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Abstract
Multi-signature schemes have attracted considerable atten-
tion in recent years due to their popular applications in PoS
blockchains. However, the use of general multi-signature
schemes poses a critical threat to the security of PoS
blockchains once signing keys get corrupted. That is, after an
adversary obtains enough signing keys, it can break the im-
mutable nature of PoS blockchains by forking the chain and
modifying the history from some point in the past. Forward-
secure multi-signature (FS-MS) schemes can overcome this
issue by periodically updating signing keys. The only FS-MS
construction currently available is Drijvers et al’s Pixel, which
builds on pairing groups and only achieves forward security
at the time period level.

In this work, we present new FS-MS constructions that
either are free from pairing or capture forward security at the
individual message level (i.e., fine-grained forward security).
Our first construction Pixel+ works for a maximum number
of time periods T . Pixel+ signatures consist of only one group
element, and can be verified using two exponentiations. It is
the first FS-MS from RSA assumption, and has 3.5x and 22.8x
faster signing and verification than Pixel, respectively. Our
second FS-MS construction Pixel++ is a pairing-based one. It
immediately revokes the signing key’s capacity of re-signing
the message after creating a signature on this message, rather
than at the end of the current time period. Thus, it provides
more practical forward security than Pixel. On the other hand,
Pixel++ is almost as efficient as Pixel in terms of signing and
verification. Both Pixel+ and Pixel++ allow for non-interactive
aggregation of signatures from independent signers and are
proven to be secure in the random oracle model. In addition,
they also support the aggregation of public keys, significantly
reducing the storage overhead on PoS blockchains.

We demonstrate how to integrate Pixel+ and Pixel++ into
PoS blockchains. As a proof-of-concept, we provide imple-
mentations of Pixel+ and Pixel++, and conduct several repre-
sentative experiments to show that Pixel+ and Pixel++ have
good concrete efficiency and are practical.
∗Corresponding author (xfchen@xidian.edu.cn).

1 Introduction

The proof-of-stake (PoS) consensus protocol achieves the
decentralization and immutability of blockchain in an energy-
efficient way, and has been widely studied both in the industry
(e.g., DFINITY and Algorand1) and academia [16, 31, 54]. In
most PoS-based blockchain consensus protocols, all selected
block proposers need to check the validity of block proposals
and state their own agreement by generating digital signatures
on acceptable block proposals. When the number of received
signatures on the same block proposal reaches a pre-specified
threshold, a participant appends the block proposal to the
local blockchain. Due to the large number of protocol partic-
ipants, improving the efficiency of the underlying signature
scheme becomes extremely important to the usability of PoS
blockchain consensus protocols.

Multi-signature schemes [13, 63] allow multiple signers
to jointly generate a space and time-efficient signature on a
single message so that a verifier can be convinced that all
participants signed this message. Although this cryptographic
primitive has been introduced and studied for decades, it has
recently been drawing new attention due to it perfectly fulfill-
ing the requirements of the above scenario. Specifically, given
n participants indexed by their own public/secret key pairs
{(pki,ski)}n

i=1, each participant i computes a signature σi on
a message m using ski. Then, a third party (e.g., a miner)
can compress these signatures {σi}n

i=1 into a short multi-
signature σ. Consequently, a verifier can determine whether
every participant approved the message m by just checking
the correctness of σ. This significantly reduces not only the
time to check that a consensus on the next block has been
reached, but also the corresponding block storage.

Despite the obvious advantages of applying multi-signature
to PoS blockchain settings, they are vulnerable to long-range
attacks (a.k.a. posterior corruptions and costless simulation)
[26, 42] due to the leakage of signing keys. More concretely,
if the stake ownership is shown through the possession of
the corresponding signing key, then an adversary can fork

1https://dfinity.org/, https://algorand.com/.



the chain and modify the history from some point in the past
when he obtained substantial signing keys. On the other hand,
from a practical point of view, those users with relatively
small stakes may not protect their accounts well compared
to active users. Moreover, after users sell their stakes, they
may also no longer need to maintain their signing keys. These
realistic human factors further exacerbate this attack.

A well-studied approach to mitigating the damage of sign-
ing key exposure is to use forward-secure signatures [3, 25].
Roughly, in the setting of such a cryptographic primitive, the
user’s signing key evolves unidirectionally over time periods,
and each signature is associated with the corresponding time
period in which the user generated it. As a consequence, given
the exposed current signing key, the adversary cannot use it
to forge signatures from previous time periods. Focusing on
the scenario of PoS blockchains, this means that an adversary
will fail to create any forks in the past of the blockchain, even
if he has controlled a total stake above a certain threshold.

To date, we are aware of only one forward-secure multi-
signature (FS-MS) scheme Pixel due to Drijvers et al. [35]. By
using a new manner of encoding time periods, Pixel achieves
substantial savings in bandwidth and verification effort. On
the other hand, as in previous forward-secure signatures, it
still follows the key delegation mechanism of hierarchical
identity-based encryption (HIBE) [20], and thus inevitably
has logarithmic cost. In addition, as demonstrated by Green
and Miers [45], this traditional forward security is coarse-
grained, that is, an adversary can still utilize the corrupted
signing key to create signatures during the current time period.
Conversely, fine-grained forward security is more desirable
since it allows a user to individually revoke the signing key’s
capacity of re-signing a message, without waiting for a time
period to elapse. Moreover, Pixel builds its security on a non-
standard q-type complexity assumption over bilinear groups,
and involves computation-heavy pairing operations.

1.1 Our Results

Given the significant advantage of the primitive of forward-
secure multi-signatures to efficiently remedy long-range at-
tacks in PoS blockchains, it is desirable to study different
FS-MS constructions that provide various performance and
security trade-offs, giving users application-specific choices.

In this work, we propose two new FS-MS constructions
under different cryptographic assumptions. Our first construc-
tion Pixel+ is based on the RSA assumption, and achieves
more efficient signing and verification than Pixel. In more
detail, Pixel+ works for a bounded number of time periods T ,
which is specified in the system setup phase. The main techni-
cal challenge is how to come up with an efficient solution for
an T value large enough to be practical. For example, under
the demand that a PoS blockchain needs to be maintained for
fifty years and the time to generate a block is ten seconds,
then we need to assign T = 228. To this end, we use the RSA

sequencer [51] as the core building block, which is an ab-
straction of pebbling techniques of Itkis and Reyzin [53] and
provides a trade-off between computation cost and storage
overhead. Specifically, in the scenario of T time periods and
n participants, a multi-signature of Pixel+ comprises just one
group element, and the verification algorithm only requires
two hash operations and two exponentiations, and the size of
both public parameters and signing key scales with logT .

