
POINTERGUESS: Targeted Password Guessing Model Using Pointer Mechanism

Kedong Xiu, Ding Wang
College of Cyber Science, Nankai University, Tianjin, China; {xiukedong, wangding}@nankai.edu.cn
Key Laboratory of Data and Intelligent System Security (NKU), Ministry of Education, Tianjin, China
Tianjin Key Laboratory of Network and Data Security Technology, Nankai University, Tianjin, China

Abstract
Most existing targeted password guessing models view users’

reuse behaviors as sequences of edit operations (e.g., insert

and delete) performed on old passwords. These atomic edit

operations are limited to modifying one character at a time

and cannot fully cover users’ complex password modifica-

tion behaviors (e.g., modifying the password structure). This

partially leads to a significant gap between the proportion of

users’ reused passwords and the success rates that existing tar-

geted guessing models can achieve. To fill this gap, this paper

models users’ reuse behaviors by focusing on two key compo-

nents: (1) What they want to copy/keep; (2) What they want to

tweak. More specifically, we introduce the pointer mechanism

and propose a new targeted guessing model, namely POINT-

ERGUESS. By hierarchically redefining password reuse from

both personal and population-wide perspectives, we can ac-

curately and comprehensively characterize users’ password

reuse behaviors. Moreover, we propose MS-POINTERGUESS,

which can employ the victim’s multiple leaked passwords.

By employing 13 large-scale real-world password datasets,

we demonstrate that POINTERGUESS is effective: (1) When

the victim’s password at site A (namely pwA) is known, within

100 guesses, the average success rate of POINTERGUESS in

guessing her password at site B (namely pwB, pwA �= pwB) is

25.21% (for common users) and 12.34% (for security-savvy

users), respectively, which is 21.23%∼71.54% (38.37% on

average) higher than its foremost counterparts; (2) When

not excluding identical password pairs (i.e., pwA can equal

pwB), within 100 guesses, the average success rate of POINT-

ERGUESS is 48.30% (for common users) and 28.42% (for

security-savvy users), respectively, which is 6.31%∼15.92%

higher than its foremost counterparts; (3) Within 100 guesses,

the MS-POINTERGUESS further improves the cracking suc-

cess rate by 31.21% compared to POINTERGUESS.

1 Introduction
Textual passwords stubbornly survive as the most prevalent

authentication method, and they are unlikely to be replaced

in the foreseeable future, because none of their alternatives

(e.g., biometric authentication [8, 25], multi-factor authentica-

tion [52, 53], and graphical passwords [6]) can compete with

textual passwords in terms of simplicity to use, easiness to

change and low cost to deploy [10, 11, 33, 42].

Recent research [12,34,46] shows that the average user has

80∼107 distinct online accounts, and a large fraction of inves-

tigated users (58%∼79% [14, 21, 43, 62]) tend to reuse their

passwords across sites, even though 91% of them are aware of

the risks associated with password reuse [28]. To address this

issue, security experts [13, 48] recommend using password

managers to help users create secure passwords and protect

users from password guessing attacks. A password manager

is designed to store a user’s passwords, generate secure pass-

words, and identify any weak or compromised passwords [32].

However, due to users’ lack of trust in password managers

and the fact that it is too risky to store all passwords in one

place [41, 47, 72], most users still tend to manage their pass-

word by themselves. This indicates that users’ password reuse

behaviors remain a significant security vulnerablity.

On the other hand, unending large-scale password dataset

breaches (e.g., [1, 4, 19, 20, 39]) provide attackers with ample

training data to conduct targeted guessing attacks. Still, recent

studies show that two-thirds of users “modify passwords in

a non-trivial way” [65, 66]. This suggests that designing an

effective targeted guessing model to accurately characterize

users’ reuse behaviors is not an easy task.

1.1 Motivations and design challenges
Recent research shows that 58%∼79% of investigated users

directly reuse or simply modify their existing passwords [14,

21, 43, 62]. However, the cracking success rates that state-

of-the-art targeted password guessing models (i.e., Pass2Edit

[66] and Pass2Path [43]) can achieve are much lower than this

statistic (e.g., within 1,000 guesses, Pass2Edit [66] achieves

a cracking success rate of 52.01% for common users, which

is 11.52%∼51.89% lower than the reported statistic). This

indicates that existing targeted password models may not

effectively characterize users’ reuse behaviors, and the threat

1

of password reuse guessing attacks might be underestimated.

Despite numerous string similarity metrics (e.g., edit dis-

tance and cosine similarity), they fail to measure users’ pass-

word reuse behaviors comprehensively. For instance, while

modifying IloveMacOP to MacOP6789, neither edit distance

(employed by Pass2Path [43]) nor cosine similarity (employed

by Pass2Edit [66]) can accurately measure their similarity due

to overlooking complex reuse behaviors. This highlights a

gap in existing research on password reuse, indicating a lack

of an appropriate definition for “password reuse”. In all, how

to accurately characterize users’ reuse behaviors given limited

guessing attempts (e.g., 100 as recommended by NIST [22])

remains a challenging problem. Here we explain why.

First, characterizing the transformation rules that users em-

ploy to modify their passwords is quite subtle. In general, we

can view the process of users reusing their old password as

involving two major components: (1) Identifying what the

user wants to copy from her old password; and (2) Determin-

ing what the user wants to tweak or generate based on her old

password. However, most existing targeted password models

(e.g., Pass2Path [43] and Pass2Edit [66]) focus primarily on

the second component. These state-of-the-art models charac-

terize the new password modification process as a sequence of

atomic edit operations (i.e., deleting, inserting, or substituting

one character at a time). Then, they predict the sequence of

edit operations in a “password-to-path” task. For example,

suppose we modify a user’s old password pwA=IloveMacOP
to pwB=MacOP6789, then the edit operation sequence from

pwA to pwB is {<BOS>, (Del, 0, ‘I’), (Del, 1, ‘l’), (Del, 2, ‘o’),

(Del, 3, ‘v’), (Del, 4, ‘e’), (Ins, 10, ‘6’), (Ins, 10, ‘7’), (Ins,

10, ‘8’), (Ins, 10, ‘9’), <EOS>}, where (Del, 0, ‘I’) denotes

deleting the character ‘I’ in the first position of pwA, and

<BOS>/<EOS> represents the start/end of the edit sequence.

To be effective, Pass2Edit [66] and Pass2Path [43] have

to define a large number of atomic edit operations (e.g.,

Pass2Edit [66] defines a total of 1,561 atomic operations). Be-

sides, they filter out “dissimilar” password pairs when training

(e.g., Pass2Path [43] only utilizes password pairs with edit

distance≤4 for training to avoid the negative impacts of fu-

tile/distant password pairs like yjqqq916198 → 916198yj).

This makes it difficult for them to generate long (yet realis-

tic) edit sequences (e.g., edit distance≥5), overlooking users’

macroscopic population-wide reuse behaviors (e.g., using pop-

ular passwords and substituting long segments). To mitigate

this defect, they resort to heuristic approaches to combine a

popular password dictionary with the generated guesses.

Second, as 49%∼65% of websites [5, 35] adopt security

mechanisms (e.g., account lockout and login throttling as

recommended by NIST [69]) to resist online guessing, the

guess number allowed is often very small. For instance, the

Alexa top-10 websites allow 120∼1,140 attempts per day, i.e.,

3,600∼43,200 attempts per month [63]. As the possible pass-

word space is large, it is challenging to prioritize password

reuse behaviors in a personalized manner under such small

POINTERGUESS

IloveMacOP
Encoder Input Decoder Input

M

Step 1

POINTERGUESS

Encoder Input Decoder Input

POINTERGUESS

Encoder Input Decoder Input

a

Step 2

Step 10

Example:
Old Password: IloveMacOP
Target Password: MacOP6789

<EOS>

Append the predicted
character as partial input
for the next timestep

POINTERGUESS repeatedly
predicts the next character in
the same way

Model output:
MacOP6789

(1)

(1)

(1)

IloveMacOP

IloveMacOP

The weighted sum of
and by , i.e.,

The conditional probability of
generating characters, i.e.,

The conditional probability of
copying characters, i.e.,

Next predicted placeholder

Element-wise product

: A soft switch to weight
and

<BOS>

= 0.12= 0.005= 0.8= 0.8 +(1 0.8) = 0.097

M

……

MacOP6789

Figure 1: An example of POINTERGUESS generating guesses. Suppose the

old password is IloveMacOP, the target password is MacOP6789. At each

timestep, POINTERGUESS generates two conditional probabilities, Pcopy and

Pvocab, respectively. <BOS>/<EOS> represents the start/end of the generation.

guess numbers. In all, building a password reuse-based guess-

ing model that can accurately capture users’ comprehensive

password reuse behaviors remains a challenging task.

To address these issues, we propose a new targeted guessing

model, POINTERGUESS (see Fig. 1 for a high-level view), di-

rectly taking password characters as input and output, to avoid

the need for defining numerous atomic edit operations. Addi-

tionally, unlike [43, 66], it trains on the entire dataset without

filtering out any distant password pairs. By using the pointer

mechanism [59], POINTERGUESS figures out how likely it is

to copy characters from the old password and how likely it

is to create new characters, enabling POINTERGUESS to cap-

ture both personal and population-wide reuse behaviors (e.g.,

using popular passwords and substituting long segments).

Particularly, within 100 guesses, POINTERGUESS achieves a

success rate that is 38.18% on average higher than its coun-

terparts. Furthermore, we propose MS-POINTERGUESS for

attack scenarios with the victim’s multiple leaked passwords.

Experimental results demonstrate that MS-POINTERGUESS

outperforms POINTERGUESS in practical scenarios.

1.2 Related work
The first targeted guessing algorithm based on password reuse

was proposed by Das et al. at NDSS’14 [17]. They introduced

2

a heuristic algorithm that applies eight transformation rules

(e.g., insertion and deletion) to the old password of a victim

in a predetermined order to generate guesses. While this algo-

rithm demonstrates superior performance compared to some

trawling guessing algorithms like PCFG [68], it remains en-

tirely heuristic in nature. Its fundamental limitation is that it

uses the same transformation rules across all users, lacking

consideration for personalized rule priority.

At CCS’16, Wang et al. [65] proposed TarGuess-II based on

the PCFG algorithm. As the first probabilistic-based targeted

password model, its key idea is that the user performs only

one operation (e.g., insertion, deletion) on her old password or

password structure once at a time. It analyzes the transforma-

tion path between the password pairs to learn the probability

of the corresponding transformation. It could output guesses

in descending order of probability when generating guesses.

At IEEE S&P’19, Pal et al. [43] proposed a password reuse

model based on deep learning, named Pass2Path. It utilizes a

seq2seq model [56] and conceptualizes its task as predicting

the edit-operation path from the old password to the new

password. Pass2Path can intuitively predict the edit operations

and accurately generate guesses.

One limitation of Pass2Path [43] is that it can not cap-

ture the impact between the editing operations and the corre-

sponding editing effects. Accordingly, Wang et al. [66] pro-

posed a new algorithm called Pass2Edit. Unlike Pass2Path,

Pass2Edit models the new password generation task as a clas-

sification task and uses a multi-step decision-making training

mechanism to capture users’ reuse behaviors. However, both

Pass2Edit and Pass2Path use atomic edit operations, once at a

time and fiter out “dissimilar” password pairs during training,

and thus they can not model transformation operations on

long segments effectively.

At USENIX Security’23, Wang et al. [67] introduced

RFGuess-reuse, a targeted password guessing model. It rep-

resents password prefixes as high-dimensional vectors and

employes a random forest classifier to predict each edit opera-

tion for each type of string. Results show that RFGuess-reuse

performs comparably to TarGuess-II [65] and Pass2Path [43].

1.3 Our contributions
We summarize our main contributions as follows:

• A new targeted guessing model. We introduce the

pointer mechanism into the password reuse research

domain and propose a new targeted password guess-

ing model, POINTERGUESS. By leveraging the pointer

mechanism, POINTERGUESS can effectively identify

what the user wants to copy/keep and what the user wants

to tweak from the old password. Furthermore, consider-

ing the increasingly realistic scenario of multiple pass-

word leakage for common users, we propose a brand-new

targeted guessing model, MS-POINTERGUESS, to assess

the threat of attackers using multiple old passwords to

compromise the target password. By hierarchically re-

defining “password reuse” on two levels, we demonstrate

the effectiveness of POINTERGUESS and provide a new

angle to understand the performance of existing models.

• Extensive evaluation. We demonstrate the effective-

ness of POINTERGUESS on 12 practical attack scenarios

by employing 11 large-scale password datasets. More

specifically, within 100 guesses, POINTERGUESS out-

performs the state-of-the-art models by 38.17% on av-

erage, without counting identical password pairs and

mixing an extra popular password dictionary. Further-

more, we demonstrate the superior performance of MS-

POINTERGUESS over our POINTERGUESS in two prac-

tical attack scenarios. More specifically, within 100

guesses, the MS-POINTERGUESS achieves a success

rate 31.21% (on average) higher than POINTERGUESS.

• A password reuse-based password strength meter.

We introduce a password reuse-based password strength

meter, called PR-PSM, by integrating Zxcvbn [69] with

POINTERGUESS to enhance the evaluation accuracy.

Our experiments demonstrate the importance of consid-

ering password reuse attacks for improving personalized

PSMs, and highlight the importance of avoiding pass-

word reuse for security-critical accounts.

• Some insights. Our analysis shows that POINTERGUESS

can capture complex password reuse behaviors (e.g.,

1991322322 → 1.99132E+12). These findings enhance

our understanding of password reuse and showcase the

effectiveness of POINTERGUESS. Moreover, our results

indicate that in multiple old password reuse attack sce-

narios, the target password is more likely to be found

within old passwords, highlighting the increased risk of

multiple password compromises against users.

2 Background
2.1 Modeling password guessing probability
There are two approaches for neural network-based models

to compute the conditional password probability: (1) directly

predicting the targeted password character sequence (e.g.,

PassTrans [24]); and (2) predicting the atomic edit operation

sequence from the old password to the target password (e.g.,

Pass2Path [43] and Pass2Edit [66]). The first approach fo-

cuses on predicting the exact character sequence by modeling

conditional probabilities of generating each character, and we

can express the conditional probability P(pwB|pwA) as

P(pwB|pwA) = P
(

c
′
1,c

′
2, ...,c

′
M|c1,c1, ...,cN

)

=
M∏

i=1

P
(

c
′
i|pwA,c

′
<i

)
,

(1)

where c
′
<i = (c

′
1, ..,c

′
i−1) denotes the subsequence of pwB, and

how to model P
(

c
′
i|pwA,c

′
<i

)
depends on the specific model.

The second approach aims to predict the atomic edit op-

eration sequence needed to transform the old password into

3

the targeted password. We denote τA,B = (e1,e2, ...,eE) as

the transformation path from pwA to pwB. The conditional

probability is modeled to estimate the likelihood of each edit

operation given the old password. In this case, we can express

the conditional probability P(pwB|pwA) as

P(pwB|pwA) = P(τA,B|pwA)

=

E∏
i=1

P(ei|pwA,e<i),
(2)

where the e<i denotes the subsequence of τA,B, which is

(e1, ..,ei−1), and the specific formula of the conditional proba-

bility P(ei|pwA,e<i) depends on the specific model. Most re-

cent targeted password guessing models (e.g., Pass2Path [43]

and Pass2Edit [66]) are based on the second approach.

Predicting the atomic edit operation sequence can intu-

itively capture the transformations in password reuse, provid-

ing insights into the specific operations required. However,

employing this approach requires defining a substantial num-

ber of atomic operations, which limits the model’s ability to

generate long/complex operation sequences (i.e., giving very

low probabilities to such sequences). Thus, POINTERGUESS

employs the first approach to model the conditional password

probability in a novel manner. See details in Sec. 3.2.

2.2 Password similarity metrics
Generally, two main types of similarity metrics are com-

monly used to measure password similarity: syntactic met-

rics [23, 43, 66] and semantic metrics [17, 61]. Syntactic met-

rics calculate the “structural distance” (e.g., edit distance and

cosine similarity) as a similarity score, while semantic met-

rics focus on capturing the structural and semantic similarity

between passwords. For instance, Wang et al. [61] presented a

workflow with eight rules (e.g., leet and reversal) to quantify

users’ password reuse behaviors.

