scores; Microsoft-PSM with 4-graded scores; LPSE [13] and 12306-PSM with 3-graded
scores. For fuzzyPSM [17], MultiPSM [19], Markov-PSM [16], PCFG-PSM [25], RNN-PSM [18] and CNN-PSM [20], their feedback [18] is converted to
5-graded scores (see Sec. 4.3.2). Larger fractions of cracked low-score and remaining high-score passwords indicate a more accurate PSM.
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