Our second construction, Pixel++, is designed to achieve
more practical (i.e., fine-grained) forward security and effi-
cient key evolution. In more detail, inspired by Green and
Miers’ [45] elegant work of puncturable encryption, we in-
troduce the notion of puncturable multi-signature scheme2,
where a signing key is updated by repeatedly and sequentially
puncturing it with tags associated with signed messages. As a
consequence, the updated (or punctured) signing key cannot
be used to create valid signatures on previous pairs of tags
and messages. Pixel++ builds on bilinear groups, and uses the
probabilistic data structure Bloom filter to maintain signing
keys. A multi-signature of Pixel++ is comprised of two group
elements and an integer, the verification requires four pairings
and two exponentiations. Particularly, the key update only
needs a few deletion operations, and thus is very efficient.
This comes at the cost of additional storage overhead and a
non-negligible probability of failing to sign.

We prove the security of Pixel+ and Pixel++ in random
oracle models under the RSA assumption and a q-type as-
sumption, respectively. Our forward-secure multi-signature
constructions provide attractive solutions to the problem of
long-range attacks in PoS blockchain consensus protocols.
As depicted in Table 1, Pixel+ is the only one that builds
on the RSA assumption. Its signing and verification algo-
rithms require one and two exponentiations respectively, and
are more efficient than Pixel. Similar to Pixel, our second
construction, Pixel++, also builds on bilinear groups. But it
provides more practical forward security and more efficient
key update. Compared with multi-signature schemes based
on discrete logarithm assumptions [60,61], ours eliminate the
interaction among independent signers.

We provide implementations of Pixel+ and Pixel++ using
Python. We conduct representative experiments that evaluate
their computation cost and storage/communication overhead
under different usage scenarios, and compare their perfor-
mance with previous forward-secure multi-signature schemes.
The experimental results indicate that Pixel+ and Pixel++ are
efficient for practical applications. For instance, in the setting
of 100 signers and T = 232 time periods, the signature sizes
of Pixel+ and Pixel++ are 0.90 KB and 0.92 KB, respectively.
At the same time, the signing time of Pixel+ and Pixel++ are
0.07 s and 0.2 s respectively, and the verification time is 0.13 s
and 2.91 s respectively. We also demonstrate how to integrate
them into PoS blockchain to resist long-range attacks.

2We consider puncturable multi-signature schemes as FS-MS schemes.



Table 1: The comparison of existing FS-MS schemes with ours. Here, |Gi| (i = 1,2) and |ZN | denote the sizes of an element of
the bilinear group and RSA group. G is a group of order p. E and P are the computation cost of one exponentiation and one
pairing. We omit lightweight operations like addition, multiplication and hash. T refers to the maximum number of time periods.
ℓ denotes the parameter of a Bloom filter. FS-I and FS-II represent traditional forward security and fine-grained forward security.

Scheme Sig. size pk size sk size Sign Verify Key Update Assumption Rounds FS-I FS-II Trusted Setup

MuSig [60] 1 (|G|+ |Zp|) 1 |G| 1 |Zp| 1 E 2 E – DL 3 ✗ ✗ ✗

MuSig2 [61] 1 (|G|+ |Zp|) 1 |G| 1 |Zp| 7 E 2 E – AOMDL 2 ✗ ✗ ✗

Boneh et al. [21] 1 |G1| 1 |G2| 1 |Zp| 1 E 2 P – co-CDH 0 ✗ ✗ ✗

Pixel [35] 1 (|G1|+ |G2|) 1 |G2| O((logT )2) |G1| + O(logT ) |G2| 4 E 1 E + 3 P 2 E q-wBDHI∗3 0 ✓ ✗ ✗

Pixel+ (Section 4.2) 1 |ZN | 1 |ZN | O(logT ) |ZN | 1 E 2 E O(logT ) E RSA 0 ✓ ✗ ✓

Pixel++ (Section 5.2) 1 (|G1|+ |G2|) 1 |G2| O(ℓ) (|G1|+ |G2|) 5 E 2 E + 3 P 0 q-BDHE∗3 0 ✓ ✓ ✗

1.2 Related Work

1.2.1 Multi-signature Schemes

The notion of multi-signatures was first put forth by Itakura
and Nakamura [52] 40 years ago, and has received renewed
attention in recent years, mainly motivated by novel real-
world applications like blockchains and cryptocurrencies. We
can acquire a trivial multi-signature scheme from any signa-
ture by just concatenating each signer’s individual signature.
Therefore, a multi-signature only makes sense if its length is
independent of the number of signers.

To produce compact multi-signatures, most of available
multi-signature schemes build on Schnorr signature. Bellare
and Neven [12] proposed the first multi-signature with prov-
able security in the plain public-key model, where each signer
is required to generate a proof of possession of the secret
key [66], so as to resist rogue public-key attacks. The signing
algorithm of their scheme needs three rounds of interaction
among signers. After that, many two-round multi-signature
schemes were proposed [8, 58, 74]. However, Drijvers et
al. [34] found that these schemes suffer from concurrent at-
tacks, and put forth a secure scheme based on Bagherzandi
et al.’s multi-signature scheme [8]. In recent years, a larger
number of two-round multi-signature schemes against con-
current attacks have been proposed, such as MulSig-DN [62],
HMBS [10], MuSig2 [61] and MuSig2-H [75]. To further com-
press the storage overhead of multi-signatures, Maxwell et
al. [60] proposed a Schnorr-based multi-signature scheme
that supports public key aggregation.

Although computationally expensive, pairing-based multi-
signatures avoid the requirement of communication among
signers, and thus are more suitable for the setting of PoS
blockchains. Based on Boneh-Lynn-Shacham (BLS) sig-
nature [23], Boldyreva [18] constructed a multi-signature
scheme in gap Diffie-Hellman groups. Ristenpart and Yilek
[66] extended Boldyreva’s scheme to be free from rogue
public-key attacks. Boneh et al. [21] introduced a BLS-
based multi-signature scheme with public-key aggregation

for blockchains. Another important research line of eliminat-
ing signing interactions is to restrict the signing setting to be
synchronized [5, 43, 50]. That is, all signers share a global
value each time they sign, such as the current time period.

All of the above multi-signature schemes (including our
proposed schemes) are built upon traditional complexity as-
sumptions, e.g., discrete logarithm assumptions, RSA assump-
tions, and pairings-based assumptions, and thus are vulnerable
to quantum attacks [70]. Lattice-based cryptography is con-
sidered to be resilient against quantum attacks, and there has
been a spark of interest in building multi-signature schemes
from lattice in recent years. Those early lattice-based multi-
signature schemes [9, 40, 41] follow the idea of Bellare and
Neven’s [12] multi-signature, and have three rounds of sign-
ing interaction. Damgård et al. [30] employed the structure
of Drijvers et al.’s [34] scheme, and proposed a two-round
lattice-based multi-signature. Boschini et al. [24] proposed
a lattice-based multi-signature MuSig-L with single-round
online phase and key aggregation. Chen [28] further put for-
ward a lattice-based two-round multi-signature with smaller
public keys and signatures than MuSig-L. Fleischhacker et
al. [37,38] constructed synchronized multi-signature schemes
from lattices. We note that none of the above lattice-based
multi-signature schemes consider forward security. By com-
bining our techniques with the approach of achieving forward
security in the setting of lattices [4, 36], it might be possible
to extend them to be forward secure.