In this paper, we primarily consider four representative

syntactic metrics due to their simplicity and sufficiency for

our use in latter sections:

Spatial distance-based metrics. These metrics measure

the spatial distance between passwords, considering their

structure/character-level differences, such as cosine similar-

ity [66] and edit distance [30]. They primarily focus on the

positional and directional differences or equally the number

of operations needed to transform one password into another.

Sequence alignment-based metrics. These metrics align

the character sequences of two passwords to identify com-

mon segments and measure the similarity based on the align-

ment, such as the Needleman-Wunsch algorithm [40] and the

Largest Common Substring algorithm [17], which consider

the order and position of characters in the sequences.

Overlap-based metrics. These metrics quantify the overlap

or common strings between passwords, providing a similarity

score based on the common characters (e.g., the Dice coef-

ficient [18]). They focus on the common elements between

Edit Distance 3?
Cosine Similarity 0.75?

pwA
pwB

N
Y OthersY

Y Y Y YN
NNNN

Population-wide reuse

Personal reuse

Figure 2: The workflow of detecting password reuse behaviors based on the

new password reuse definition. “Others” refers to unmatched password pairs.

passwords rather than their structural differences.

Combination metrics. Combination metrics provide a com-

prehensive measurement of similarities by integrating multi-

ple individual metrics. In the work by Guo et al. [23], a com-

bination of edit distance and cosine similarity is employed

to capture both structural and semantic aspects of password

similarities. Edit distance focuses on the absolute positional

dimension, quantifying the atomic operations (e.g., insertion,

deletion, and substitution) needed to transform one password

into another, while cosine similarity gauges syntactic resem-

blance by further considering the angle between vectors rep-

resenting passwords in a high-dimensional space.

3 POINTERGUESS: A targeted password reuse
guessing model based on pointer mechanism

In this section, first, we introduce a hierarchical definition of

“password reuse”, which provides a new angle to understand

users’ password reuse behaviors. Second, we describe our

model, POINTERGUESS, and how to model the conditional

password probability using POINTERGUESS. Third, we detail

our model methodology and hyperparameters.

3.1 A new definition of password reuse
As mentioned in Sec. 1.1, existing targeted password guessing

models (e.g., Pass2Path [43] and Pass2Edit [66]) have inher-

ent limitations. They prefer to use syntactic metrics (e.g., edit

distance [43] and cosine similarity [66]) to measure password

similarities and evaluate their effectiveness in characteriz-

ing users’ password reuse behaviors. To accurately capture

users’ password reuse behaviors, we propose a new definition

of “password reuse” (combining both syntactic and semantic

metrics, as depicted in Fig. 2), which hierarchically catego-

rizes users’ password reuse behaviors into two distinct levels:

personal reuse and population-wide reuse.

Personal reuse refers to the simple modifications that users

tend to apply to their old passwords based on their preferences

and the characteristics of old passwords. These modifications

typically involve a limited number of edit operations, such as

adding/deleting the first/last character and/or replacing a char-

acter with visually similar alternatives (e.g., replacing a with

@). These new passwords, primarily created through personal

reuse, can be easily identified as instances of password reuse

using syntactic metrics (e.g., edit distance [43]).

Population-wide reuse refers to some more complex and

challenging-to-identify password reuse behaviors. In general,

4

Encoder Embedding

Sequence-to-sequence model

Decoder Embedding

Model Input
(Encoder Input)

Partial Output
(Decoder Input)

Vocab Distribution

Source Distribution

Final Distribution

Pointer Module

Softmax

(1)

Context vector at step t

Element-wise concatenation

Element-wise product
Soft switch to choose if copy from
the old password or generate
characters from the vocabulary

Encoder hidden states at step t
Decoder hidden states at step t
Decoder Input at step t
Encoder Input at step t

Sigmoid function

Masked Attention

Feed Forward Networka

y

Figure 3: Model architecture of POINTERGUESS, which is based on [51, 59]

and consists of a basic seq2seq model [56] and a pointer module. Pgen (i.e.,

“Final Distribution”) denotes the conditional password probability of POINT-

ERGUESS generating the next character, Pcopy and Pvocab are the conditional

probabilities of copying characters from the old password, and of generating

new characters from the vocabulary, respectively. POINTERGUESS employs

a soft switch pg to decide whether to copy characters from the old password

or generate new characters from the vocabulary.

it relates to users’ reuse patterns that can be observed across

the entire dataset, encompassing the reuse of popular pass-

words (which are frequently chosen by a substantial number of

users, e.g., KeveinMobile→ password123). Furthermore, it

extends to reusing some specific popular password segments,

like KevinMobile → Kevin@gmail.com.

3.2 Modeling conditional guessing probability
As discussed in Sec. 2.1, we adopt the directly predicting

characters approach (i.e., Eq. 1) to address limitations in

Pass2Edit [66] and Pass2Path [43]. We start with a basic

sequence-to-sequence (seq2seq) model, utilizing it to directly

model the similarity between users’ target and old passwords.

However, the basic seq2seq model may neglect the impact of

low-frequency yet crucial characters in a given old password

(i.e., the encoder input) on predicting subsequent characters.

For example, as shown in Fig. 1, the basic seq2seq model

struggles to generate ‘M’ as the first character due to the infre-

quent occurrence of ‘M’ as the first character in the training set.

More specifically, at the first step, it assigns an extremely low

probability to ‘M’ (i.e., Pvocab(M) = 0.005). This highlights the

challenge of modeling the conditional password probability:

How to assign a sufficient likelihood to those crucial char-
acters that appear in the given old password but have low
frequency in the training set.

To address this issue, we introduce the pointer module to

add additional likelihood for those characters appearing in the

old password. Our POINTERGUESS incorporates Pvocab (the

conditional probability of generating characters from vocabu-

lary, i.e., 95 printable characters) and Pcopy (the conditional

probability of copying from the old password), to model the

conditional password probability (Pgen). As shown in Fig.

1, after incorporating Pcopy, the probability of generating ‘M’

significantly increases (i.e., Pgen (M) = 0.097 � Pvocab(M) =
0.005). In each subsequent step, POINTERGUESS dynami-

cally adjusts the probabilities of each character through Pcopy
and Pvocab, gradually approaching the correct target password

(i.e., MacOP6789). Below, we formally describe how POINT-

ERGUESS models the conditional password probability.

As shown in Fig. 3, at each timestep t, POINTERGUESS

uses pwA as the input to produce encoder input xt , and uses the

previously generated character sequence as decoder input yt .

The basic seq2seq model of POINTERGUESS outputs encoder

hidden states ht and decoder hidden states st . Subsequently,

POINTERGUESS computes the conditional probability of gen-

erating characters from the vocabulary, i.e., Pvocab, as

Pvocab = so f tmax
(
W ′ (W ∗ [st ,ct]+bout)+b′out

)
, (3)

where [st ,ct] denotes concatenating st and ct , W , W ′, bout ,

b′out are learnable parameters, and ct is the context vector at

timestep t. ct represents the context information learned from

the encoder input (i.e., pwA) at timestep t.
Additionally, POINTERGUESS employs the pointer module

to capture user-specific patterns and reuse behaviors, produc-

ing the conditional probability of copying characters from the

old password, i.e., Pcopy, which can be expressed as

Pcopy (c) = FFN

⎛
⎝ ∑

j:c j=c

at
j

⎞
⎠ , (4)

where FFN (·) is a feed-forward network used to rescale the

attention vector at generated by the pointer module at timestep

t. If the input sequence does not contain the token c, then the

value of Pcopy (c) is zero.

To facilitate flexible decision-making on whether to copy
characters from the old password or generate new characters
from the vocabulary, POINTERGUESS utilizes a soft switch

pg, which is

pg = σ(Wc ∗ ct +Ws ∗ st +Wy ∗ yt +bg) , (5)

where Wc, Ws, Wy, bg are learnable parameters. yt is the de-

coder input at timestep t and σ(·) is a sigmoid function.

Finally, POINTERGUESS integrates Pvocab and Pcopy to gen-

erate Pgen, representing the conditional password probability

Pgen, which is expressed as

Pgen (c) = pg ∗Pcopy (c)+(1− pg)∗Pvocab (c) . (6)

This allows POINTERGUESS to dynamically decide be-

tween copying characters from the old password and generat-

ing new characters from the vocabulary.

3.3 Methodology and configuration
As shown in Fig. 4, POINTERGUESS consists of three phases:

preprocess, training, and generation. We now present the

workflow of POINTERGUESS that tackles model training and

guess generation, and detail the preprocess phase in Sec. 4.

Model architecture. As shown in Fig. 3, our POINTERGUESS

mainly consists of a sequence-to-sequence model (with an

encoder and a decoder) and an extra pointer module. The

5

Table 1: Data cleaning of 13 password datasets leaked from various web services (“PWs” stands for passwords).

Dataset Language Leaked Time Original PWs Unique PWs Removed% Email invalid PW invalid After cleaning Service

000Webhost English Oct. 2015 15,299,907 10,526,769 0.76% 195 67,401 15,183,627 Web hosting
LinkedIn English Jan. 2012 54,656,615 34,282,741 0.23% 0 122,051 54,534,564 Job hunting
Yahoo English Jul. 2012 5,737,798 3,495,654 0.95% 118 54,105 5,683,574 Portal

RedMart‡ English Oct. 2020 1,108,774 — 0.00% 0 — 1,108,774 E-commerce
ClixSense English Jun. 2016 2,222,045 1,627,069 0.07% 0 1,445 2,220,600 E-commerce
LiveAuctioneers English Jun. 2020 2,912,377 2,229,358 1.34% 3,341 35,646 2,876,496 Online auction platform
Tianya Chinese Dec. 2011 30,816,592 12,873,222 0.03% 5,783 3,279 30,807,530 Social forum
126 Chinese Dec. 2011 6,392,568 3,764,740 0.24% 0 14,995 6,377,573 Email
Dodonew Chinese Dec. 2011 16,282,286 10,010,744 1.57% 42,585 30,085 16,026,270 E-commerce
Taobao Chinese Feb. 2016 15,072,418 11,633,759 0.01% 1,176 90 15,071,153 E-commerce
CSDN Chinese Dec. 2011 6,428,410 4,034,779 0.05% 5 3,157 6,425,246 Programmer forum
4iQ Mixed Dec. 2017 1,400,553,869 445,259,097 1.36% 575,283 18,475,938 1,381,502,648 Unkonwn
COMB Mixed Feb. 2021 3,279,064,312 855,833,811 2.97% 81,542,117 15,718,941 3,181,803,254 Unkonwn
‡RedMart passwords are in salted-hash, and we use them as real targets in attack scenario #8 (000Webhost → RedMart). See more details in Table 2.

Randomly
sample
batches

Model Training
- Use source passwords as

model input
- Use the model to generate

the prediction

Calculate the batch loss using
Mean Masked Negative Log-
Likelihood loss function

· Preprocess phase

Dataset Cleaning
- 95 printable ASCII chars
- Pwd’s length in [6, 30)
- Remove invalid emails

Match Reuse-pairs
- Use users’ email to

match passwords
- Create (,) pairs

Dataset Collection
- Chinese/English datasets
- Large scale
- Real-world

Create Train/Test
Datasets

Training dataset

· Training phase

· Generation phase

Test dataset

Update model parameters

Model Generating
- Use source passwords as

model input
- Use Batch Beam Search

to speed up generation

Output guesses
< , > : [, …,]
< , > : [, …,]
…
< , > : [, …,]

Randomly
sample
batches

Figure 4: The workflow of POINTERGUESS. There are three phases: Prepro-

cess, Training, and Generation. Specifically, M and K denote the number of

users per batch and Top-K password guesses for each user, respectively.

encoder is a 1-layer Bi-LSTM, which is used to capture the

contextual information of the old password. The decoder is a

1-layer Bi-LSTM used to generate conditional guesses based

on the captured contextual information from the encoder. We

set the hidden dimension of encoder and decoder as 128. We

add an extra reduce layer to rescale the output of the encoder

and decoder, which is used to aggregate the encoder’s output

and further improve the performance of our model.

Additionally, we integrate a pointer module into our POINT-

ERGUESS, comprising an attention network and a feed-

forward network. The masked attention network highlights

relevant parts of the old password during model decoding. It

generates the attention vector and employs a sigmoid function

to yield the context information vector at each timestep.

Training phase. During this phase, POINTERGUESS ran-

domly samples batches of password pairs (XBS,YBS) from the

training set, where XBS represents the old passwords, and YBS
represents the corresponding target passwords. Our model in-

puts the old passwords and generates guesses at the character

level, denoted as ŶBS. The training objective involves a loss

function, denoted as L, which measures the log probability of

ŶBS being aligned with the ground truth passwords YBS. The

goal of L is to find the optimized parameters θ∗, which are

θ∗ = argmin
θ

(Lθ
(
YBS,ŶBS

))
, (7)

where θ denotes model parameters. We use Mean Masked

Negative Log-Likelihood as our loss function and the Adam

optimizer [26] to optimize parameters based on computed gra-

SOS p
SOS a
SOS z
SOS Z
SOS B
SOS b

Prediction
USER_ID = 0

USER_ID = 1

USER_ID = 2

SOS p
SOS a
SOS Z
SOS Z
SOS B
SOS b

Depth == 3
Loop execution

Sort &
Sample

Depth == 2

Figure 5: An example of batch-beam search.The batch size is three and beam

size is two. SOS is the start symbol. Darker color means higher probability.

For example, the second user (i.e., USER_ID = 1) choose c2
3 and c2

5 (which

denote the predicted characters) due to their high probabilities. Guess gener-

ation will continue until all users are completed.

dients. The training process is repeated over multiple epochs

(e.g., set to 50), with shuffling and batch division of the data.

Generation phase. As shown in Fig. 4, POINTERGUESS

generates K guesses for each user using the given old pass-

word. Furthermore, we implement the Batch Beam Search

algorithm based on [70] to improve efficiency and leverage

parallel computing on GPUs. As shown in Fig. 5, the algo-

rithm generates top-K guesses simultaneously for all users

(e.g., M users) in a batch, selecting the top candidates based

on their probabilities. Password generation process continues

until the desired number of guesses is obtained for all users.

Model hyperparameter configuration. During the genera-

tion process, we perform log-softmax operations on the condi-

tional probability predicted by the model at each timestep. To

ensure the predicted probability is not zero, we select ε=1e-

12 as our smoothed value. We denote the vocabulary as Σ,

consisting of 95 printable ASCII characters and four special

identifiers (i.e., <BOS>, <EOS>, <PAD>, and <UNK>), and the

vocabulary size ‖Σ‖ is 99. Without loss of generality, we im-

plement Bahdanau et al.’s attention mechanism [7] in our

model, and set the learning rate as 0.001 and the number of

training epochs as 50. We use the Dropout [55] to alleviate

overfitting, and the dropout rate is set to 0.5, which means

that there are 50% neurons randomly selected to be invalid

and not considered in gradient operations.

4 Experiments and analysis

4.1 Dataset cleaning and ethical consideration
Datasets. We demonstrate the effectiveness of POINTER-

GUESS and compare it with other state-of-the-art models

based on 11 large-scale real-world datasets, a total of 4.8

6

Table 2: Setups of 14 different attack scenarios (see detailed results in Figs. 6 and 23).‡

#. Attack scenario Language Training set setup Size (pairs) Testing set setup Size (pairs) Clean strategies†

#1. 126 → CSDN Chinese 126 → Dodonew 188,926 126 → CSDN 85,206 Len≥8
#2. CSDN → 126 Chinese CSDN → Dodonew 211,385 CSDN → 126 86,104 Basic
#3. Tianya → CSDN Chinese Tianya → Dodonew 434,255 Tianya → CSDN 826,559 Len≥8
#4. CSDN → Dodonew Chinese CSDN → 126 86,104 CSDN → Dodonew 211,385 Basic
#5. 000Webhost → LinkedIn English 000Webhost → Yahoo 265,083 000Webhost → LinkedIn 213,697 Len≥6
#6. Yahoo → 000Webhost English Yahoo → LinkedIn 40,646 Yahoo → 000Webhost 37,479 LD
#7. LinkedIn → 000Webhost English LinkedIn → Yahoo 40,812 LinkedIn → 000Webhost 259,175 LD, Len≥6
#8. 000Webhost → RedMart English 000Webhost → Linkedin 213,697 000Webhost → RedMart 6,858 Len≥6
#9. 80% Mixed_EN → 20% Mixed_EN English 80% of Mixed_EN 338,857 20% of Mixed_EN 84,714 Basic
#10. 80% Mixed_CN → 20% Mixed_CN Chinese 80% of Mixed_CN 434,255 20% of Mixed_CN 108,564 Basic
#11. 80% 4iQ → 20% 4iQ Mixed 80% of 4iQ dataset 116,837,808 20 % 4iQ dataset 29,209,452 Basic
#12. 80% COMB → 20% COMB Mixed 80% of COMB 342,921,727 20 % COMB dataset 85,730,432 Basic
#13A. Tianya, 126 → Taobao Tianya, 126 → Dodonew Tianya, 126 → Taobao Basic
#13B. Tianya → Taobao Chinese Tianya → Dodonew 95,457 Tianya → Taobao 79,562 Basic
#13C. 126 → Taobao 126 → Dodonew 126 → Taobao Basic
#14A. 80% Union → 20% UnionB

∗ 80% of Union dataset 20 % UnionB dataset Basic
#14B. 80% UnionA1 → 20% UnionB English 80% of UnionA1 dataset 27,833,899 20 % UnionB dataset 10,785,542 Basic
#14C. 80% UnionA2 → 20% UnionB 80% of UnionA2 dataset 20 % UnionB dataset Basic
‡ A → B (e.g., #1. 126 → CSDN) means that: A user’s password at service A can be used by an attacker to help attack this user’s account at service B. Note that for

#13A and #14A, we represent the attack scenarios as A1,A2 → B, which means that a user’s passwords at services A1 and A2 can be used by an attacker to help
herself attack the same user’s account at service B. The sub-scenarios #13B∼#13C and #14B∼#14C are the sub-scenarios for #13A and #14A, respectively.∗The Union dataset is built by matching ClixSense, LiveAuctioneers and 4iQ using email. Note that we remove any data item with fewer than three passwords.

†The Basic strategy (defined in Sec. 4.1) involves the removal of invalid emails and non-human created passwords. Cleaning strategies need to exclusively focus on
the site B in the A → B pairs. E.g., for Yahoo → LinkedIn and LinkedIn → Yahoo, the initial number of password pairs is identical. However, after applying the LD
strategy (which means retaining passwords with at least one letter and one digit) to LinkedIn, its number becomes 40,646, while after applying LD and Len≥6 to
Yahoo, its number becomes 40,812. This explains the differences in the number of data items for Yahoo → LinkedIn (LD) and LinkedIn → Yahoo (LD and Len≥6).

billion passwords (see Table 1). To ensure a comprehensive

and reliable evaluation of our models and their counterparts,

besides four English and five Chinese datasets, we further em-

ploy two mixed large-scale datasets, 4iQ [2] and COMB [3].

All these datasets in Table 1 were leaked and published on the

Internet from 2011 to 2021 and are representative of current

real users’ reuse behavior. Particularly, (1) 4iQ and COMB

are two massively mixed datasets [2, 3] consisting of large

datasets exposed by previous breaches (e.g., LinkedIn, Net-

flix); (2) RedMart [4] is an online grocery platform whose

servers store all passwords in salted-hash. These passwords

serve as real targets (as with [66]); (3) 000Webhost is a web-

site used by web administrators, so its users are more likely

to have higher security awareness. Thus, the experiments in-

volving 000Webhost in attack scenarios #6 and #7 represent

evaluation on security-savvy users (see Table 2).

Ethical consideration. Though ever available on the Internet

and dark web (and widely used in the literature [17,43,66,67]),

these datasets are private data. Thus, we take three precau-

tionary measures to ensure that there is no additional harm

to users: (1) All our datasets are stored and processed on

computers not connected to the Internet; (2) Only report the

aggregated statistical information and some typical password

examples (without PII), i.e., treat each account as confidential,

so that using it in our work will not bring new risks to the

corresponding victim; (3) Delete all the intermediate sensi-

tive data (e.g., email and datasets of target guesses) once our

analysis is completed. These datasets may be exploited by

malicious parties for misconduct, while our use is beneficial

for the community to understand password strength and for

security administrators to make more informed decisions.

Dataset cleaning. First, we remove data items with an

empty/invalid email. We also keep passwords that are Len<30

and only contain 95 printable ASCII characters. We call this

as the Basic cleaning strategy. We will adaptively adjust this

strategy for different websites according to their password

policy (see more details in Table 1).

4.2 Experimental setup
To better evaluate the effectiveness of our POINTERGUESS,

we design 12 practical attack scenarios (see Table 2) by em-

ploying datasets described above (see Table 1). More specifi-

cally, we use email to match two datasets to create training/test

datasets. For instance, 126 → CSDN means matching 126

with CSDN (by using email) and getting 85,206 password

pairs. We design attack scenarios #1∼#4 and #5∼#8 for Chi-

nese and English users, respectively. All selected test sets,

except for the scenario #8 (where RedMart passwords are in

salted-hash), are in plaintext. As 000webhost is mainly used

by web administrators, and we design attack scenarios #6 and

#7 to simulate attacks on high-security users.

Scenarios #9 and #10 employ mixed datasets within one

language, i.e., Mixed_EN and Mixed_CN, which combine

multiple English (i.e., 000Webhost, LinkedIn and Yahoo) and

Chinese (i.e., Tianya, Dodonew, and CSDN) datasets, respec-

tively. Scenarios #11 and #12 further evaluate users of mixed

languages by employing two large-scale synthesized datasets

4iQ and COMB. These four additional evaluation setups are

in accord with that of [66].

In Sec. 6, we introduce MS-POINTERGUESS designed for

multiple password reuse attack scenarios. To demonstrate

its effectiveness, we design two practical attack scenarios

#13 and #14 (see Table 2 for details), with each consisting

of a main scenario for MS-POINTERGUESS and two sub-

scenarios for comparison with POINTERGUESS. We design

scenario #13 (#13A∼#13C) for Chinese users, which evaluate

7

(a) Chinese: #1. 126 → CSDN (b) English: #5. 000Webhost → LinkedIn (c) Mixed: #12. COMB: 80% → 20%

Figure 6: Experiments for attack scenarios #1∼#12, for each of which the training set is shown in Table 2 and the test set is as the sub-title. Due to space

contraints, mainly three representative scenarios are shown here, and the other 9 scenarios are shown in Appendix G. Our POINTERGUESS achieves the highest

cracking success rate in 10 of 12 scenarios over its foremost counterparts TarGuess-II [65], Pass2Edit [66] and Pass2Path [43].

the cases when the attacker gets two old passwords of the

victim. This allows us to fairly compare the effectiveness of

POINTERGUESS with MS-POINTERGUESS.

We design scenario #14 (#14A∼#14C) for English users.

We match ClixSense, LiveAuctioneers, and 4iQ by emails,

ensuring a minimum of three passwords for each data item in

the matched dataset called Union. We randomly select 80%

of the Union as the training set and the rest 20% as the test set.

Additionally, to comprehensively evaluate our models’ per-

formance, we construct UnionA1 and UnionA2 for scenarios

#14B and #14C, based on the source data, respectively.
State-of-the-art models for comparison. We compare our

model with three state-of-the-art models (i.e., TarGuess-II

[65], Pass2Path [43], and Pass2Edit [66] and their variants),

as well as other relevant models (e.g., Top-PW and PlainSeq).

To evaluate the impact of the pointer module on model per-

formance, we use a basic seq2seq model, called PlainSeq,

without utilizing the pointer module. We provide a briefly

overview of these models in Appendix A. As CPG [45]

and ReSeg-PCFG [60] are tailored for trawling guessing

or mask guessing rather than password reuse-based attacks,

and RFGuess-reuse achieves comparable performance with

TarGuess-II [65] and Pass2Path [43] (see Table 5 in [67] for

details), we exclude them from our model comparison.

Experimental environment. We randomly sample 20,000

passwords for test sets exceeding 20,000 as previous stud-

ies [43,66] have proved that using over 10,000 password pairs

leads to performance convergence. We perform all experi-

ments on a workstation with an Intel Xeon Silver processor

and a GPU of NVIDIA RTX 3090 (24GB of VRAM), an

experimental environment most attackers can easily build.

4.3 Experimental results
Here we briefly analyze the results of attacking scenarios

#1∼#12. As with [17, 43, 66, 67], we use the guess-number

graph to measure the performance of password models (see

more details about these models in Appendix A). More-

over, we present exact crack rates for specific guess numbers

(e.g., 10, 100, and 1,000), which are commonly concerned

in password security studies [43, 65, 66] and standard (e.g.,

NIST [22]). See more details in Appendix G.

Overall analysis. Due to the presence of identical password

pairs (i.e., pwA = pwB) in each test set, we present the experi-

Figure 7: The comparision of POINTERGUESS and PlainSeq’s ability in

cracking passwords with different cosine similarity (2-gram) thresholds.

Here we take scenario #2 (CSDN → 126) for example.

mental results of scenarios #1∼#12 in two cases: one without

identical password pairs and the other with.

In the former case (i.e., without identical password pairs),

as shown in Table 8, within 1,000 guesses, the success rates

of POINTERGUESS are 10.08% ∼ 45.00% (avg. 25.85%),

while that of Pass2Edit [66], Pass2Path [43], and TarGuess-

II [65] are 9.82%∼37.62% (avg. 20.39%), 8.52%∼31.87%

(avg. 16.28%), and 8.92%∼38.38% (avg. 20.61%). That is,

the guessing success rates of POINTERGUESS are 21.58%,

52.27%, and 20.61% (on average) higher than Pass2Edit,

Pass2Path, and TarGuess-II, respectively.

In the latter case (i.e., with identical password pairs), as

shown in Table 9, within 1,000 guesses, the success rates

of POINTERGUESS are 24.36% ∼ 77.03% (avg. 44.91%),

while that of Pass2Edit [66], Pass2Path [43], and TarGuess-

II [65] are 21.88%∼74.39% (avg. 41.25%), 19.54%∼69.26%

(avg. 38.64%), and 18.20%∼74.62% (avg. 41.25%), respec-

tively. That is, the guessing success rates of POINTERGUESS

are 8.87%, 16.23%, and 8.87% (on average) higher than

Pass2Edit, Pass2Path, and TarGuess-II, respectively.

Tables 8 and 9 show that, overall, POINTERGUESS achieves

the best results among all nine models. More specifically,

POINTERGUESS achieves the best results 18 times and 2nd

best results 9 times among all 36 cases in Table 8, while in

Table 9 this figure is 19 times and 8 times, respectively. Par-

ticularly, it significantly outperforms the second best model,

i.e., its variant POINTERGUESS-mix, which best performs 10

times and 2nd best 15 times in Table 8 (and best performs 10

times and 2nd best 16 times in Table 9).

Compare with the baseline (PlainSeq). To better illustrate

8

Figure 8: The cracking success rate of all models with mixing popular pass-

words (using scenario #4: CSDN → Dodonew as an example). A model

with the suffix “-mix” means that it is an adjustment to its original model by

mixing popular passwords in the same strategy with [66].

the role of the pointer mechanism [59], we conduct a further

comparison between POINTERGUESS and the basic seq2seq

model [56] without the pointer mechanism [59], i.e., PlainSeq.

Fig 7 shows their performance in cracking passwords under

different cosine similarity (2-gram) thresholds. Results show

that POINTERGUESS drastically outperforms PlainSeq, espe-

cially in cases where the cosine similarity threshold ranges

from 0.8 to 1.0. We further analyze the password cracked

by POINTERGUESS, and find that POINTERGUESS excels in

cracking: 1) password pairs whose target passwords are cre-

ated by adding or deleting uncommon substrings from the old

passwords (e.g., 585129wupan → 585129); and 2) password

pairs whose cosine similarities are large but also with a large

edit distance, such as 1000020000 → 100200 whose cosine

similarity is 0.91 and edit distance is 4.

The impact of language on performance. We now compare

the effectiveness of POINTERGUESS in Chinese (#1∼#4) and

English (#5∼#8) attack scenarios. As shown in Figs. 6 and 23,

the experimental results demonstrate that POINTERGUESS

outperforms other models in all Chinese scenarios. In En-

glish scenarios, our model still achieves higher or comparable

performance. Notably, POINTERGUESS significantly outper-

forms other models when attacking security-savvy users (see

scenarios #6 and #7 that attack 000webhost).

It is worth noting that our POINTERGUESS shows a much

higher success rates in Chinese scenarios than in English ones.

This can be largely attributed to the facts that: (1) English sce-

narios all involve users of 000Webhost, who are web admin-

istrators and thus possess a higher level of security awareness

than common users [65]; (2) there exist vast differences in

structural and semantic characteristics between Chinese and

English passwords, and the strength of Chinese passwords

is weaker in online guessing scenarios (i.e., when the guess

number allowed for the attacker is small [64]).

Mixing with external popular passwords. We explore the

impact of mixing external popular passwords on the perfor-

mance of POINTERGUESS and other models in attack scenar-

ios #1∼#12. We adopt the same mixing strategy as in [66].

Fig. 8 shows that all models (except for POINTERGUESS)

have a significant increase in crack rates after mixing exter-

nal popular passwords. Pass2Edit [66] and Pass2Path [43],

in particular, improve performance significantly after mixing

popular passwords, which is mainly due to their inherent de-

fect of overlooking users’ macroscopic population-wide reuse

behaviors (see Sec. 1.1). While excluding identical password

pairs, within 1,000 guesses, the success rates of POINTER-

GUESS-mix are 10.38%∼45.50% (avg. 25.87%), while that

of Pass2Edit-mix, Pass2Path-mix are 10.96%∼45.70% (avg.

24.58%) and 8.52%∼31.87% (avg. 16.28%), respectively.

That is, the guessing success rates of POINTERGUESS-mix

are 5.25% and 58.91% (on average) higher than Pass2Edit-

mix and Pass2Path-mix, respectively.

While not excluding identical password pairs, within

1,000 guesses, the success rates of POINTERGUESS-mix are

23.95%∼62.55% (avg. 44.94%), while that of Pass2Edit-

mix, Pass2Path-mix are 22.96%∼62.68% (avg. 44.04%) and

19.85%∼57.97% (avg. 41.27%). That is, the guessing success

rates of POINTERGUESS-mix are 2.04% and 8.89% (on av-

erage) higher than Pass2Edit-mix and Pass2Path-mix. More

details can be found in the right part of Tables 8 and 9, which

show that, overall, POINTERGUESS performs the best.

5 Further analysis
We analyze characteristics of passwords cracked by differ-

ent models, employing various similarity metrics to explore

users’ password reuse from both “syntactic” and “semantic”

perspectives. To demonstrate model performance accurately,

we adopt a new “password reuse” definition (as discussed

in Sec. 3.1) to measure similarity distributions. Additionally,

we investigate existing models’ performance and limitations

based on similarity distributions of cracked passwords. Fur-

ther details are in Appendix C.

5.1 Characteristics of cracked passwords

POINTERGUESS

Pass2Edit [66]
Pass2Path [43]

0.6%

34.3%

16.7%

18.0%

4.4%

1.6%

24.3%

Figure 10: The overlap ratios of cracked password pairs by three models.

Overlap. To compare the cracking capabilities of POINTER-

GUESS, Pass2Edit [66], and Pass2Path [43], we examine the

overlap in independently cracked password pairs across 12

attack scenarios (i.e., 29,252 of 89,951 all cracked password

pairs). Fig. 10 shows a total overlap rate of 34.3% (10,033 of

29,252) among the three models. For independently cracked

password pairs, POINTERGUESS has a 16.7% overlap (4,885

of 29,252), while that of Pass2Edit and Pass2Path are 1.6%

(468 of 29,252) and 0.6% (176 of 29,252), respectively.

Notably, the intersection of POINTERGUESS with

Pass2Edit [66] or Pass2Path [43] is much larger (i.e., 24.30%

= 7,108/29,252, and 18.00% = 5,265/29,252, respectively)

9

(a) Spatial distance-based distribution (b) Sequence alignment-based distribution (c) Overlap-based distribution

Figure 9: Syntactic metric distributions of independently cracked password pairs by three major models. Figs. 9(a)∼9(c) show the example of similarity

distributions based on spatial-distance metric (i.e., edit distance [30]), sequence-alignment metric (i.e., Largest Common String algorithm [17]) and overlap-based

metric (i.e., Overlap [29]), respectively. “Total” represents all password pairs in all test sets and “Union” represents all password pairs cracked by three models.