1.2.2 Forward-secure Signature Schemes

Anderson [6] first introduced the notion of forward security,
which was originally studied in the context of key exchange,
into the setting of digital signature, so as to mitigate the
damage of signing key compromise. Bellare and Miner [11]
later formally defined the primitive of forward-secure dig-
ital signature and presented the first concrete construction
based on the hardness of factoring. Numerous subsequently
proposed forward-secure signature schemes [3, 25, 53] op-
timize the previous one in terms of security and efficiency.



Given a maximum number T of total time periods, in order
to reduce the computation cost or storage/communication
overhead to O(logT ), these constructions either follow the
binary tree structure of hierarchical identity-based encryp-
tion [20], or use the pebbling techniques due to Itkis and
Reyzin [53]. The idea of forward-secure signatures has been
extended in several aspects, e.g., forward-secure signatures in
untrusted update environments [57], tightly forward-secure
signature [1], forward-secure threshold signature schemes [2],
forward-secure identity/attribute-based signatures [80, 81],
forward-secure aggregate signature schemes [59, 68, 79].

Early FS-MS schemes [59,72] either have O(T )-size public
key or require an interactive signing protocol, and thus are
not suitable for PoS blockchain consensus protocols. Drijvers
et al. [35] recently presented a pairing-based forward-secure
multi-signature scheme Pixel, which is specially optimized
for use in PoS blockchains and achieves significant savings
in terms of bandwidth overhead and verification cost. On
the other hand, although combing tree-based forward-secure
signature schemes [3, 11] with multi-signature schemes [19,
21] might also yield forward-secure multi-signature schemes,
their bandwidth cost would scale linearly with T .

Green and Miers [45] pointed out that the original notion of
forward security in the literature of public-key encryption is
relatively blunt, and thus introduced the notion of puncturable
public-key encryption that provides fine-grained forward secu-
rity. Their work motivates various new constructions and ex-
tensions of puncturable public-key encryption [32, 71, 76, 77],
and also has found many interesting applications in the design
of other cryptographic primitives [33, 47, 78]. In the setting
of digital signature, Bellare et al. [14] introduced the concept
of puncturable signature, and provided a construction based
on iO and one-way function. Halevi et al . [48] defined a
puncturable signature scheme that needs to update signers’
public keys repeatedly. Li et al. [56] put forth a puncturable
signature scheme based on the idea of bloom filter encryption.

2 Technical Overview

This paper aims to build forward-secure multi-signature
schemes under assumptions different from previous ones. Our
first construction Pixel+ is based on the RSA assumption, and
uses the RSA sequencer [51] to maintain a user’s signing key.
Our second construction Pixel++ is a paring-based one, and
employs the bloom filter data structure to achieve efficient
key update and fine-grained forward security.

Overview of Pixel+. The starting point of Pixel+ is Itkis and
Reyzin [53]’s pebbling technique for constructing forward-
secure signature schemes with fast signing. Specifically, given
a maximum number T of time periods and an RSA modulus
N, this technique enables a signer to successively compute the
ei-th root U1/ei of a group element U ∈ ZN for i = 1, . . . ,T ,
and captures the forward security by erasing U1/ei at the end

of the i-th time period. One of its major limitations is that
the computation cost of generating a user’s signing key is
linear in T . The RSA sequencer [51], as the abstraction of
the pebbling technique, overcomes this issue by additionally
storing roots of a user’s public key U of size logT , and can
immediately provide U1/ei at the time period i.

In more detail, given an RSA sequencer comprised of al-
gorithms (Setup,Update,Current,Shift,Program), we per-
form the Setup algorithm to produce an initial state statepp
that contains a global public parameter U = g∏i∈[T ] ei , where
g ∈ ZN , ei = HPrimes(i) and HPrimes(·) is a hash function that
maps an integer to a prime with a fixed size. Then, from
statepp and a random integer x ∈ Z∗N , a user can run the Shift
algorithm to efficiently compute his initial signing key sk1
consisting of group elements of size logT and public key
pk =Ux. In fact, ski, the secret key for the i-th time period,
already contains the ei-th root ui of Ux that is used as the
actual signing key throughout the time period i. Thus, the
Current algorithm directly reads it from ski. To achieve for-
ward security, the Update algorithm evolves ski to ski+1 by
erasing those auxiliary group elements that can be used to
compute ui, while generating new auxiliary group elements
for computing subsequent roots.

The structure of RSA sequencer yields general forward-
secure signature schemes. However, in the setting of multi-
signature, it becomes challenging since we need to aggregate
multiple signatures on the same message m into one. Luckily
for us, we observe that signatures from different signers are
generated at the same time period t. Therefore, our setting is
similar to the synchronized setting of multi-signature [38, 50].
This enables us to derive a shared random number from the
same message m and time period t. Roughly, for n signers
indexed by public keys {pk1, . . . , pkn} and current signing
keys {sk1,t , . . . ,skn,t}, each signer first obtains the ei-th root
ui,t of pki, and then creates the signature σi,t = ur·ai,t

i,t , where
ai,t = Hλ(pki, pk1, . . . , pkn) and r = Hλ(m, t) that are com-
puted using a hash function Hλ(·). The shared r makes it possi-
ble to aggregate {σ1,t , . . . ,σn,t} into σt =∏

n
i=1 σi,t . The aggre-

gated signature can be verified through checking σet
t = apkr,

where apk = ∏
n
i=1 pkHλ(pki,pk1,...,pkn)

i is the aggregated public
key.

Note that Pixel+ only allows a user to sign once using the
signing key of each time period. Such a restriction can be
removed by combining the above construction with a general
signature scheme [51]. However, it seems unnecessary in the
context of PoS blockchain consensus, since each user only
uses the current signing key to sign the block to be packaged,
and then updates the secret key for the next block.

Overview of Pixel++. Our second construction Pixel++ aims
to achieve more efficient key update and fine-grained for-
ward security. To this end, we adopt the idea of Bloom fil-
ter encryption due to Deler et al. [32], and introduce the
notion of puncturable multi-signature. Pixel++ builds upon



the BLS signature scheme in the setting of bilinear groups
(G1,G2,GT ,g1,g2, p,e), and uses a Bloom filter to manage
all signing key materials.