Figure 11: The length distribution of independently cracked passwords.

than the intersection between Pass2Edit and Pass2Path (i.e.,

4.40% = 1,287/29,252). This highlights that POINTERGUESS

is good at what Pass2Edit and Pass2Path can do.

Length distribution. Here we use the password pairs inde-
pendently cracked by each of these three models to explore

their differences in cracking passwords of varied lengths.

Fig. 11 shows that our model primarily focuses on pass-

words with lengths of 6 and 8∼10 due to the fact that POINT-

ERGUESS can capture users’ macroscopic population-wide

reuse behaviors, e.g., using popular passwords (which are

typically of length 6 and 8) and substituting long segments

(like yjqqq916198 → 916198yj). Notably, the length distri-

butions of our model and the union set (denoted as “Union” in

Fig. 11) exhibit a high degree of similarity (i.e., have two

peaks), which highlights that POINTERGUESS is good at

cracking passwords of lengths that Pass2Edit [66] and/or
Pass2Path [43] are good at.

5.2 Characterize password reuse behaviors
We conduct further evaluations on the performance of differ-

ent models in characterizing user’s password reuse behaviors.

We employ various similarity metrics (as we mentioned in

Sec. 2.2) to evaluate different models’ ability on cracking

password pairs with different similarity scores.

First, we employ syntactic metrics to measure the distri-

bution of independently cracked password pairs. As shown

in Fig. 9, POINTERGUESS exhibits superior performance on

low-similarity cases, attributing this to its ability in predict-
ing targeted password character sequences without excluding
unsimilar password pairs from the training set. This allows

POINTERGUESS to generate tweaked passwords with low

similarity to the old password, including those with edit dis-

tances >5 (see examples in Table 4).

Fig. 9 illustrates that Pass2Edit [66] and Pass2Path [43]

exhibit “overfitting”, as the similarity distribution of the

cracked password pairs significantly deviates from the over-

Figure 12: The combined similarity distribution of edit distance and cosine

similarity (2-gram) as defined in [23]. Results are similar to Fig. 9.

Table 3: The proportion of transformation rules.

Models
Password transformation rules %†

Sub. Leet Cap. LCS Rev. Leet+LCS Cap.+Sub. Others
Union 71.48 0.57 4.31 63.71 0.06 36.48 1.78 9.78
POINTERGUESS 62.46 0.53 3.35 57.41 0.13 34.94 5.00 20.17
Pass2Edit [66] 76.75 0.60 4.53 68.03 0.01 38.69 7.02 3.13
Pass2Path [43] 78.92 0.59 5.53 68.14 0.00 36.15 8.44 1.92

†The abbreviations “Sub.”, “Cap.”, “LCS” and “Rev.” stand for “Substring”,
“Capitalization”, “Largest Common String” and “Reversal” respectively.

all similarity distribution (i.e., “Total” in Fig. 9) of all pass-

word pairs in the test sets. This phenomenon implies that

Pass2Edit and Pass2Path struggle to model the distribution

of entire password reuse behaviors. Particularly, they face

challenges in cracking password pairs with excessively long

editing sequences or low similarity (e.g., KeveinMobile →
password123).

As shown in Fig. 12, we combine edit distance and cosine

similarity (2-gram) as suggested in [23] for a comprehensive

evaluation, yielding similar conclusions to other syntactic

metrics. We use other various syntactic similarity metrics to

thoroughly measure the characteristics of major password

models (see results in Appendix D).

Second, we employ semantic metrics, following the work-

flow proposed by Wang et al. [61], to measure the transfor-

mation rules of cracked password pairs. Table 3 shows that

Pass2Edit [66] and Pass2Path [43] tend to focus on some spe-

cific transformation (e.g., “LCS”) while overlooking some

other complex segment-level transformations (i.e., “Others”

in Table. 3), e.g., transforming yjqqq916198 to 916198yj.

Third, as mentioned in Sec. 3.1, we introduce a hierarchical

definition of “password reuse”, and propose a workflow that

considers both syntactic and semantic metrics (see Fig. 2).

More specifically, we use a combination of edit distance and

cosine similarity to identify “personal reuse” password pairs,

while applying transformation rules to detect “population-

wide reuse” patterns for the remaining password pairs. As

shown in Fig. 13, nearly 40% of all test passwords are catego-

10

Table 4: Ten examples of password pairs cracked independently by POINTERGUESS, Pass2Edit [66] and Pass2Path [43].
Models POINTERGUESS Pass2Edit [66] Pass2Path [43]
Index Old password Target password Old password Target password Old password Target password

1 852255685145294 abc123 MCfaraona020591 mcfaraona91 8841800lin lin8841800lin
2 boy78697740 boy123456789 edwardcullenqwe Edwardcullen jangobango88 jangobango1988
3 kazeevatanyuffka872ghbrjyf kazeevatanyuffka Castor Castor08 13197277038 131w97277038
4 katmarlzelda969 katmarlzelda969@yahoo.com 4.14495E 4.14495E+13 IloveYOU2998 iloveyou2998
5 ghostgamer-2001 ghostgamer-2001@hotmail.com t0romerda. toromerda SAIIIOK sai1iok
6 uuDBUMDM5NApOzYW qweasdzxc UHJVuhjvbr49 Uhjvuhjvbr49 wgpfuqd861208 wgpfUQD861208
7 jaydiltddasilva@partners.org jaydilla1 30061986123 30061986qwe rajuraju raju2raju
8 102457685& 102457685!! WMOOLMAN1058 WMOOLMAN drdeath 1DRDEATH
9 1991322322 1.99132E+12 RBV//1960 rbl//1960 samantha s@mantha

10 6125251987110 6.12525E+12 SharmaHellV1.0 HellV1.0 liljojo202 liljojo120

Figure 13: The similarity in terms of our “Personal reuse” and “Population-

wide reuse” and other types of reuse.

rized as population-wide reuse, and POINTERGUESS shows a

clear advantage in cracking such password pairs. We can see

that another 40% of password pairs still can not be identified

as reuse (see “Total” when x-axis=“Others”) by POINTER-

GUESS and other major models. This outlines the need for a

more thorough understanding of users’ reuse behaviors.

5.3 Further exploration on model performance
Limitation of existing models. Existing models tend to lean

towards generating passwords that are either “very similar” or

involve “fewer edit operations” regarding old passwords. This

limits their ability to effectively comprehend and capture pass-

word reuse behaviors across the entire password distribution,

particularly in cases of population-wide reuse. As a result,

there is a notable gap between their cracking performance

and the reality of password reuse.

To demonstrate this disparity and delve deeper into the lim-

itations of password reuse-based guessing models, we utilize

Cumulative Distribution Function (CDF) curves. As shown

in Fig. 14, existing models [43, 66] (that focus on generating

highly similar passwords) quickly reach the stable saturation

plain. In contrast, POINTERGUESS can crack password pairs

even when the similarity differences are as large as 0.8∼1.0,

which corroberates its capability in capturing “population-

wide reuse” and provides a new perspective on why POINT-

ERGUESS achieves higher performance than existing models.

Furthermore, when comparing the proportion cracked by

the three models with the whole 89,951 unique test password

pairs, a significant gap emerges. As shown in Fig. 14, the

CDF curves of proportions cracked by three models deviates

significantly from that of overall password pairs when the

similarity difference ≥0.5. To address this issue, we intro-

duce our MS-POINTERGUESS for multiple leaked password

scenarios (see details in Sec. 6).

Model attacking efficiency. Here we examine the attacking

(a) Edit distance. (b) Cosine similarity.

Figure 14: Cumulative Distribution Functions (CDF) of cracking proportion

on password similarity difference. Figs. 14(a) and 14(b) show the results of

using edit distance and cosine similarity as metrics, respectively.

Table 5: Running time of different attack models.†

Attack model POINTERGUESS Pass2Edit [66] Pass2Path [43]

Training time 15:14 09:43 14:10
Testing time 00:24 02:26 01:47

Speed‡ (pw/s) 9,700∼9,800 2,100∼2,200 2,900∼3,000
Model size (MB) 2.26 11.00 53.60

†All running time is taken from attack scenario #10, and their format is
“hour:minute”. All model parameters are consistent with Sec. 3. Bold value
means the best result in each row.

‡Speed (of generating guesses) is calculated by dividing the total number by
the total testing time, and there may be fluctuations in different scenarios.

efficiency of different neural network-based models. Fig. 5

shows that the training time of POINTERGUESS is slightly

longer than Pass2Edit [66] and Pass2Path [43], mainly be-

cause existing models need to filter the training set with some

similarity threshold (e.g., edit distance<4) and this leads to a

smaller training set; As for testing time, our POINTERGUESS

runs the fastest generation speed, which is much higher than

other models; Our model’s size is only 2.26 MB, which is

5∼25 times smaller than other models, leading to easier local

deployment and reducing the risk of information leakage.

Model preferences. Table 4 shows ten examples of password

pairs cracked independently by different models. Our POINT-

ERGUESS demonstrates clear preferences in complex reuse

behaviors. First, POINTERGUESS can characterize users’ vul-

nerable behaviors of reusing popular passwords (e.g., abc123
in the first example). Second, POINTERGUESS can generate

semantic fragments based on the old password (e.g., email

suffixes like @hotmail.com), potentially assisting in guessing

reused passwords. Third, POINTERGUESS utilizes extractive

generation by identifying key parts of the old password to

generate the target password, (see indexes 7∼10 in Table 4).

Particularly, our model can generate numbers represented in

scientific notation (e.g., 1991322322 → 1.99132E+12). This

reflects the limitations in Pass2Edit [66] and Pass2Path [43],

which utilize the old password as a template for transfor-

mations (e.g., insert/delete a character) is less effective in

identifying reused fragments within the old password.

11

Potential applications in password protection. We con-

sider two potential applications of POINTERGUESS: password

strength meter (PSM) and compromised credential checking

(C3) services. We discuss how to design reuse-based PSM in

Sec. 7 and the application in C3 services in Appendix F.

6 Multi-Source PointerGuess
Reports [14, 34] show that most users maintain over 90 ac-

counts on average and prefer to reuse their old passwords,

which impairs password security. At IEEE S&P’19, Pal et

al. [43] attempted to employ multiple old passwords of a user

for targeted guessing attacks by running Pass2Path multiple

times and simply “merge the lists by picking one from each

list in a round robin manner” [43]. Their ad hoc approach

cannot accurately capture the relationships between different

old passwords, and we take a principled approach.

6.1 Modeling password generation
There are two key research questions (RQs) that need to be

solved to build an effective targeted password guessing model

for multiple leaked password scenarios:

RQ1: How to evaluate the importance of different leaked

passwords on guessing the target password?

RQ2: Does the designed model demonstrate superior per-

formance compared to POINTERGUESS?

In response to the threat posed by a realistic attack sce-

nario involving multiple leaked old passwords and to address

our two research questions (RQs), we introduce a new tar-

geted password guessing model, MS-POINTERGUESS. MS-

POINTERGUESS incorporates a “Multi-Encoder module” into

POINTERGUESS to effectively handle the victim’s multiple

leaked passwords. Here, we use two encoders to briefly de-

scribe MS-POINTERGUESS without losing generality.

In multiple leaked password attack scenarios, the condi-

tional guessing probability that an attacker exploits users’

multiple known passwords (e.g., pwA at site A and pwB at site

B) to attack the victim’s target password at site C (namely

pwC =
(

c
′
1, ...,c

′
M

)
):

P(pwC|pwA, pwB) =

M∏
i=1

P
(

c
′
i|pwA, pwB

)
. (8)

To address RQ1, we introduce an additional soft gate layer,

denoted as λ, to evaluate the importance of users’ different old

passwords and identify their preferences for these passwords

when creating a new password. Initially, λ is employed to

weigh and combine Pcopy from pwA and P
′
copy from pwB. This

yields P
′′
copy, the weighted conditional probability of copying

characters from pwA and/or pwB, can be expressed as:

P
′′
copy (c) = λ∗Pcopy (c)+(1−λ)∗P

′
copy (c) , (9)

where λ is a learnable parameter. Still, we use the pointer

mechanism pg to weigh P
′′
copy (c) and the probability distribu-

(a) #13: Tianya, 126 → Taobao (b) #14: 80% Union → 20% Union
Figure 15: Experiments of attack scenarios for MS-POINTERGUESS (i.e.,

#13 and #14) in Table 2. POINTERGUESS-A1&A2=MS-POINTERGUESS.

tion Pvocab (c), and we can express P(c) as

P(c) = pg ∗P
′′
copy (c)+(1− pg)∗Pvocab (c) , (10)

where pg is a learnable parameter. More details of the genera-

tion about probability are shown in Appendix E.

6.2 Experimental results and analysis
Experimental design and results. To address RQ2, we con-

duct two practical attack scenarios (#13 and #14, detailed in

Sec. 4.2) to evaluate the performance of MS-POINTERGUESS.

Fig. 15 shows that MS-POINTERGUESS invariably outper-

forms POINTERGUESS across both attack scenarios. For iden-

tical password pairs, MS-POINTERGUESS achieves cracking

success rates that are, on average, 17.54% (scenarios #13) and

26.11% (scenarios #14) higher than POINTERGUESS within

100 guesses, respectively. Even when excluding identical pass-

word pairs, MS-POINTERGUESS maintains its superiority.

More specifically, within 100 guesses, it achieves cracking

success rates that are, on average, 17.20% (scenarios #13)

and 38.78% (scenarios #14) higher than POINTERGUESS,

respectively. See Table 7 for more details and specific results.

This highlights the effectiveness of MS-POINTERGUESS

and the substantial impacts of utilizing different training sets

to attack the same test set on POINTERGUESS’ efficiency. As

a large proportion of users directly reuse their old passwords

(i.e., 20%∼59% [17,60,62,66]) and there are unending catas-

trophic password leaks [49, 71] (making it more and more

likely that users have leaked two or more distinct passwords),

password guessing based on multiple old passwords is a rather

damaging threat (see the columns 3 and 6 in Table 7).

Further analysis. Overall, our analysis reveals two key find-

ings: (1) The results show that most users have identical old

passwords, aligning with recent research findings [14,21]. As

users’ leaked passwords increase, the risk of compromising

their target passwords also rises. Directly using these identical

password pairs in password cracking significantly improves

the success rate; (2) MS-POINTERGUESS effectively lever-

ages multiple old passwords to generate accurate guesses, re-

sulting in higher cracking rates compared to POINTERGUESS.

7 Targeted Password Strength Meters
Password strength meters (PSMs) offer real-time feedback on

password security during user registration, receiving much

12

Guess1
Guess2

···
Guessn

Target Password PWA
Old Password PWB

Targeted Password
Guessing Model

ZxcvbnR
Module

GuessSimRank
Module

Guess List

Min(RankR,RankG)

RankR

RankG

if PWA in Guesslist:
Guessnumber=Index(PWA)else:
Guessnumber=Min(RankR,RankG)

Input PWB
Calculate

Input
Input

Input

Input

Input PWA

Figure 16: Architecture of PR-PSM. It consists of three primary parts:

(1) search the index in the guess list; (2) the ZxcvbnR module; (3) the

GuessSimRank module. See more details in Appendix B.

attention as a useful tool [63]. Among them is the Zxcvbn [69],

a widely-used PSM that is renowned for its accuracy, low cost,

and user-friendliness. While Zxcvbn performs well under

trawling guessing attacks, it does not consider the targeted

guessing threat as explored in the previous sections.

To address this limitation, we introduce PR-PSM, a pass-

word reuse-based PSM that integrates our POINTERGUESS

with Zxcvbn. As shown in Fig. 16, PR-PSM utilizes users’

old passwords to accurately estimate the password strength

through a “multi-step evaluation” process. This process in-

cludes GuessSimRank and ZxcvbnR modules, to accurately

evaluate the password strength of the target password.

7.1 Multi-step evaluation
Fig. 16 shows the architecture of our PR-PSM. We design a

two-step evaluation mechanism to evaluate the strength of a

given password more accurately.