A Bloom filter provides a succinct representation T of a set
S, and can answer membership queries with a non-negligible
false positive probability f . That is, for a membership query
about an element s, if s ∈ S, it always answers "yes", and if
s /∈ S, it might also answer "yes" with probability f . Initially,
the representation is assigned as T = 0ℓ. Adding an element s
to the set S requires to compute k hash functions {H j} j∈[k] on
input s, and set corresponding positions of T to T [H j(s)] = 1.
Then, when querying the Bloom filter on an element, it outputs
"yes" if it holds T [H j(s)] = 1 for all j ∈ [k].

In the construction of Pixel++, we associate each position l
of T with a key component skl that binds the position l and a
common secret key x. When a user intends to create a signa-
ture on a message m, he first chooses a valid key component
skl′ from {skl |l ∈ {H j(m)} j∈[k]}, and then uses it to produce
a BLS-style signature. After that, the signer adds m to Bloom
filter, and also assigns skl =⊥ for each l ∈ {H j(m)} j∈[k]. As
a result, even if the current signing key gets exposed, it can-
not be used to create signatures for the previous message m.
This captures the desirable forward security. The aggregation
nature of BLS signature enables us to aggregate signatures on
the same message from different users to one.

Since the key update (or puncture) in Pixel++ only involves
erasure operations, it achieves more efficient key update than
Pixel and Pixel+, which scale with logT . Moreover, it evolves
the signing key at the level of individual messages (vs. time
periods in both Pixel and Pixel+), and thus also provides more
practical forward security. Of course, these merits come at the
cost of more storage overhead and signing error probability.
As we discuss in Section 6.1, they are tolerated in the context
of PoS blockchain consensus protocols.

3 Preliminaries

3.1 Hashing to Primes
In Pixel+, we need a hash function that maps an integer to a
random prime with fixed size λ+1. We make use of the hash
function HPrimes : [T ]→{0,1}λ+1 introduced in [49].

Specifically, HPrimes maps an integer x ∈ [T ] to a random
prime of size λ+1 by rejection sampling. In more detail, it
first chooses a PRF function F : [T ]× [λ ·(λ2+λ)]→{0,1}λ,
and randomly picks a key k′ for F . Then, it selects a random
string c ∈ {0,1}λ and a default prime edefault ∈ [2λ,2λ+1],
and assigns k← (k′,c,edefault). After that, an integer x ∈ [T ]
is mapped to a prime as follows. For i = 1 to λ · (λ2 + λ),
compute yi = c⊕Fk′(x, i). If 2λ + yi is a prime, then return
it. Otherwise, increment i and repeat the above procedure.
Eventually, if there does not exist an integer i ∈ [λ · (λ2 +λ)]
such that 2λ + yi is a prime, then return edefault. For each
x ∈ [T ], we denote by ex = HPrimes(x).

3.2 RSA Sequencer
The notion of RSA sequencers was recently introduced by Ho-
henberger and Waters [51], as an abstraction of the pebbling
technique. Informally, the goal of an RSA sequencer is to
maintain and manage roots of a public key U ∈ ZN such that
given a specific integer t, it can immediately provide U1/et ,
where et = H(t) is an RSA exponent computed from t via a
certain function H(·). It is formally defined as follows:

Definition 1 (RSA Sequencer [51]). An RSA sequencer
RSASeq is comprised of a 5-tuple of deterministic algorithms
(Setup,Update, Current,Shift,Program) that are specified
as follows:

• Setup(N,T,H(·), ℓ,(v1, . . . ,vℓ)): This algorithm takes
as input an integer N ∈Z, a maximum number of allowed
tags T , a function H(·) : [T ]→Z, an integer ℓ∈Z and a
ℓ-length vector (v1, . . . ,vℓ) sampled from Zℓ

N . It outputs
a state value state.

• Update(state, t): This algorithm takes as input a state
value state and an integer t ∈ [T ], and outputs an up-
dated state value state′.

• Current(state): This algorithm takes as input a state
value state, and outputs a ℓ-length vector (s1, . . . ,sℓ) ∈
Zℓ

N .

• Shift(state,(z1, . . . ,zℓ)): This algorithm takes as input a
state value state and a vector (z1, . . . ,zℓ)∈Zℓ. It outputs
another state value state′.

• Program(N,T,H(·), ℓ,(v′1, . . . ,v′ℓ),start): On input of
an integer N ∈ Z, a maximum number of allowed tags T ,
a function H(·) : [T ]→ Z, an integer ℓ ∈ Z, a ℓ-length
vector (v1, . . . ,vℓ) ∈ Zℓ

N and an integer start ∈ [T ], this
algorithm outputs a state value state.

Update/Output Correctness. For arbitrarily selected param-
eters N,T, ℓ ∈ Z,(v1, . . . ,vℓ) ∈ Zℓ

N and H(·) : [T ]→ Z, as-
sign state1 = Setup(N,T,H(·), ℓ,(v1, . . . ,vℓ)) and statet =
Update(statet−1) for all t ∈ [2,T ]. Then, for any t ∈ [T ], it
must hold that

Current(statet) =
(

v
∏i∈[T ]\{t} ei
1 , . . . ,v

∏i∈[T ]\{t} ei
ℓ

)
,

where et = H(t), and the arithmetic is conducted in ZN .

Shift Correctness. Let state = Setup(N,T,H(·), ℓ,(v1,
. . . ,vℓ)) and state′ = Setup(N,T,H(·), ℓ,(v′1, . . . ,v′ℓ)), where
v′j = v

z j
j for j ∈ [ℓ]. Then, it must hold that

state′ = Shift(state,(z1, . . . ,zℓ)).

Program Correctness. Let state1 = Setup(N,T,H(·), ℓ,
(v1, . . . ,vℓ)) and statet = Update(statet−1) for t ∈ [2,start]



and start ∈ [T + 1]. Furthermore, let v
∏i∈[T ]\{t} ei
j for j ∈ [ℓ],

and state′ = Program(N,T, H(·), ℓ,(v′1, . . . ,v′ℓ),start). Then,
it must hold that statestart = state′.

3.3 Bloom Filter

The Bloom filter (BF) [17] is a widely used probabilistic
data structure that supports membership query. Denote by
S = {x1, . . . ,xc} a set of c elements from a universal set U
(i.e., S ⊆ U). BF succinctly represents the set S using a ℓ-
length binary string T , which is initialized as T = 0ℓ. To
insert an element x, a group of k hash functions {H j} j∈[k] are
employed to randomly map x to k positions {H j(x) ∈ [ℓ]} j∈[k]
of T . Then, the bits in these positions are all assigned to 1.
Conversely, an element y is assumed to be a member of S if
T [H j(y)] = 1 holds for all j ∈ [k]. Formally, a Bloom filter is
defined by the following algorithms.

Definition 2 (Bloom filter). A Bloom filter BF for a
universal set U is comprised of three algorithms BF =
(Gen,Update,Check), which are specified as follows.