Step 1: Get the index of the target in the guess list. First,

we directly input the old password pwB into the targeted pass-

word guessing model (e.g., POINTERGUESS) and generate

Top-K guesses. Then, if pwA is in the guess list, we use its

index in the guess list as the guess number, that is

GN = Index(pwA), (11)

where GN denotes the guess number (i.e., the index of pwA).

If pwA is not in the guess list, we move into the next step.

Step 2: Get the guess number from two modules. When

pwA is not in the guess list, PR-PSM uses two evaluation

modules to assess the strength of the target password. The first

module, ZxcvbnR, integrates Zxcvbn [69] and evaluates the

strength RankR of pwA using the generated guess list, which

can be expressed as

RankR = ZxcvbnR (pwA) . (12)

Alg. 2 shows the details of ZxcvbnR. The second module,

GuessSimRank, integrates POINTERGUESS and Zxcvbn to

evaluate the strength RankG of pwA, that is

RankG = GuessSimRank (pwA) . (13)

Alg. 3 shows the details of GuessSimRank. The final guess

number GN is determined as the minimum between RankR

(a) Strengths estimated by Zxcvbn. (b) Strengths estimated by PR-PSM.

Figure 17: PSM accuracy evaluation by comparing the distribution of cracked

passwords with overall test passwords. The smaller the guess number, the

weaker the password, and should the higher probability to be cracked. Results

show the advantages of PR-PSM in evaluating password strength with users’

old passwords over Zxcvbn [69].

and RankG, that is

GN = min(RankR,RankG). (14)

Further details of PR-PSM are provided in Appendix B.

7.2 Results and analysis
Fig. 17 evaluates the effectiveness of PR-PSM by investigat-

ing the password strength distributions of all target passwords

(in the 89,951 unique test password pairs) with these 29,252

cracked target passwords in 12 scenarios. Fig. 17(a) shows

that Zxcvbn [69] estimates the guess number for the majority

of overall test passwords to exceed 105, with over 15% of

target passwords even deemed unguessable (i.e., ≥1010).

Zxcvbn accurately evaluates only a minority of the cracked

passwords (i.e., guess number≤103) and overestimates the

majority of the cracked passwords to exceed 105, with some

even exceeding 1010. In contrast, Fig. 17(b) shows that PR-

PSM accurately evaluates all the cracked passwords to be

within 103 guesses, and the majority of overall test target pass-

words to be less than 1010. This indicates that Zxcvbn overes-

timates the strength of most passwords in targeted guessing

scenarios, and PR-PSM well fixes its defect. See more results

and analysis in Appendix B.

8 Conclusion
This paper provides a new technical route to dynamically gen-

erate a user’s new password through her old password. For the

first time, we propose a password reuse guessing model cou-

pled with the pointer mechanism, namely POINTERGUESS.

By introducing a hierarchical definition of password reuse,

POINTERGUESS can characterize users’ password reuse be-

haviors more accurately. Extensive experiments demonstrate

the effectiveness of POINTERGUESS and its applicability to

targeted PSMs. Furthermore, we investigate a realistic attack

scenario where attackers leverage victims’ multiple old pass-

words to compromise their current passwords, and propose

MS-POINTERGUESS. We hope that our new models and ac-

curate characterization of users’ password reuse behaviors

will help the community and web administrators have a better

understanding of password security.

13

Acknowledgement

The authors are grateful to the shepherd and anonymous re-

viewers for their invaluable comments. Ding Wang is the cor-

responding author. This research was in part supported by the

National Natural Science Foundation of China under Grants

Nos. 62222208 and 62172240, and Natural Science Founda-

tion of Tianjin, China under Grant No. 21JCZDJC00190.

References
[1] Cracking passwords from the Mall.cz dump, Jan. 2018, https://www.

michalspacek.com/cracking-passwords-from-the-mall.cz-dump.

[2] Identities in the Wild: The Tsunami of Breached Identities Continues,

May 2018, https://4iq.com/wp-content/uploads/2018/05/2018Identit

yBreachReport4iQ.pdf/.

[3] COMB data breach: what it means, and how to protect yourself, Feb.

2021, https://blog.1password.com/what-comb-means-for-you-and-y

our-business/.

[4] Recently added breaches., Dec. 2022, https://haveibeenpwned.com/.

[5] S. A. Al-Roomi and F. Li, “A large-scale measurement of website login

policies,” in Proc. USENIX SEC 2023, pp. 2061–2078.

[6] A. J. Aviv, D. Budzitowski, and R. Kuber, “Is bigger better? comparing

user-generated passwords on 3x3 vs. 4x4 grid sizes for android’s pattern

unlock,” in Proc. ACSAC 2015, pp. 301–310.

[7] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” in Proc. ICLR 2015.

[8] M. Bellare and G. Neven, “Multi-signatures in the plain public-key

model and a general forking lemma,” in Proc. ACM CCS 2006.

[9] F. Bellot, “Taxicab geometry—an adventure in non-euclidean geome-

try,” The Mathematical Gazette, pp. 255–255, 1988.

[10] J. Bonneau, C. Herley, P. Oorschot, and F. Stajano, “The quest to re-

place passwords: A framework for comparative evaluation of web

authentication schemes,” in Proc. IEEE S&P 2012, pp. 553–567.

[11] J. Bonneau, C. Herley, P. van Oorschot, and F. Stajano, “Passwords

and the evolution of imperfect authentication,” Commun. ACM, vol. 58,

no. 7, pp. 78–87, 2015.

[12] C. Castelluccia, A. Chaabane, M. Dürmuth, and D. Perito, When privacy
meets security: Leveraging personal information for password cracking,

Apr. 2013, https://arxiv.org/pdf/1304.6584.pdf.

[13] N. C. S. Centre, Password managers: using browsers and apps to safely
store your passwords, Dec. 2021, https://www.ncsc.gov.uk/collection

/top-tips-for-staying-secure-online/password-managers.

[14] C. Cimpanu, Google launches Password Checkup fea-
ture, will add it to Chrome later this year., Oct. 2019,

https://www.zdnet.com/article/google-launches-password-check

up-feature-will-add-it-to-chrome-later-this-year/.

[15] W. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A comparison of

string distance metrics for name-matching tasks,” in Proc. IIWEB 2003.

[16] F. J. Damerau, “A technique for computer detection and correction of

spelling errors,” Commun. ACM, pp. 171–176, 1964.

[17] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled

web of password reuse,” in Proc. NDSS 2014, pp. 1–15.

[18] L. R. Dice, “Measures of the amount of ecologic association between

species,” Ecology, pp. 297–302, 1945.

[19] B. Fung, Hackers post email addresses linked to 200 million Twitter
accounts, security researchers say, Jan. 2023, https://www.cnn.com/

2023/01/05/tech/twitter-data-email-addresses/index.html.

[20] S. Gatlan, Hacker leaks full database of 77 million Nitro PDF user
records, Jan. 2021, https://www.bleepingcomputer.com/news/security

/hacker-leaks-full-database-of-77-million-nitro-pdf-user-records/.

[21] H. P. Google, Online Security Survey, Feb. 2019, https://services.goo

gle.com/fh/files/blogs/google_security_infographic.pdf.

[22] P. A. Grassi, E. M. Newton, R. A. Perlner, and et al., “NIST 800-63B

digital identity guidelines: Authentication and lifecycle management,”

McLean, VA, Tech. Rep., Mar. 2020, https://pages.nist.gov/800-63-3/

sp800-63b.html.

[23] Y. Guo and Z. Zhang, “Lpse: Lightweight password-strength estimation

for password meters,” Comput. Secur., vol. 73, pp. 507–518, 2018.

[24] X. He, H. Cheng, J. Xie, P. Wang, and K. Liang, “Passtrans: An im-

proved password reuse model based on transformer,” in Proc. IEEE
ICASSP 2022, pp. 3044–3048.

[25] S. Katsumata, T. Matsuda, W. Nakamura, K. Ohara, and K. Takahashi,

“Revisiting fuzzy signatures: Towards a more risk-free cryptographic

authentication system based on biometrics,” in Proc. ACM CCS 2021.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proc. ICLR 2015, pp. 1–15.

[27] T. Kudo, SentencePiece: A simple and language independent subword
tokenizer and detokenizer for Neural Text Processing, 2018, https:

//github.com/google/sentencepiece.

[28] LassPass, The 2021 Password Security Report, 2021, https://www.last

pass.com/resources/ebook/psychology-of-passwords-2021.

[29] W. LEVANDOWSKY, MICHAEL and DAVID, “Distance between

sets,” Nature, pp. 34–35, 1971.

[30] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-

tions and reversals,” Soviet physics. Doklady, pp. 707–710, 1965.

[31] Y. Li, Y. Li, X. Chen, R. Shi, and J. Han, “Pg-pass:targeted online

password guessing model based on pointer generator network,” in Proc.
IEEE CSCWD 2022, pp. 507–512.

[32] Z. Li, W. He, D. Akhawe, and D. Song, “The emperor’s new password

manager: Security analysis of web-based password managers,” in Proc.
USENIX SEC 2014, pp. 465–479.

[33] Lily Hay Newman, The Password Isn’t Dead Yet. You Need a Hardware
Key, Dec. 2022, https://www.wired.com/story/hardware-security-key

-passwords-passkeys/.

[34] N. Lord, Uncovering Password Habits: Are Users’ Pass-
word Security Habits Improving? (Infographic)., Sep. 2020,

https://digitalguardian.com/blog/uncovering-password-habits-are-u

sers-password-security-habits-improving-infographic/.

[35] B. Lu, X. Zhang, Z. Ling, Y. Zhang, and Z. Lin, “A measurement study

of authentication rate-limiting mechanisms of modern websites,” in

Proc. ACSAC 2018, pp. 89–100.

[36] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password

models,” in Proc. IEEE S&P 2014, pp. 689–704.

[37] P. Masiliauskas, Most common passwords: latest 2023 statistics., Mar.

2023, https://cybernews.com/best-password-managers/most-commo

n-passwords/.

[38] W. Melicher, B. Ur, S. Segreti, S. Komanduri, L. Bauer, N. Christin, and

L. Cranor, “Fast, lean and accurate: Modeling password guessability

using neural networks,” in Proc. USENIX SEC 2016, pp. 1–17.

[39] C. Morris, Massive data leak exposes 700 million LinkedIn users’
information, Jun. 2021, https://fortune.com/2021/06/30/linkedin-dat

a-theft-700-million-users-personal-information-cybersecurity/.

[40] S. B. Needleman and C. D. Wunsch, “A general method applicable to

the search for similarities in the amino acid sequence of two proteins,”

J. Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970.

[41] E. Nesbo, 8 Reasons Password Managers Are Not as Safe as You Think,

May. 2022, https://www.makeuseof.com/are-password-managers-saf

e-or-not/.

14

[42] L. H. Newman, Why the Password Isn’t Dead Quite Yet, Jul. 2021, https:

//www.wired.com/story/passwords-not-dead-yet-authentication/amp.

[43] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Beyond credential

stuffing: Password similarity models using neural networks,” in Proc.
IEEE S&P 2019, pp. 417–434.

[44] B. Pal, M. Islam, M. S. Bohuk, N. Sullivan, L. Valenta, T. Whalen,

C. Wood, T. Ristenpart, and R. Chatterjee, “Might i get pwned: A

second generation compromised credential checking service,” in Proc.
USENIX SEC 2021, pp. 1831–1848.

[45] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,

“Improving password guessing via representation learning,” in Proc.
IEEE S&P 2021, pp. 265–282.

[46] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin,

L. F. Cranor, S. Egelman, and A. Forget, “Let’s go in for a closer look:

Observing passwords in their natural habitat,” in Proc. ACM CCS 2017.

[47] S. Pearman, S. A. Zhang, L. Bauer, N. Christin, and L. F. Cranor, “Why

people (don’t) use password managers effectively,” in Proc. USENIX
SEC 2019, pp. 319–338.

[48] S. Perkins, The 5 top reasons you should use a password manager, Feb.

2023, https://www.androidpolice.com/top-reasons-download-use-pas

sword-manager/.

[49] V. Petkauskas, Mother of all breaches reveals 26 billion records: what
we know so far, Jan. 2024, https://cybernews.com/security/billions-p

asswords-credentials-leaked-mother-of-all-breaches/.

[50] SecureFrame, 70 Password Statistics to Inspire Better Security Prac-
tices., Mar. 2022, https://secureframe.com/blog/password-statistics/.

[51] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization

with pointer-generator networks,” in Proc. ACL 2017, pp. 1073–1083.

[52] M. Shirvanian and S. Agrawal, “2D-2FA: A new dimension in two-

factor authentication,” in Proc. ACSAC 2021, pp. 482–496.

[53] P. Shrestha, A. T. Mahdad, and N. Saxena, “Sound-based two-factor

authentication: Vulnerabilities and redesign,” ACM Trans. Priv. Secur.,
vol. 27, no. 1, pp. 1–27, 2023.

[54] T. Smith and M. Waterman, “Identification of common molecular sub-

sequences,” J. Molecular Biology, vol. 147, pp. 195–197, 1981.

[55] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: a simple way to prevent neural networks

from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[56] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” in Proc. NeurlPS 2014, pp. 3104–3112.

[57] S. Team, Bad habits die hard: Two out of three people still reuse
passwords across accounts, one in three share codes with others, and
nearly 40 percent have been hacked., Jan. 2023, https://www.security

.org/resources/online-password-strategies/.

[58] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc.
NIPS 2017, pp. 5998–6008.

[59] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc.
NeurIPS 2015, pp. 2692–2700.

[60] C. Wang, J. Zhang, M. Xu, H. Zhang, and W. Han, “# Segments: A

Dominant Factor of Password Security to Resist against Data-Driven

Guessing,” Comput. Secur., vol. 121, p. 102848, 2022.

[61] C. Wang, S. T. Jan, H. Hu, D. Bossart, and G. Wang, “The next domino

to fall: Empirical analysis of user passwords across online services,” in

Proc. CODASPY 2018, pp. 196–203.

[62] D. Wang, D. He, H. Cheng, and P. Wang, “fuzzyPSM: A new password

strength meter using fuzzy probabilistic context-free grammars,” in

Proc. IEEE/IFIP DSN 2016, pp. 595–606, http://bit.ly/2ahJ8CO.

[63] D. Wang, X. Shan, Q. Dong, Y. Shen, and C. Jia, “No single silver

bullet: Measuring the accuracy of password strength meters,” in Proc.
USENIX SEC 2023, pp. 947–964.

[64] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, name and bifacial-

security: Understanding passwords of chinese web users,” in Proc.
USENIX SEC 2019, pp. 1537–1554.

[65] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online

password guessing: An underestimated threat,” in Proc. ACM CCS
2016, pp. 1242–1254.

[66] D. Wang, Y. Zou, Y.-A. Xiao, S. Ma, and X. Chen, “PASS2EDIT: A

multi-step generative model for guessing edited passwords,” in Proc.
USENIX SEC 2023, pp. 9803–1000.

[67] D. Wang, Y. Zou, Z. Zhang, and K. Xiu, “Password guessing using

random forest,” in Proc. USENIX SEC 2023, pp. 965–982.

[68] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password

cracking using probabilistic context-free grammars,” in Proc. IEEE
S&P 2009, pp. 391–405.

[69] D. Wheeler, “zxcvbn: Low-budget password strength estimation,” in

Proc. USENIX SEC 2016, pp. 157–173.

[70] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cis-

tac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von

Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,

Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art natural lan-

guage processing,” in Proc. ACL 2020, pp. 38–45.

[71] XposedOrNot, Exposed Data Breaches, 2024, https://xposedornot.co

m/xposed.

[72] A. Yee, 6 common reasons people don’t use a password manager—and
why they’re wrong, Jun. 2022, https://www.pcworld.com/article/

709052/6-common-reasons-people-dont-use-a-password-manager-a

nd-why-theyre-wrong.html/.

A Supplementary details of other models

We now introduce several state-of-the-art models and alter-

native models that serve as benchmarks for comparison with

our model. We provide concise descriptions of their model

architectures and configurations.