• Gen(ℓ,k): The generation algorithm takes as input two
parameters ℓ,k ∈ Z. It first selects k independent hash
functions {H j} j∈[k], where H j : U → [ℓ]. Then, it initial-
izes T = 0ℓ, and output ({H j} j∈[k],T ).

• Update({H j} j∈[k],T,x): The update algorithm takes as
input the current state of the bloom filter ({H j} j∈[k],T )
and an element x ∈U. It first assigns T ′← T , and then
sets T ′[H j(x)] = 1 for all j ∈ [k]. Finally, it returns T ′.

• Check({H j} j∈[k],T,y): The check algorithm takes as in-
put the current state of the bloom filter ({H j} j∈[k],T ) and
an element y ∈U. If T [H j(y)] = 1 holds for all j ∈ [k],
then it outputs 1 indicating that y has been inserted into
BF, and 0 otherwise.

The membership query based on the Bloom filter may suf-
fer from false positive errors, that is, outputting 1 for an ele-
ment y that has not been inserted into the Bloom filter. Given
the maximum number c of elements allowed to be inserted
into the set S, the false positive probability f can be arbitrarily
tuned by adequately choosing the parameters ℓ and k. More
precisely, the value of f can be calculated as f ≈

(
1−e−

k·c
ℓ
)k
.

4 Forward-Secure Multi-Signature from RSA

We first formally define the syntax and security notion of
forward-secure multi-signature schemes, and then present
the concrete construction of Pixel+, a forward-secure multi-
signature scheme from RSA assumption.

4.1 Syntax and Security Definitions
We follow the syntax and security notion of forward-secure
multi-signature scheme due to Drijvers et al. [35]. Formally,
a forward-secure multi-signature scheme consists of the fol-
lowing algorithms:

Setup(1λ,T )→ pp: Given a security parameter λ and the
maximum number of time periods T , a third party runs
the setup algorithm to generate the public parameter pp
for all signers.

KeyGen(pp)→ (pk,sk1): Each signer performs the key gen-
eration algorithm on input the public parameter pp to
produce a public verification key pk and an initial secret
signing key sk1.

Update(pp,skt): At the end of each time period t, by running
the key update algorithm, each signer updates its current
secret key skt to skt+1 used throughout the next time
period t + 1. After that, the previous secret key ski,t is
immediately erased.

KeyAgg(pp,{pk1, . . . , pkn})→ apk: Given a set of public
keys {pk1, . . . , pkn}, the key aggregation algorithm re-
turns a single aggregate public key apk.

Sign(pp,skt ,{pk1, . . . , pkn},m)→ σt : All signers can inde-
pendently sign a message m by each invoking the signing
algorithm on input its current secret key skt and the set
of all signers’ pubic verification keys {pk1, . . . , pkn}.

SigAgg(σ1,t , . . . ,σn,t)→ σt : Given signatures σ1,t , . . . ,σn,t
from different signers on the same message m and for
the same time period t, anyone can run the signature
aggregation algorithm to aggregate them into a single
one σt .

Verify(pp,apk,σt ,m, t)→ b: A verifier can check the valid-
ity of an aggregate signature σt on a message m and
a time period t under an aggregate public key apk by
calling the verification algorithm, which outputs 1 or 0
indicating that the signature is valid or invalid, respec-
tively.

Correctness. The correctness of a forward-secure multi-
signature scheme requires that, for any integer n ∈ Z,
for any message m and for any time period t ∈ [T ], if
we have (pki,ski,1) ← KeyGen(pp) for i ∈ [n], apk ←
KeyAgg(pp,{pk1, . . . , pkn}), ski, j← Update(pp, ski, j−1) for
i ∈ [n] and j = 2, . . . , t, σi,t ← Sign(pp,ski,t ,m) for i ∈ [n] and
σt ← SigAgg(σ1,t , . . . ,σn,t), then it holds that

Pr[Verify(pp,apk,σt ,m, t) = 1] = 1.

Security. The unforgeability under chosen message at-
tacks for a forward-secure multi-signature scheme is de-
fined through the following security game consisting of three
stages.



Setup. The challenger C first generates the public parameter
pp← Setup(1λ,T ) and a public/secret key pair (pk∗,sk∗1)←
KeyGen(pp), then sends pp and pk∗ to the adversary A .

Queries. The adversary A is allowed to adaptively issue the
following queries.

• Secret key update: For such a query, when the current se-
cret signing key is sk∗t (t < T ), the challenger C updates
it to sk∗t+1 for the next time period t +1.

• Signing: Given any message m and any set of public keys
P K = {pk1, . . . , pkn} with pk∗ ∈ P K , the challenger C
uses the current secret key sk∗t to generate a signature σt
with respect to (m, t,P K ), and returns σt to A .

• Corruption: At some point, the adversary A can issue a
corruption query to obtain the current secret key sk∗t held
by the challenger C . After this query, the adversary A is
not allowed to issue any other queries. Here we record
the corruption time as t̂← t.

Output. Finally, the adversary A outputs a multi-signature
forgery tuple (t∗,m∗,σt∗ ,P K ∗). The adversary A wins the
security game provided that the following conditions are ful-
filled:

• The adversary A made no signing queries on m∗ during
the time period t∗.

• pk∗ ∈ P K ∗.

• t̂ > t∗.

• Verify(pp,KeyAgg(pp,P K ∗),σt∗ ,m∗, t∗) = 1.

Definition 3. Denote by Advfu-cma
A (λ) the probability of A

winning the above security game. A forward-secure multi-
signature scheme is said to be unforgeable under chosen
message attacks provided that for any PPT adversary A ,
Advfu-cma

A (λ) is negligible in the security parameter λ.

4.2 The Pixel+ Construction
Pixel+ follows the framework of GQ signature [46], and builds
on a particular instance of RSA sequencer that only pro-
duces one global RSA group. Given such an RSA sequencer
RSASeq= (Setup,Update, Current,Shift,Program), Pixel+
works as follows.

Setup(1λ,T ): The setup algorithm takes as input a secu-
rity parameter λ and the total number T = 2ℓ+1 − 2
of time periods. It first chooses two safe primes p =
2p′+1 and q = 2q′+1, and assigns the RSA modulus
N = p ·q such that 2λ < ϕ(N)< 2λ+1. Denote by QRN
the group of quadratic residues, and let g be its gener-
ator with order p′q′. Next, this algorithm defines two
independent hash functions Hλ : {0,1}∗ → [0,2λ− 1]

and HPrimes : [T ]→ Primes(λ). Furthermore, it gener-
ates an initial state of the RSA sequencer statepp ←
RSASeq.Setup(N,T,HPrimes,g), and computes U =

g∏i∈[T ] ei mod N, where ei = HPrimes(i). Finally, it out-
puts the public parameter as pp = {T,N,U,HPrimes,
Hλ,statepp}.