TarGuess-II. TarGuess-II was proposed by Wang et al. at

CCS’16 [65]. This model is based on PCFG [68] for train-

ing a probabilistic structure model. Additionally, it incorpo-

rates an n-gram Markov model [36] to generate two n-gram

files, one in the original order and the other in reverse. More-

over, TarGuess-II models users’ transformation behaviors

at segment- and character-level. When generating guesses,

TarGuess-II mixes guesses with a popular password dictio-

nary. We denote it as Topcn (for Chinese) and Topen (for

English). In this paper, we use CSDN, Dodonew, and 126 to

compose Topcn and use 000Webhost, LinkedIn, and Yahoo

to compose Topen. Then, we multiply the ranking by the fre-

quency of passwords in the three datasets and chose Top-104

as the dictionary. Note that for all parameters of this model,

we keep the default settings provided by the authors.

Pass2Path. In their paper presented at IEEE S&P’19, Pal

et al. [43] introduced Pass2Path, a targeted guessing model

based on seq2seq [56]. Pass2Path is designed to complete

the “password-to-path” task (i.e., take character sequence as

input and the edit-operation sequence as output) and generate

new passwords based on generated operation sequences. The

model uses a three-layer RNNs with a hidden dimension of

15

128 for both the encoder and decoder. They set the learning

rate to 0.0003 and the dropout rate to 0.4. We follow the same

configuration for the validation set as with [43]. As Pass2Path

is open-source, we used the same model structure and the

settings mentioned above as recommended by Pal et al. [43].

PlainSeq. At IEEE S&P’19, Pal et al. [43] introduced

Pass2Pass, a targeted guessing model for the “password-to-

password” task. Inspired by this work, we design a similar

model, namely PlainSeq, to demonstrate the effectiveness of

the pointer mechanism [59]. We only keep the basic sequence-

to-sequence model. It is worth noting that we did not use the

<key-sequence> proposed by Pal et al. [43] into PlainSeq.

Instead, we use the original password string as model input

to make a fair comparison with our POINTERGUESS.

Pass2Edit. Wang et al. [66] proposed a new algorithm called

Pass2Edit. They redefined the password generation task as

a “multi-step decision classification” task. Pass2Edit has a 3-

layer GRUs and two fully connected layers. At each timestep,

Pass2Edit takes the modified password and the original pass-

word (at the character level) as input and predicts one atomic

edit operation which will be applied to the current modified

password. As the source code provided to us by Pass2Edit’s

authors, we keep the model’s default settings and only adjust it

on training/test datasets. Note that in [66] Want et al. proposed

two models, Pass2Edit-nomix and Pass2Edit-mix. Pass2Edit-

nomix is the original model that does not mix an extra popular

password dictionary, while Pass2Edit-mix heuristically mixes

its guessing list with popular passwords to output the final

guessing list. In this paper, we name the model without mixing

popular passwords (i.e., Pass2Edit-nomix) as Pass2Edit.

Untargeted dictionary attack (Top-PW). We build two pop-

ular password dictionaries based on Chinese (i.e., CSDN, 126,

Dodonew) and English (i.e., 000Webhost, LinkedIn, Yahoo)

training sets. We first sort these passwords in descending

order of frequency. Then we select Top-103 as the popular

dictionary (as our maximum guess number is 103), then we

use them to build an untargeted dictionary attack.

Mixing models with an extra popular password dictionary.

Note that the models mentioned above refer to the original

models that are not mixed with popular passwords, except for

TarGuess-II [65]. We investigate how mixing popular pass-

words with the original model outputs affects each model’s

performance. We follow the same strategy of mixing popu-

lar passwords as proposed in [66], and append “-mix” to the

original model’s name to denote the model using the mixing

strategy. Furthermore, we strive to keep the random seeds

used for these neural network-based models consistent with

those used in the original paper (e.g., Pass2Edit [66]) to ensure

more meaningful and reliable comparisons.

Note that the PG-Pass model proposed by Li et al. [31] is un-

suitable for comparison with POINTERGUESS, because these

two models are designed for different attacking scenarios: PG-

Pass focuses on Personal Identifiable Information (PII) based

Algorithm 1: PR-PSM evaluation

Data: Target password, Targeted password guessing

model, K, Index importance distribution

Result: Guess Number GN
1 pwA ← Target password

2 Model ← Targeted password guessing model /* input

the password and guess number, output guesses. */

3 Guesses ← Model (pwA,K) /* get the guess list,

which has K guesses. */

4 Index ← Search(pwA,Guesses) /* search the index of

the password in the guess list. */

5 distindex ← Index importance distribution

6 if Index >= 1 and Index <= K then
7 GN ← Index
8 return GN

9 RankR ← ZxcvbnR (pwA,Guesses) /* use the ZxcvbnR
module to calculate the RankR. */

10 RankG ← GuessSimRank (pwA,Guesses,distindex) /*

use the GuessSimRank module to calculate the

RankG. */

11 GN ← min(RankR,RankG) /* let the minimum value

of RankR and RankG as GN. */

12 return GN

targeted guessing scenarios, while POINTERGUESS focuses

on password reuse-based targeted guessing scenarios.

B Supplementary details of PR-PSM
Here we first describe the process of measuring the password

strength with PR-PSM in detail. Algs. 1∼3 show the de-

tailed design of our PR-PSM. Then we describe how we use

ZxcvbnR and GuessSimRank two modules to reevaluate the

strength of the target password pwA.

First, ZxcvbnR module utilizes the basic Zxcvbn [69] and

the guess list generated by POINTERGUESS. As shown in Fig.

17(a), the basic Zxcvbn is not designed for the target guess-

ing scenarios and overlooks the strength of most passwords

given the old password. We incorporate the guess list based

the user’s old password to construct a new PSM that offers

accurate evaluations in targeted guessing scenarios. More

specifically, we employ sentencepiece [27] to extract popular

password segments Segtop from the guess list. Then, we input

Segtop into Zxcvbn to adjust the guess number evaluated by

the basic Zxcvbn. We denote ZxcvbnR as

ZxcvbnR (pwA) = Zxcvbn(pwA, POINTERGUESS (pwA)) ,

(15)

where POINTERGUESS (pwA) denotes the guess list gener-

ated by POINTERGUESS using pwA. See Alg. 2 for the de-

tailed pseudo-code of ZxcvbnR module.

Then, the GuessSimRank module uses a password similar-

ity method SimAlg (e.g., edit distance) to calculate the simi-

16

Algorithm 2: ZxcvbnR module

Data: Target password, Guess list, Segment count

Result: Guess Number GN
1 L ← Segment count

2 pwA ← Target password

3 BM ← BPE Method /* trained by sentencepiece [27],

use it to split password. */

4 Guesses ← Guess list

5 Define split split password function

6 Define sort sort segments by frequency function

7 zxcvbn // Zxcvbn function

8 Seg ← split (BM,Guesses) /* split all guesses and

statistic all segments. */

9 Seg ← sort (Seg) /* sort by descending order of

frequency. */

10 GN ← zxcvbn(pwA,Seg[0 : L])
11 return GN

larity simi of the i-th guess, guessi, and the target password

pwA. That is simi = SimAlg(pwA,guessi), then we denote the

guess number RankG as

GuessSimRank (pwA)=

K∑
i=1

Wguess (i)∗SimGN (pwA,simi, i),

(16)

where K denotes the number of guesses, and Wguess denotes

the normalized importance distribution of different guesses

in the guess list, weighting the impact of each guessi on

RankG. Note that the SimGN (pwA,simi, i) denotes that we

use simi and the guess number i of guessi to calculate the

guess number for pwA. More specifically, we can express

SimGN (pwA,simi, i) as

SimGN (pwA,simi, i) = exp((gnA − i)∗σ(simi))+ i, (17)

where σ denotes the sigmoid function, and gnA denote the

guess number of pwA directly evaluated by Zxcvbn [69]. More

details of our GuessSimRank module are shown in Alg. 3.

Experimental results and analysis. First, we extract the tar-

get passwords in all test sets in attack scenarios #1∼#12 (de-

noted as Overall) and the cracked target passwords (denoted

as Cracked) separately. We evaluate the password strength

distribution of Overall and Cracked using the original Zx-

cvbn [69]. Then, we reevaluate the password strength distri-

bution using PR-PSM for both the Overall and the Cracked.

The detailed results are shown in Figs. 17 and 18.

Fig. 17(a) shows our evaluation of password strength using

the original Zxcvbn model. Our experimental results indicate

that most password guesses are evaluated within the 105 to

1010, as confirmed by the CDF curve (the orange curve) in Fig.

18. However, for Cracked passwords, only a small number

of passwords are evaluated accurately with guess numbers

≤ 103. Most of them are evaluated at 103
∼ 1010, with even a

Algorithm 3: GuessSimRank module

Data: Target password, Guess list, Index importance

distribution

Result: Guess Number GN
1 pwA ← Target password

2 MLED /* the function of calculating the Minimum

Levenshtein Edit Distance */

3 Guesses ← Guess list

4 zxcvbn // Zxcvbn function

5 M ← zxcvbn(pwA)
6 K ←‖Guesses‖
7 distindex ← Index importance distribution

8 rank ← 0

9 for i ← 1 to K do
10 score ← MLED(pwA,Guesses[i]) /* calculate the

similarity score of target password and a guess */

11 importance ← distindex[i]
12 rank ← rank+ importance∗

SimGuessNum(pwA,score, i) /* SimGuessNum
is corresponding to Eq. 17 */

13 return GN

Figure 18: Cumulative Distribution Function (CDF) of guess number (log10)

to the proportion of passwords. The Overall and Cracked mean the whole

and the cracked target passwords we collect from all test sets, respectively.

small number of passwords’ guess numbers evaluated more

than 1010. This indicates that employing Zxcvbn in a targeted
password reuse scenario leads to overestimating the strength
of most passwords, thereby overlooking the potential risks
associated with password reuse attacks..

In contrast, when using PR-PSM to evaluate password

strength, we observe a substantial increase in the proportion

of passwords with lower guess numbers (i.e., ≤ 103). The

strength distribution of Cracked indicates that all guess num-

bers are evaluated to be ≤ 103 (as shown in Fig. 17(b)). Fur-

thermore, as shown in Fig. 18, the green curve of Cracked
terminates after 103 guess number, while the proportion of

passwords’ guess number evaluated within 1010 increases sig-

nificantly (as shown in the dark blue curve of the CDF curve).

These findings demonstrate that PR-PSM provides a more

accurate evaluation of password strength in targeted guessing

scenarios and underscores the significance of using targeted

guessing models in constructing PSMs.

Table 6 presents five password pairs from the Overall list,

demonstrating the difference in strength evaluations between

17

(a) DamerauLevenshtein edit distance (b) Needleman-Wunsch algorithm (c) Manhattan distance

(d) Smith-Waterman algorithm (e) Dice coefficient (f) Cosine similarity (2-gram)

Figure 19: Distribution of six additional syntactic metrics. As shown in Figs. 19(a)∼19(f), we employ various syntactic metrics (e.g., the Needleman-Wunsch

algorithm [40] and the Dice coefficient [18]) to analyze the similarity distributions of different models. The results consistently revealed that Pass2Edit [66]

and Pass2Path [43] primarily focus on cracking "similar" password pairs (similarity score of 0.6 to 1.0), while POINTERGUESS excels at cracking password

pairs with low similarity (e.g., 0.0∼0.4), besides cracking these “similar” password pairs. This conclusion aligns with the analysis presented in Sec. 5.2. “Total”

denotes the entire set of password pairs in the test sets and “Union” denotes the union of all cracked password pairs.

Table 6: Examples of password strengths by Zxcvbn [69] and PR-PSM.

Index Old password Target password GNZ
† GNR Hit

1 yanlin19880911 yanlin5201314 10.02 2.45 Yes
2 yyt395746 yyt3957460 10.00 1.08 Yes
3 w564011 5640117aiolia 12.11 8.29 No
4 liu231377 liujian231377 12.53 2.99 No
5 gyhhx970621 gylyx060504 9.16 5.62 No

†GNZ and GNR denote the guess number (log10) evaluated by Zxcvbn [69] and
PR-PSM, respectively. Hit denotes if the target password is cracked or not.

Zxcvbn [69] and PR-PSM. As shown in Table 6, Zxcvbn

seriously overestimates the strength of both cracked and un-

cracked passwords, while PR-PSM effectively uses the old

password to evaluate password strength more accurately and

provides a more reasonable evaluation (i.e., guess number).

Our experimental results demonstrate that designing a PSM

that integrates the targeted guessing model can more accu-

rately evaluate the strength of given passwords.

C Further analysis of POINTERGUESS

Deriving POINTERGUESS from the Pointer-Generator Net-

work poses several challenges and there are still two key re-

search questions (RQs) that require further exploration. Two

main research questions are currently being addressed:

RQ5: What is the impact of different fine-grained word

segmentation methods on POINTERGUESS?

RQ6: How do different model architectures, such as Trans-

former, affect the model’s performance?

To address RQ5, we first train the BPE [27] model on

the training set and segment the passwords. Then we use

word embedding and char embedding together to analyze

the effect of word-level segmentation on the performance

of our POINTERGUESS. However, the results reveal that the

additional word-level embedding has only a small impact on

model performance. How to effectively use the word-level

segmentation is still a research problem needed to be solved.

POINTERGUESS

Source Distribution
Weighted merge

Vocab Distribution

Mapping Layer

Model Input

Input

Input

Remap

Final Distribution

Weighted Layer

Output

Figure 20: The prediction of POINTERGUESS for password-to-path task.

To address RQ6, we explore the impact of model archi-

tecture (e.g., the dimensions of hidden layer) on model per-

formance. We try well-known methods to improve the per-

formance, such as adding word embedding and replacing the

original encoder (LSTM) with Transformer’s encoder [58],

but found little impact on modeling users’ reuse behaviors.

Impact of integration with Pass2Path. Pass2Path [43] has

achieved significant success rates in credential tweaking at-

tacks by transforming the new password generation problem

into a “password-to-path” task. In this paper, we aim to build

on the idea of Pass2Path and apply the pointer mechanism [59]

to the “password-to-path” task. To this end, we propose a sim-

ple modification of the POINTERGUESS model, as shown

in Fig. 20. More specifically, we add an additional mapping

layer map the source distribution from the character space to

the edit-sequence space.

However, after conducting experiments, we find that the

results could be more satisfactory, with our model achieving

2%∼3% lower accuracy than the Pass2Path model of Pal et

al. [43] for the same test set. One reason that POINTERGUESS

does not perform well in the “password-to-path” task is that

the pointer network is not designed for this task. The pointer

network [59] can extract important characters in the source

sequence and copy them to generate sequences, but it is in-

effective in generating importance edit operations based on

the source sequence. Therefore, we believe that the pointer

network is not suitable for the “password-to-path” task. We

18

Table 7: Comparison of the cracking success rate of MS-POINTERGUESS and POINTERGUESS.∗

Experiment setup Include the identical password pairs Remove the identical password pairs
Attack Guess POINTERGUESS-

A1&A2
POINTERGUESS-A1 POINTERGUESS-A2

POINTERGUESS-
A1&A2

POINTERGUESS-A1 POINTERGUESS-A2
scenario number

#13: Tianya, 126 → Taobao
10 43.44% 32.22% 41.41% 2.70% 2.35% 2.14%

100 44.82% 34.18% 43.12% 5.08% 4.29% 4.38%
1,000 45.97% 35.62% 44.45% 7.05% 5.79% 6.36%

#14: 80%Union → 20%Union
10 58.97% 47.90% 44.30% 10.34% 6.07% 9.54%

100 61.37% 49.70% 47.67% 15.58% 8.97% 15.00%
1,000 63.67% 52.11% 50.80% 20.63% 12.99% 20.32%

∗Note that the POINTERGUESS-A1&A2 represents our MS-POINTERGUESS. POINTERGUESS-A1 means that we feed pwA1 into POINTERGUESS and guess pwB , and similarly for the definition
of POINTERGUESS-A2. POINTERGUESS-A1&A2 means that we feed both the pwA1 and pwA2 into the MS-POINTERGUESS and guess pwB .

will leave this work as part of our future work. While our first

attempt to modify our model for the “password-to-path” task

does not yield satisfactory results, our work highlights the

potential of combining POINTERGUESS with Pass2Path for a

more effective targeted guessing model.

D Supplementary details of similarity metrics
Besides the four metrics discussed in Sec. 5.2, we explore

the similarity distribution using six additional syntactic met-

rics. Specifically, we employ (1) spatial space-based metrics,

including Damerau-Levenshtein edit distance [16], cosine

similarity [15], and Manhattan distance [9]; (2) overlap-based

metrics, such as the Dice coefficient [18]; and (3) sequence

alignment-based metrics, including the Smith-Waterman al-

gorithm [54] and the Needleman-Wunsch algorithm [40].

As shown in Figs. 19(a), 19(c), and 19(f), the results show

that the similarity of password pairs independently cracked

by Pass2Edit [66] and Pass2Path [43] is predominantly con-

centrated within the range of 0.6∼1.0 for spatial space-based

metrics, indicating high similarity. Likewise, Fig. 19(e) illus-

trates a similar concentration of similarity scores in the range

of 0.6∼1.0 for the overlap-based metric, Dice coefficient.

Interestingly, for POINTERGUESS, the similarity distribu-

tion of cracked password pairs is concentrated in both the

ranges of 0.0∼0.2 and 0.6∼1.0. This outcome suggests that

POINTERGUESS effectively cracks password pairs with sig-

nificantly lower similarity scores as well.

Furthermore, as shown in Figs. 19(b) and 19(d), the similar-

ity of the independently password pairs using these metrics is

predominantly distributed in 0.4∼0.8. It is worth noting that

the similarity distribution of passwords independently cracked

by POINTERGUESS exhibits a relatively uniform distribution

across the range of similarities.

Overall, these findings emphasize the influence of different

metrics on measuring the similarity distributions of password

pairs and the accuracy of model characterizing users’ pass-

word reuse behaviors. The results also underscore the signifi-

cance of selecting appropriate metrics based on the specific

password-cracking approach and the desired characteristics

of the similarity distribution.

Modeling password similarity distributions. We compre-

hensively examine how well different models capture real-

world password similarity distributions. By evaluating the

entire set of password pairs in the test sets (referred to as

"Total" in Fig. 19), we assess the performance of POINTER-

MS-POINTERGUESS

Source Distribution
Weighted merge

Vocab Distribution

Weighted Layer

Multiple Model Inputs

Input

Input

Weighted Layer

Output

Output

Final Distribution

Figure 21: The prediction of MS-POINTERGUESS. We use an additional

weighted layer to generate the source distribution. Then we use it to

merge&update the vocab distribution and generate the final distribution

which represents the conditional probability distribution at current timestep.

GUESS, Pass2Edit [66], and Pass2Path [43] in modeling these

password similarity distributions utilizing various similarity

metrics. As shown in Fig. 19, the results highlight POINTER-

GUESS’s superior performance over Pass2Edit and Pass2Path

across various similarity metrics. Pass2Edit and Pass2Path,

by filtering out distant password pairs in the training set, ex-

hibit a tendency towards “overfitting”, focusing on crack-

ing password pairs considered “very similar” (e.g., within

0.6∼1.0) while neglecting those deemed “not similar” (e.g.,

within 0.0∼0.2). In contrast, POINTERGUESS utilizes the en-

tire training set, enabling it to capture a comprehensive range

of real-world password similarity patterns and providing an

accurate representation of users’ password reuse behaviors.

Calculate password similarity with Manhattan distance.
Suppose we have pwA=abc and pwB=abd. First, we trans-

form them into vectors, namely pwA→VA = [1,1,1,0] and

pwB→VB = [1,1,0,1] (where each index denotes the pres-

ence or absence of the characters ‘a’, ‘b’, ‘c’ and ‘d’). Second,

we calculate the Manhattan distance between pwA and pwB
by summing the absolute differences of the corresponding

elements in VA and VB, resulting in |1−1|+ |1−1|+ |1−0|+
|0− 1| = 2. Third, we normalize this distance to obtain the

similarity score of pwA and pwB.

E Details of MS-POINTERGUESS

As shown in Fig. 21, MS-POINTERGUESS utilizes multiple

old passwords as model inputs. Through a weighted layer,

MS-POINTERGUESS adjusts the significance of each old

password in generating the target password and generates

Pcopy, the conditional probability of copying characters from

these old passwords. Additionally, MS-POINTERGUESS gen-

erates Pvocab, the conditional probability of directly generating

characters from the vocabulary. Finally, MS-POINTERGUESS

utilizes the pointer mechanism [59] to perform a weighted

summarization of Pcopy and Pvocab, generating the final distri-

19

bution Pgen, which represents the conditional probability of

MS-POINTERGUESS predicting characters.

MS-POINTERGUESS introduces a Multi-Encoder Module

to adeptly handle situations where an attacker possesses mul-

tiple leaked old passwords of the victim. This module empow-

ers the model to effectively leverage information from each

old password, enhancing the precision of targeted password

guessing. MS-POINTERGUESS is highly scalable and can be

easily extended to handle multiple old passwords. Here we

take two encoders as an example to describe its details.

The main difference from the original model is that at each

timestep t, MS-POINTERGUESS outputs two context vectors,

ct ,c
′
t , from pwA and pwB, respectively. Then, we can express

λ ∈ [0,1] as

λ = σ
(

Wc ∗ ct +Wc′ ∗ c
′
t +bλ

)
, (18)

where the σ is a sigmoid function, Wc, Wc′ , bλ are learnable

parameters. Initially, λ is employed to weigh and combine the

conditional probabilities of copying characters from pwA (i.e.,

PA
copy) and pwB (i.e., PB

copy), respectively. This yields Pcopy,

the weighted conditional probability of copying characters

from pwA and/or pwB, can be expressed as:

Pcopy (c) = λ∗PA
copy (c)+(1−λ)∗PB

copy (c) . (19)

Then, we can represent PA
copy and PB

copy similarly to Eq. 4,

which are

PA
copy (c) = FFN

⎛
⎝∑

i:ci=c

αt
i

⎞
⎠ , (20)

and

PB
copy (c) = FFN

⎛
⎜⎝

∑

i:c′i=c

α
′ t
i

⎞
⎟⎠ , (21)

where αt
i and α′ t

j are the attention weights of the two encoders

at timestep t and ci (resp. c
′
i) denotes the character at position i

in pwA (reps. pwB). FFN (·) is a feed-forward network. Note

that if character c does not appear in pwA or pwB, then the

value of
∑

i:ci=c αt
i or

∑
i:c′i=c α′ t

i will be zero.

Still, we use the pointer mechanism pg to weigh Pcopy (c)
and Pvocab (c), the conditional probability of generating char-

acters from the vocabulary. At each timestep t, our generation

probability pg ∈ [0,1] can be calculated from two content vec-

tors and current decoder state vector st and current decoder

input xt , that is

pg = σ
(

Wc ∗ ct +Wc′ ∗ c
′
t +Ws ∗ st +Wx ∗ xt +bg

)
, (22)

where Wc, Wc′ , Ws, Wx, bg are learnable parameters, and σ(·)
is a sigmoid function.

Finally, MS-POINTERGUESS integrates Pcopy and Pvocab
to represent Pgen (c), the conditional guessing probability of

MS-POINTERGUESS generating the character c, which is

Pgen (c) = pg ∗Pcopy (c)+(1− pg)∗Pvocab (c) . (23)

Overall, the scalability facilitated by the “Multi-Encoder”

module in MS-POINTERGUESS empowers our model to han-

dle users’ multiple leaked passwords simultaneously. This

capability enables MS-POINTERGUESS to extract multiple

contexts from various old passwords, facilitating flexible deci-

sions regarding the importance of each old password at every

timestep. Moreover, the pointer mechanism [59] ensures that

our MS-POINTERGUESS dynamically determines whether

to copy characters from the old passwords or generate new

characters directly from the vocabulary.

Detailed results of MS-POINTERGUESS. Table 7 shows the

success rate of our MS-POINTERGUESS and POINTERGUESS

in attack scenarios #13 and #14 under a specific guess number

(i.e., 10, 100, 1000). Columns 3-5 are the results of including

the identical password pairs (i.e., pwA = pwC or pwB = pwC)

and columns 6-8 are the results of excluding the identical

password pairs (i.e., pwA �= pwC and pwB �= pwC). The values

in Table 7 correspond to Fig. 15.

Conclusion. Our analysis highlights the importance of con-

sidering multiple old passwords in password reuse attacks,

particularly given the high frequency of identical password

pairs among users. Furthermore, our MS-POINTERGUESS

model demonstrates superior performance in modeling user

reuse behavior and generating accurate password guesses.

F Potential applications
Password protection. Here, we discuss two potential ap-

proaches for integrating POINTERGUESS into compromised

credential checking (C3) services, such as MIGP, drawing in-

spiration from the application of Pass2Path [43] in MIGP [44].

First, we directly apply our POINTERGUESS to dynamically

generate guesses. We denote this approach as “PTG”. Second,

as the “wEdit” proposed in [44], we explore using POINT-

ERGUESS to generate a ranked list of tweaks, which can be

applied to generate guesses. We denote this approach as “PTG-

wEdit”. Below we briefly introduce these two approaches.

First, “PTG” involves the real-time execution of POINTER-

GUESS within MIGP. Here, the pre-trained POINTERGUESS

model is loaded onto the server’s CPU/GPU. When a client

submits the target password, the loaded model is immediately

utilized to generate a set of password variants. This approach

capitalizes on the ability to dynamically generate password

variants using a pre-trained model. However, while offer-

ing flexibility and on-the-fly variant generation, this method

comes with drawbacks such as increased resource consump-

tion and potential speed issues during protocol execution.

Second, we employ a pre-trained POINTERGUESS to pro-

duce a series of password guesses for each user. These guesses

are then transformed into the “transformation path” format

proposed by Pal et al. [43]. By using a given dataset, POINT-

ERGUESS generates transformation paths for all password

20

(a) #4: CSDN → Dodonew

(b) #5: LinkedIn → 000Webhost

Figure 22: Experiments of the impact of hidden dimensions (128 and 256)

on model performance. Figs. 22(a) and 22(b) represent the results of setting

the hidden dimension of our model to 128 and 256, respectively, in Chinese

and English attack scenarios.

pairs. We tally the occurrence of each transformation path

and rank them in descending order based on frequency. While

generating n variants of the target password, we apply the

first n valid transformation paths from the sorted list. This ap-

proach offers the advantage of requiring fewer computational

resources and providing faster variant generation. However,

it is important to note that it relies solely on a statistically

derived list of transformation paths for generating variants.

Overall, our proposed approaches aim to enhance password

protection within the MIGP framework by leveraging the

capabilities of POINTERGUESS. The first approach offers

dynamic variant generation using a pre-trained model but

may demand higher computational resources and raise speed

concerns. In contrast, the second approach enables rapid and

resource-efficient variant generation based on a statistically

derived list of transformation paths. Further exploration and

evaluation are necessary to gauge the feasibility and suitability

of these approaches, considering the specific requirements

and constraints of the MIGP system. Balancing execution

speed and accuracy emerges as a critical issue to address in

future research endeavors.

G Supplementary experimental results
Impact of hidden layer dimension on model performance.

We initially investigate the impact of different hidden layer

dimensions on model performance by setting them to 128 and

256, respectively, and comparing the results. As shown in Fig.

22, when the hidden layer dimensions of POINTERGUESS are

set to 128, both success rates surpass those achieved when the

hidden dimensions are set to 256. Specifically, for scenario #9,

opting for a hidden layer of 128 yields a 1.92% improvement

over the 256 setting, while for scenario #7, it leads to a 3.69%

increase. These findings suggest that larger parameters may

not necessarily translate to better performance, a conclusion

in line with the findings discovered by [38].

Evaluate models’ performance on Chinese scenarios. Our

experiments with Chinese datasets (scenarios #1∼#4) demon-

strate the superior performance of POINTERGUESS compared

to Pass2Edit [63], Pass2Path [43], and TarGuess-II [65] (as

shown in Figs. 6(a) and 23(a)∼23(c)). Within 100 guesses, ex-

cluding identical password pairs, POINTERGUESS achieves a

success rate that is 38.40%, 77.91%, and 23.97% (on average)

higher than Pass2Edit, Pass2Path, and TarGuess-II, respec-

tively (see details in Table 8). While not excluding identical

password pairs, POINTERGUESS achieves a success rate that

is 5.71%, 8.66%, and 3.82% higher than Pass2Edit, Pass2Path,

and TarGuess-II, respectively (see details in Table 9).

Evaluate models’ performance on English scenarios. Fig.

6(b) shows the results of attack scenarios #5, and the results

of #6-#8 are shown in Figs. 23(d)∼23(f). For attack scenar-

ios #6 and #7, we explore the performance of attacking the

security-savvy users in 000Webhost. The results demonstrate

that POINTERGUESS outperforms other models. As for at-

tack scenario #5, while excluding identical pairs, POINTER-

GUESS achieves a success rate that is 5.40% and 18.76%

higher than Pass2Edit and Pass2Path, respectively, within

1,000 guesses. However, TarGuess-II slightly outperforms

our model, with a success rate of 20.21% compared to our

model’s 20.19%. While not excluding identical pairs, our

model outperforms Pass2Edit and Pass2Path, achieving a suc-

cess rate that is 2.32% and 7.43% higher, respectively. How-

ever, TarGuess-II remains slightly ahead, with a success rate

of 35.48% compared to our model’s 35.47%. Furthermore,

we design scenario #8 to evaluate the models’ ability to attack

real datasets. POINTERGUESS achieves a success rate that

is 0.26% and 1.56% higher than Pass2Edit and Pass2Path,

respectively, within 1,000 guesses while excluding identical

pairs. While not excluding identical pairs, our model outper-

form Pass2Edit and Pass2Path, achieving a success rate that

is 2.65% and 18.31% higher, respectively, while still slightly

lower than TarGuess-II.

Evaluate the ability of generating popular passwords. To

better simulate real-world attack scenarios, we consider a

situation where the attacker may combines popular pass-

words with guesses generated by the model. Studies and re-

ports [14, 34, 37, 50, 57] show that 20%∼30% of users tend

to use popular passwords, which makes learning the user’s

vulnerable behaviors of reusing popular passwords impor-

tant for model to measure its performance. In previous attack

scenarios #1∼#12, we mix popular passwords into POINT-

ERGUESS, Pass2Path [43], and Pass2Edit [66], and the de-

tailed results are shown in Fig. 8. More specifically, we find

that all models have an increase in crack rates after mixing

popular passwords. Pass2Edit and Pass2Path, in particular,

improve performance after mixing popular passwords due

partly to their design’s inherent flaw. These models regard

predicting the user’s new password as a “password-to-path”

task and set a similarity threshold (e.g., edit distance ≤3) to

21

100 101 102 103

Guess number

20%

30%

40%

50%

60%

70%

F
ra

c
ti

o
n
 o

f
s
u
c
c
e
s
s
fu

ll
y
 c

ra
c
k
e
d

PointerGuess

TarGuess-II

Pass2Edit

Pass2Path

PlainSeq

Top-PW

(a) #2: CSDN → 126

100 101 102 103

Guess number

30%

35%

40%

45%

50%

55%

60%

F
ra

c
ti

o
n
 o

f
s
u
c
c
e
s
s
fu

ll
y
 c

ra
c
k
e
d

PointerGuess

TarGuess-II

Pass2Edit

Pass2Path

PlainSeq

Top-PW

(b) #3: Tianya → CSDN

100 101 102 103

Guess number

30%

35%

40%

45%

50%

55%

60%

65%

70%

F
ra

c
ti

o
n
 o

f
s
u
c
c
e
s
s
fu

ll
y
 c

ra
c
k
e
d

PointerGuess

TarGuess-II

Pass2Edit

Pass2Path

PlainSeq

Top-PW

(c) #4: CSDN → Dodonew

100 101 102 103

Guess number

10%

15%

20%

25%

30%

35%

F
ra

c
ti

o
n
 o

f
s
u
c
c
e
s
s
fu

ll
y
 c

ra
c
k
e
d

PointerGuess

Pass2Edit

Pass2Path

TarGuess-II

PlainSeq

Top-PW

(d) #6: Yahoo → 000Webhost

100 101 102 103

Guess number

15%

20%

25%

30%

35%

F
ra

c
ti

o
n
 o

f
s
u
c
c
e
s
s
fu

ll
y
 c

ra
c
k
e
d

PointerGuess

Pass2Edit

Pass2Path

TarGuess-II

PlainSeq

Top-PW

(e) #7: LinkedIn → 000Webhost

100 101 102 103

Guess number

10%

15%

20%

25%

30%

F
ra

c
ti

o
n
 o

f
s
u
c
c
e
s
s
fu

ll
y
 c

ra
c
k
e
d

PointerGuess

TarGuess-II

Pass2Edit

Pass2Path

PlainSeq

Top-PW

(f) #8: 000Webhost → RedMart

10
0 101 102 103

Guess number

10%

15%

20%

25%

30%

35%

40%

F
ra

c
ti

o
n
 o

f
s
u
c
c
e
s
s
fu

ll
y
 c

ra
c
k
e
d

PointerGuess

Pass2Edit

TarGuess-II

Pass2Path

PlainSeq

Top-PW

(g) #9: Mixed_EN: 80% → 20%

100 101 102 103

Guess number

60%

65%

70%

75%

80%

F
ra

c
ti

o
n
 o

f
s
u
c
c
e
s
s
fu

ll
y
 c

ra
c
k
e
d

PointerGuess

TarGuess-II

Pass2Edit

Pass2Path

PlainSeq

Top-PW

(h) #10: Mixed_CN: 80% → 20%

100 101 102 103

Guess number

0%

8%

16%

24%

32%

40%

F
ra

c
ti

o
n
 o

f
s
u
c
c
e
s
s
fu

ll
y
 c

ra
c
k
e
d

PointerGuess

Pass2Edit

Pass2Path

TarGuess-II

PlainSeq

Top-PW

(i) #11: 4iQ: 80% → 20%

Figure 23: Experiments of nine additional attack scenarios. For each attack scenario, its detailed information is shown in Table 2. All figures present the results of

POINTERGUESS compared to other state-of-the-art models in attack scenarios #2∼#4, #6∼#8 and #9∼#11. The experimental results demonstrate that our model

outperforms the other models in terms of attack success rate. Within 100 guesses, POINTERGUESS outperforms existing models by 38.17% (on average).

filter password pairs with significant similarity differences,

which makes it difficult for them to learn the process of gen-

erating popular passwords. In contrast, POINTERGUESS is

able to characterize the user’s vulnerable behaviors of reusing

popular passwords. Despite the improvement for all models

after mixing popular passwords, our POINTERGUESS-mix

still outperforms other state-of-the-art models in most attack

scenarios, as shown in Tables 8 and 9.