KeyGen(pp): Given the public parameter pp, each signer per-
forms the key generation algorithm to produce his/her
own public and secret key pair. For the i-th signer, this
algorithm first picks a random integer si ∈ [N], and then
computes statei,1← RSASeq.Shift(statepp,si). Next, it
publishes the public key as pki = U si mod N, and as-
signs the initial secret key as ski,1 = {statei,1,e1,1},
where e1 = HPrimes(1).

Update(pp,ski,t , t + 1): For the i-th signer, the secret key
update algorithm takes as input the public parameter
pp, the current secret key ski,t of the form {statei,t ,et , t}
and the next time period t +1. It computes statei,t+1←
RSASeq.Update(statei,t) and et+1 = HPrimes(t + 1). It
outputs the secret key for the next time period t +1 as
ski,t+1 = {statei,t+1,et+1, t + 1}. At the same time, the
previous secret key ski,t is erased.

KeyAgg(pp,{pk1, . . . , pkn}): Given the public parameter pp
and public keys pk1, . . . , pkn, the public key aggregation
algorithm outputs the aggregated public key

apk =
n

∏
i=1

pkHλ(pki,pk1,...,pkn)
i mod N.

Sign(pp,ski,t ,{pk1, . . . , pkn},m): For the i-th signer, the
signing algorithm takes as input the public parameter
pp, the current secret key ski,t = {statei,t ,et , t}, all sign-
ers’ public keys {pk1, . . . , pkn} and the message m to
be signed. It first lets ui,t ← RSASeq.Current(statei,t),
and then computes ai,t = Hλ(pki, pk1, . . . , pkn) as well
as r = Hλ(m, t). Next, it outputs the corresponding sig-
nature σi,t = (ui,t)

r·ai,t mod N. Finally, it sends σi,t to a
designated combiner.

SigAgg(σ1,t , . . . ,σn,t): Given signatures σ1,t , . . . ,σn,t on the
message m and time period t, the signature aggregation
algorithm, which is run by the designated combiner, out-
puts the aggregated signature σt = ∏

n
i=1 σi,t .

Verify(pp,apk,σt ,m, t): The verification algorithm takes as
input the public parameter pp, the aggregated public key
apk, the aggregated signature σt and the corresponding
message m as well as time period t. It first computes
the hash prime et = HPrimes(t) and r = Hλ(m, t). Then,
it outputs 1 to accept if

σ
et
t = apkr,

and returns 0 otherwise.



Correctness. Given the initial state statepp of the RSA se-
quencer, we have that the i-th signer’s initial secret key ski,1 is
the same as the output of RSASeq.Setup(N,T,HPrimes,gsi),
due to the shift correctness of the RSA sequencer. Accord-
ingly, his/her public key is assigned as

pki =U si = gsi·∏i∈[T ] ei mod N.

After t−1 secret key updates, the i-th signer’s secret key
on the time period t is ski,t = {statei,t ,et , t}, and it holds that

RSASeq.Current(statet) = ui,t =U si/et = pk1/et
i mod N,

due to the output correctness of the RSA sequencer. Thus, for
the message m and the time period t, the signature from the
i-th signer is computed as

σi,t = (ui,t)
r·ai,t = pkHPrimes(m,t)·Hλ(pki,pk1,...,pkn)/et

i mod N.

Furthermore, the aggregated signature is formed as

σt =
n

∏
i=1

σi,t =
( n

∏
i=1

pkHλ(pki,pk1,...,pkn)
i

)HPrimes(m,t)/et .

Consequently, during the verification procedure, we have
that

σ
et
t =

( n

∏
i=1

pkHλ(pki,pk1,...,pkn)
i

)HPrimes(m,t)
= apkr.

Security. The security of Pixel+ is guaranteed by the follow-
ing theorem.

Theorem 1. If F is a secure pseudorandom function and
the RSA assumption holds, then the proposed forward-secure
multi-signature scheme Pixel+ is unforgeable under chose
message attacks in the random oracle model.

The security proof uses the general forking lemma [8], and
also is similar to that of Hohenberger and Waters’ signature
scheme. Due to space constraints, we refer the readers to the
full version of this work for the proof.

Discussions. Note that, in the above construction, we need a
trusted third party to run the global setup algorithm to gen-
erate a secure RSA modulus. In the case that the third party
is untrusted, we can use the distributed manner of securely
producing RSA modulus [27,29,39]. On the other hand, if the
third party is believed to be fully trusted, then it also knows
ϕ(N). This enables it to compute E = ∏i∈[T ] ei mod ϕ(N)

and U = gE mod N, significantly reducing the computation
cost of the setup algorithm. Moreover, observe that Pixel+
allows to sign only once during each time period, since the
shared random r is completely determined by the correspond-
ing message m and time period t. We can transform it to
support multiple signatures per time period by using a com-
mon idea in the literature. That is, we use Pixel+ to sign a
public key of a standard signature scheme.

5 Puncturable Multi-Signature from Pairing

We first formally define the syntax and security notion of
puncturable multi-signature schemes, and then present our
second construction Pixel++, a pairing-based forward-secure
multi-signature scheme.

5.1 Syntax and Security Definitions
We follow the models of Ristenpart-Yilek’s multi-signature
scheme [66] and Derler et al.’s Bloom filter encryption scheme
[32] to define the syntax and security notion of puncturable
multi-signature. By using proofs of possession of secret keys,
this combination prevents the puncturable multi-signature
scheme from being vulnerable to the rogue public-key attack.
Specifically, a puncturable multi-signature scheme consists
of the following algorithms.

Setup(1λ): On input a security parameter λ, the setup al-
gorithm generates the global public parameter pp. This
algorithm may be run by a trusted third party through a
distributed protocol. We assume that all the algorithms
described below implicitly take pp as input.

KeyGen(ℓ,k): On input parameters ℓ,k ∈ N for the Bloom
filter, each signer runs this key generation algorithm to
generate a public key pk and a secret key sk as well as a
proof of possession π.

KeyVerify(pk,π): On input a public key pk and the corre-
sponding proof of possession π, the public key verifica-
tion algorithm outputs 1 if pk is valid under the proof π

and 0 otherwise.

Punc(sk,m): On input a secret key sk and a message m,
the secret key puncturing algorithm outputs an updated
(a.k.a. punctured) secret key sk′. After that, we also say
that sk′ has been punctured with m.

Sign(sk,m): On input a secret key sk and a message m, a
signer runs this signing algorithm to output a signature
σ, and further sends it to a designated combiner.

KeyAgg(P K ): On input a set of public keys P K = {pk1,
. . . , pkn}, the public key aggregation algorithm outputs
an aggregate public key apk, or ⊥ to indicate a fail of
aggregating these public keys.