Evaluate the ability of characterizing user’s reuse behav-
iors. We design scenarios #9∼#12 to investigate models’

ability to characterize users’ reuse behaviors and performance

on cracking large-scale real-world datasets. While excluding

identical password pairs and within 100 guesses, our POINT-

ERGUESS model outperforms Pass2Edit [66], Pass2Path [43],

and TarGuess-II [65] by 13.25%, 89.16%, and 32.11%, respec-

tively. Similarly, within 1,000 guesses, our model achieves a

success rate that is 20.46%, 75.85%, and 34.22% higher than

Pass2Edit [66], Pass2Path [43], and TarGuess-II [65].

While not excluding identical password pairs, within 100

guesses, our model achieves a success rate that is 3.23%,

15.42%, and 8.95% higher than Pass2Edit [66], Pass2Path

[43], and TarGuess-II [65], respectively. Within 1,000 guesses,

our model achieves a success rate that is 6.20%, 16.05%,

and 10.82% higher than Pass2Edit [66], Pass2Path [43], and

TarGuess-II [65], respectively. Our results suggest that POINT-

ERGUESS performs the best, outperforming all other models

regarding cracking ability. Pass2Edit and TarGuess-II are the

second and third most effective models, respectively, while

Pass2Path performs the least well. From a micro-perspective,

there is a roughly hierarchical ranking we can observe: POINT-

ERGUESS>Pass2Edit>TarGuess-II>Pass2Path.

In summary, our experimental results demonstrate that our

POINTERGUESS model is a promising approach for charac-

terizing users’ reuse behaviors and password cracking, partic-

ularly in scenarios involving large-scale real-world datasets.

Detailed results of POINTERGUESS. The following tables

show the crack rate of our model and other models in each

experimental scenario under a specific guess number (i.e.,

10, 100, 1,000). Table 8 shows the results of excluding all

identical password pairs (i.e., pwA �= pwB) in the testing set.

Besides, Table 9 shows the results of considering all identical

password pairs (i.e., pwA = pwB). In particular, we evalu-

ate the performance of all models by mixing popular pass-

words. More specifically, columns 1-5 are the result of our

POINTERGUESS, Pass2Edit [66], Pass2Path [43], PlainSeq,

and TarGuess-II [65]. Except for TarGuess-II, the results of

other models are not mixed popular passwords. Then columns

6-8 are the results of POINTERGUESS-mix, Pass2Edit-mix,

and Pass2Path-mix. The results in each column represent the

success rate of the corresponding model after mixing popular

passwords. The last column is the results of the untargeted

dictionary attack (Top-PW). As shown in Tables 8 and 9, our

POINTERGUESS outperforms other models in most cases.

The values in Table 9 correspond to Fig. 6 and 23.

22

Table 8: Comparison of the cracking success rate of different models (the results are calculated after removing all identical password pairs in the test set).∗

Experiment setup

POINTERGUESS‡ Pass2Edit [66] Pass2Path [43] PlainSeq TarGuess-II [65] POINTERGUESS-mix† Pass2Edit-mix Pass2Path-mix Top-PWAttack Guess

scenario number

#1: 126→CSDN

10 12.51% (+8.65) 8.56% 3.86% 9.82% 5.89% 14.03% 11.77% 11.72% 8.26%

100 21.68% (+12.10) 12.10% 9.58% 13.43% 17.36% 22.76% 21.39% 19.68% 10.83%

1,000 30.31% (+13.25) 18.65% 17.06% 15.28% 23.82% 30.63% 29.10% 26.93% 17.54%

#2: CSDN→126

10 37.30% (+10.05) 33.98% 27.25% 8.48% 25.65% 37.00% 37.69% 28.69% 4.98%

100 41.77% (+11.46) 35.83% 30.31% 12.42% 33.13% 41.95% 42.34% 34.86% 9.52%

1,000 45.00% (+13.13) 37.62% 31.87% 14.81% 38.38% 45.50% 45.70% 38.84% 15.68%

#3: Tianya→CSDN

10 14.78% (+11.88) 9.52% 2.90% 11.56% 5.96% 14.61% 14.70% 11.17% 8.45%

100 22.16% (+13.97) 14.01% 8.19% 13.88% 16.51% 22.49% 22.24% 17.61% 11.10%

1,000 32.16% (+14.44) 20.62% 17.72% 16.48% 22.43% 31.97% 30.31% 26.17% 16.39%

#4: CSDN→Dodonew

10 20.94% (+11.86) 14.87% 9.08% 9.46% 11.43% 19.24% 15.70% 7.53% 6.36%

100 32.31% (+13.78) 23.24% 18.18% 12.14% 28.14% 29.63% 26.80% 23.33% 8.64%

1,000 41.80% (+16.51) 29.68% 25.26% 15.65% 34.87% 40.99% 35.42% 32.69% 12.08%

#5: 000Webhost→LinkedIn

10 15.94% (+5.28) 15.74% 10.66% 1.81% 16.54% 15.37% 16.53% 9.20% 0.82%

100 18.36% (+2.90) 17.42% 15.46% 2.67% 18.39% 17.56% 18.58% 15.62% 1.74%

1,000 20.19% (+2.98) 18.57% 17.21% 3.70% 20.21% 20.67% 20.57% 18.80% 3.40%

#6: Yahoo→000Webhost

10 5.50% (+2.52) 4.71% 2.98% 0.64% 3.13% 5.59% 4.47% 2.66% 0.08%

100 8.40% (+3.19) 8.07% 5.21% 1.33% 6.63% 8.47% 8.10% 5.15% 1.11%

1,000 12.49% (+3.33) 10.85% 9.16% 2.45% 8.92% 12.89% 10.96% 9.72% 2.28%

#7: LinkedIn→000Webhost

10 5.90% (+4.00) 5.34% 1.90% 0.25% 3.19% 5.46% 4.94% 1.63% 0.22%

100 10.26% (+4.95) 9.45% 5.31% 0.90% 6.57% 8.72% 8.87% 4.93% 1.04%

1,000 14.57% (+4.76) 13.06% 9.81% 1.89% 8.96% 14.60% 12.49% 9.80% 2.02%

#8: 000Webhost→RedMart

10 2.94% (-0.96) 3.90% 3.52% 0.21% 6.30% 2.70% 5.08% 6.48% 2.94%

100 6.07% (-1.74) 7.81% 6.16% 1.09% 10.22% 5.41% 11.17% 9.42% 3.54%

1,000 10.08% (+1.56) 9.82% 8.52% 4.13% 12.66% 10.38% 14.55% 10.58% 5.90%

#9: Mixed_EN: 80%→20%

10 12.31% (+4.02) 11.32% 8.29% 1.48% 9.52% 11.70% 11.58% 8.60% 0.93%

100 16.52% (+5.13) 14.36% 11.39% 2.57% 12.13% 15.84% 14.87% 11.52% 2.18%

1,000 20.74% (+6.48) 17.27% 14.26% 4.09% 14.40% 20.73% 18.02% 15.07% 4.37%

#10: Mixed_CN: 80%→20%

10 21.43% (+16.32) 18.99% 5.11% 7.55% 15.28% 20.88% 21.05% 6.36% 4.35%

100 29.31% (+19.64) 24.47% 9.67% 10.88% 23.83% 29.23% 28.90% 16.15% 7.39%

1,000 35.35% (+22.04) 27.94% 13.51% 13.62% 28.59% 35.51% 34.30% 23.79% 10.33%

#11: 4iQ : 80%→20%

10 10.49% (+2.65) 10.25% 7.84% 0.67% 7.15% 10.13% 10.20% 7.27% 1.41%

100 15.70% (+3.98) 14.81% 11.72% 1.56% 10.53% 14.90% 14.96% 11.10% 3.42%

1,000 20.43% (+5.07) 17.82% 15.36% 3.63% 13.95% 20.01% 18.96% 15.69% 5.89%

#12: COMB: 80%→20%

10 16.10% (+9.07) 15.42% 7.03% 2.01% 11.56% 15.04% 15.52% 2.90% 0.92%

100 22.22% (+10.72) 20.33% 11.50% 3.68% 16.62% 21.54% 21.33% 7.20% 2.25%

1,000 26.89% (+11.24) 22.82% 15.65% 5.63% 20.09% 26.61% 24.80% 16.77% 3.87%

∗In this table, we ensure that any password pair (pwA , pwB) in the test set must satisfy pwA �= pwB . A value with dark gray (resp. light gray) represents the highest one (resp. 2nd one) among all
nine guessing models. Our POINTERGUESS achieves the best results 18 times and 2nd best results 9 times among all 36 attacking cases.

‡ Here the value in parentheses “()” represents the increasement of our model compared to its counterparts (i.e., Pass2Edit [66] and Pass2Path [43]) under the corresponding guess number.
†POINTERGUESS and Pass2Path employ the same mixing strategy as suggested in Pass2Edit [66].

23

Table 9: Comparison of the cracking success rate of different models (the results are calculated without removing identical password pairs in the test set).∗

Experiment setup

POINTERGUESS Pass2Edit [66] Pass2Path [43] PlainSeq TarGuess-II [65] POINTERGUESS-mix† Pass2Edit-mix Pass2Path-mix Top-PWAttack Guess

scenario number

#1: 126 → CSDN

10 40.12% 37.35% 34.11% 38.27% 35.43% 41.16% 39.13% 39.48% 37.07%

100 46.39% 39.83% 38.08% 40.74% 43.39% 47.13% 46.16% 44.99% 38.96%

1,000 52.30% 44.32% 43.23% 42.01% 47.86% 52.52% 51.47% 49.99% 43.56%

#2: CSDN → 126

10 56.91% 54.53% 49.88% 37.10% 48.73% 56.70% 56.94% 50.78% 34.57%

100 59.98% 55.90% 52.11% 39.81% 54.03% 60.10% 60.36% 55.24% 37.79%

1,000 62.20% 57.13% 53.18% 41.45% 57.66% 62.55% 62.68% 57.97% 42.05%

#3: Tianya → CSDN

10 43.05% 39.47% 35.05% 40.91% 36.87% 42.95% 42.78% 40.57% 38.70%

100 47.99% 42.54% 38.66% 42.45% 44.20% 48.20% 48.01% 44.95% 40.60%

1,000 54.67% 46.96% 45.02% 44.20% 48.17% 54.54% 53.44% 50.67% 44.13%

#4: CSDN → Dodonew

10 47.86% 43.86% 39.93% 40.29% 41.59% 46.74% 44.41% 38.88% 40.28%

100 55.36% 48.37% 46.02% 42.05% 52.61% 53.59% 51.73% 49.44% 42.57%

1,000 61.61% 53.63% 50.69% 44.37% 57.05% 61.08% 57.41% 55.61% 46.01%

#5: 000Webhost → LinkedIn

10 32.02% 31.79% 27.55% 20.60% 32.39% 31.56% 32.41% 26.25% 19.76%

100 33.98% 33.21% 31.63% 21.27% 34.01% 33.34% 34.17% 31.76% 20.54%

1,000 35.47% 34.16% 33.06% 22.11% 35.48% 35.85% 35.78% 34.34% 21.89%

#6: Yahoo → 000Webhost

10 20.68% 19.91% 18.52% 16.61% 18.65% 20.76% 19.74% 18.23% 16.14%

100 23.49% 22.83% 20.43% 17.19% 21.62% 23.18% 22.86% 20.38% 17.00%

1,000 26.55% 25.18% 23.76% 18.12% 23.56% 26.89% 25.28% 24.23% 17.99%

#7: LinkedIn → 000Webhost

10 24.29% 23.70% 20.97% 19.75% 22.06% 23.93% 23.39% 20.73% 19.71%

100 27.80% 27.13% 23.81% 20.27% 24.82% 26.56% 26.67% 23.50% 20.38%

1,000 31.27% 30.06% 27.44% 21.06% 26.75% 31.29% 29.60% 27.43% 21.17%

#8: 000Webhost → RedMart

10 19.14% 19.87% 19.50% 16.87% 21.81% 18.94% 20.71% 22.10% 18.99%

100 21.75% 23.18% 21.81% 17.60% 25.21% 21.20% 25.97% 24.54% 19.64%

1,000 25.09% 24.88% 23.80% 20.13% 27.24% 25.34% 28.81% 25.51% 21.61%

#9: Mixed_EN: 80% → 20%

10 29.11% 28.19% 25.68% 20.36% 26.77% 28.61% 28.41% 25.98% 19.87%

100 32.52% 30.76% 28.36% 21.24% 28.95% 31.96% 31.16% 28.46% 20.93%

1,000 35.92% 32.99% 30.57% 22.46% 30.80% 35.92% 33.73% 31.35% 22.69%

#10: Mixed_CN: 80% → 20%

10 72.08% 71.27% 66.27% 67.14% 69.89% 71.88% 71.94% 66.72% 68.22%

100 74.88% 73.61% 67.90% 68.33% 72.93% 74.85% 74.73% 70.20% 71.27%

1,000 77.03% 74.39% 69.26% 69.30% 74.62% 77.08% 76.65% 72.91% 74.13%

#11: 4iQ: 80% → 20%

10 14.91% 14.50% 12.24% 5.57% 11.61% 14.56% 14.46% 11.67% 5.51%

100 19.86% 19.00% 16.05% 6.42% 14.94% 19.09% 19.13% 15.46% 6.50%

1,000 24.36% 21.88% 19.54% 8.38% 18.20% 23.95% 22.96% 19.85% 9.12%

#12: COMB: 80% → 20%

10 45.42% 44.56% 37.78% 36.27% 40.02% 44.73% 44.63% 36.34% 35.64%

100 49.41% 47.78% 40.77% 37.35% 45.33% 48.97% 48.44% 39.16% 37.71%

1,000 52.45% 49.41% 44.15% 38.62% 47.60% 52.27% 50.71% 45.43% 40.44%

∗All results in this table take into account the identical password pairs (i.e., pwA = pwB). A value with dark gray (resp. light gray) represents the highest one (resp. 2nd one) among all nine
guessing models. Our POINTERGUESS achieves the best results 19 times and 2nd best results 8 times among all 36 attacking cases.

†POINTERGUESS and Pass2Path employ the same mixing strategy as suggested in Pass2Edit [66].

24