SigAgg(σ1, . . . ,σn): On input signatures σ1, . . . ,σn on the
same message m from different signers, the designated
combiner runs this signature aggregation algorithm to
output an aggregate signature σ.

Verify(apk,σ,m): On input an aggregate public key apk, an
aggregate signature σ and a message m, the verification
algorithm outputs 1 to indicate that all singers in apk
correctly signed the message m, and 0 otherwise.



Correctness. Intuitively, the correctness of puncturable multi-
signature scheme requires that, if the secret key has not been
punctured with a message m, then the probability of correctly
signing m is bounded by some non-negligible function µ(ℓ,k)
in parameters ℓ,k of the Bloom filter. On the other hand, if
the secret key has been punctured with a message m, then the
signing would definitely fail. Formally, for any λ, ℓ,k,n ∈ N,
any message m, any (pki,πi,ski) ← KeyGen(ℓ,k) and any
signature σi← Sign(sk′i,m), it holds that

Pr[KeyVerify(pki,πi) = 1] = 1,Pr[Verify(apk,σ,m) = 1] = 1,

where i ∈ [n] and apk = KeyAgg({pk1, . . . , pkn}) as well as
σ = SigAgg(σ1, . . . ,σn). Moreover, for any arbitrary inter-
leaved sequence of invocations of sk′i ← Punc(ski,m′) for
m′ ̸= m, it holds that

Pr[Verify(apk,σ,m) = 1]≥ 1−µ(ℓ,k).

Remark 1. As suggested by Li et al. [56], we can split the
message into several blocks m = m1|| . . . ||mb, and choose to
run the puncturing algorithm on any block mi according to
the concrete scenarios of specific applications. For example,
in the setting of PoS blockchains, we can think of the block
number as part of a block message and conduct a puncture
operation on the block number. This enables the signer to cre-
ate signatures on the same block message at different blocks
while capturing fine-grained forward security.

Security. The definition of unforgeability under chosen
message attacks (fu-cma) for a puncturable multi-signature
scheme is similar to that described in Section 4.1. Here we
emphasize that the fu-cma definition implicitly includes for-
ward security. Essentially, this is achieved by allowing the
adversary to obtain the signing key that has been punctured
with the challenge message m∗. Specifically, it is captured
through the following security experiment consisting of three
stages.

Setup. The challenger C first generates the global public pa-
rameter pp← Setup(1λ). Then, it runs the key generation
algorithm KeyGen(ℓ, l)→ (pk∗,π∗,sk∗), and initializes two
sets S ← /0 and P ← /0. Finally, it forwards the public pa-
rameter pp and the public key pk∗ as well as the proof of
possession π∗ to the adversary A .

Queries. The adversary A is allowed to adaptively issue the
following queries.

• Secrete key puncturing: Given a message m, the chal-
lenger C punctures the secret key sk∗ by running the al-
gorithm Punc(sk∗,m)→ sk∗′. After that, the challenger
C updates the set P ← P ∪{m}.

• Signing: Given a message m, the challenger C runs the
algorithm Sign(sk∗,m)→ σ, and returns σ to the adver-
sary A . It also updates the set S ← S ∪{m}.

• Corruption: At some point, the adversary A can issue
a corruption query to obtain the current secret key sk∗

held by the challenger C . After this query, the adversary
A is not allowed to issue any other queries.

Output. Finally, the adversary A outputs a multi-signature
forgery tuple (m∗,σ∗,P K ∗) such that pk∗ ∈ P K ∗. Denote by
P K ∗ = {pk1, . . . , pkn}, and let the corresponding proofs of
possession be {π1, . . . ,πn}. The adversary A wins the security
game provided that the following conditions are fulfilled:

• For each i ∈ [n], KeyVerify(pki,πi) = 1.

• A made no signing queries on m∗, i.e., m∗ /∈ S .

• If A made the corruption query, then it must be m∗ ∈ P .

• Verify(KeyAgg(P K ∗),σ∗,m∗) = 1.

Definition 4. Denote by Advfu-cma
PMS,A(λ) the probability of A

winning the above security experiment. A puncturable multi-
signature scheme is said to be unforgeable under chosen
message attacks provided that for any PPT adversary A ,
Advfu-cma

PMS,A(λ) is negligible in the security parameter λ.

5.2 The Pixel++ Construction
We build Pixel++ upon the BLS signature scheme, and em-
ploy a Bloom filter to maintain signing key components.
Given a bloom filter BF= (Gen,Update,Check), the details
of Pixel++ are specified as follows.

Setup(1λ): This algorithm first generates Type-3 bilinear
groups (G1,G2,GT ,g1,g2, p,e)← BilGen(λ), and then
picks three independent hash functions H1 : N→ Z∗p,
H2 : {0,1}∗→G1 and H3 : {0,1}∗→ Z∗p. Furthermore,
it chooses random group elements h,h0,h1,h2 ∈G1. We
assume that all the algorithms described below implicitly
take the above global public parameters as input.

KeyGen(ℓ,k): For the i-th user, this algorithm first initializes
a Bloom filter instance ({H j} j∈[k],T )← BF.Gen(ℓ,k).
Then, it picks a random integers xi ∈ Z∗p, and assigns the
public key as pki = gxi

2 . Furthermore, for each l ∈ [ℓ], it
chooses a random integer ri,l ∈ Zp, and computes the
secret key ski = {T,{(ski,l,0,ski,l,1,ski,l,2)}l∈[ℓ]}, where

ski,l,0 = g
ri,l
2 , ski,l,1 = h

ri,l
2 ,

ski,l,2 = hxi ·
(
h0 ·hal

1

)ri,l , al = H1(l).

In addition, this algorithm computes a proof of posses-
sion πi = H2(pki)

xi .

KeyVerify(pki,πi): This algorithm outputs 1 validating the
proof of possession if it holds that

e(H2(pki), pki) = e(πi,g2).



Punc(ski,m): Given a message m and a secret key ski = {T,
{(ski,l,0, ski,l,1,ski,l,2)}l∈[ℓ]}, this algorithm first com-
putes an array T ′ = BF.Update({H j} j∈[k],T,m). Then,
for each l ∈ [ℓ], it defines

(sk′i,l,0,sk′i,l,0,sk′i,l,2)=

{
(ski,l,0,ski,l,1,ski,l,2), T ′[l] = 0
⊥, T ′[l] = 1

where T ′[l] is the l-th bit of T ′. Finally, this algorithm
outputs sk′i = {T,{(sk′i,l,0,sk′i,l,0,sk′i,l,2)}l∈[ℓ]}.

Sign(ski,m): Given a message m with the prefix m′ and a se-
cret key ski = {T, {(ski,l,0,ski,l,0,ski,l,2)}l∈[ℓ]}, this algo-
rithm first checks whether BF.Check({H j} j∈[k],T,m) =
1 and outputs⊥ in this case. Otherwise, it picks the small-
est index l′ ∈ [ℓ] such that (ski,l′,0,ski,l′,0,ski,l′,2) ̸= ⊥.
Then, it chooses a random integer r′i ∈ Zp, and computes

σi,1 = ski,l′,2 · (ski,l′,1)
H3(m) · (h0h

al′
1 hH3(m)

2 )r′i ,

σi,2 = ski,l′,0 ·g
r′i
2 ,

where al′ = H1(l′). Finally, it sends (σi,1,σi,2, l′) to a
designated combiner3.

KeyAgg(P K ): Given a set of public keys P K = {pk1, . . . ,
pkn}, if KeyVerify(pki,πi) = 1 for each index i ∈ [n],
then this algorithm outputs an aggregate public key
apk = ∏

n
i=1 pki. Otherwise, it outputs ⊥.

SigAgg(σ1, . . . ,σn): Given n signatures σ1 = (σ1,1,σ1,2, l′),
. . . , σn = (σn,1,σn,2, l′) on the same message m from
independent signers, this algorithm computes the aggre-
gate signature σ = (σ1,σ2, l′), where

σ1 =
n

∏
i=1

σi,1, σ2 =
n

∏
i=1

σi,2.

Verify(apk,σ,m): Given the aggregate public key and sig-
nature σ = (σ1,σ2, l′) on the message m, this algorithm
outputs 1 if and only if apk ̸=⊥ and

e(σ1,g2) = e(h,apk) · e(h0 ·hH1(l′)
1 ·hH3(m)

2 ,σ2).

Correctness. Given public keys P K = {pk1, . . . , pkn} and
signatures σ1 = (σ1,1,σ1,2, l′), . . . , σn = (σn,1,σn,2, l′) on the
same message m under these public keys, the aggregate public

3To ensure l′ is the same for all signers, we require every user to puncture
his key after generating a new block, even if he does not participate in the
packaging process.

key apk and σ = (σ1,σ2, l′) are the forms of

apk =
n

∏
i=1

pki =
n

∏
i=1

gxi
2 = g∑

n
i=1 xi

2 ,

σ1 =
n

∏
i=1

σi,1 =
n

∏
i=1

ski,l′,2 · (ski,l′,1)
H3(m) · (h0h

al′
1 hH3(m)

2 )r′i

= h∑
n
i=1 xi · (h0 ·hal′

1 ·h
H3(m)
2 )∑

n
i=1(ri,l′+r′i),

σ2 =
n

∏
i=1

σi,2 =
n

∏
i=1

ski,l′,0 ·g
r′i
2 = g

∑
n
i=1(ri,l′+r′i)

2 ,

where al′ = H1(l′).
Then, the left-hand of the verification equation holds

e(σ1,g2) = e
(

h∑
n
i=1 xi · (h0 ·hal′

1 ·h
H3(m)
2 )∑

n
i=1(ri,l′+r′i),g2

)
= e

(
h∑

n
i=1 xi ,g2

)
· e
(
(h0 ·hal′

1 ·h
H3(m)
2 )∑

n
i=1(ri,l′+r′i),g2

)
= e

(
h,g∑

n
i=1 xi

2

)
· e
(

h0 ·hal′
1 ·h

H3(m)
2 ,g

∑
n
i=1(ri,l′+r′i)

2

)
= e(h,apk) · e(h0 ·hal′

1 ·h
H3(m)
2 ,σ2).

During the above signature verification process, we assume
that the message m has not been punctured. This means that
the secret key component ski,l′ has not been deleted, and en-
ables the signer to correctly generate the signature σi. On the
other hand, if BF.Check({H j} j∈[k],T,m) = 1, then signing
the message m fails.

Security. The security of Pixel++ is guaranteed by the follow-
ing theorem.

Theorem 2. If the 2-BDHE∗3 assumption holds, then the pro-
posed puncturable multi-signature scheme is unforgeable un-
der chosen message attacks. Formally, given an adversary A
against the unforgeability of the proposed puncturable multi-
signature scheme, we can construct an algorithm C against
the 2-BDHE∗3 problem such that

Adv
2-BDHE∗3
C (λ)≥ 1

ℓ ·qH3

·Advfu-cma
PMS,A(λ),

where qH3 is the number of A’s queries to random oracle H3,
and ℓ is the length of the binary string in the Bloom filter.

Due to space constraints, we refer interested readers to the
full version of this work for the proof.

Discussions. The key update procedure in Pixel++ only in-
volves deletion operations, and thus is much more efficient
than Pixel and Pixel+. The cost of this gain is that the signing
may fail with a non-negligible probability. However, as we
discuss in the next section, this is tolerable for PoS blockchain
consensus protocols. Moreover, when the number of punc-
ture operations reaches the upper bound of the Bloom filter’s
capacity, the false-positive probability (i.e., the probability
of failing to sign) would exceed an acceptable bound. At



this point, to maintain such a bound, we have to generate a
new pair of public and secret keys. As suggested by Gree and
Miers [45] and Derler et al. [32], we can avoid this by combin-
ing puncturable multi-signature with traditional FS-MS (e.g.,
Pixel). More precisely, we split the lifetime of the system into
time periods, during each of which we can conduct puncture
operations as in Pixel++. At the end of each time period, we
can update the current secret key to a new unpunctured one
for the next time period, as in Pixel. This ensures the signing
error probability never exceeds the acceptable bound, while
avoiding the requirement of generating new public keys.

6 Applications

In this section, we mainly demonstrate how to apply Pixel+
and Pixel++ to the setting of PoS blockchains that use forward-
secure signature schemes to mitigate the damage of posterior
corruptions. Of course, we can also use our schemes to im-
prove the performance and security of those systems based
on multi-signature schemes, such as improving the scalability
of Bitcoin [60] and distributed randomness protocols [73].

6.1 Background on PoS Blockchains
How to securely and efficiently achieve a consensus is a ba-
sic design goal of blockchain systems. In PoS blockchains
[15, 16, 44, 54, 55], each user (a.k.a stakeholder) possesses
a certain amount of stakes or tokens that determine his/her
voting power in the consensus procedure. In general, this is
measured via the fraction of the user’s stakes out of the to-
tal ones. The time is divided into a sequence of units called
slots {sl1,sl2, . . . ,sln}. In each slot, all users have a probabil-
ity approximately proportional to their relative stakes to be
assigned as a leader. Such leaders, organized as a committee,
are permitted to collectively generate a new block.

A block generated at a slot sl j is structured in the form of
B j = (sl j,st j,d j,σ j), where st j ∈ {0,1}λ is the state of the
previous block B j−1, d j ∈ {0,1}∗ is the packaged transaction
data, and σ j is a signature on (sl j,st j,d j) produced by the
committee. Then, the final blockchain is organized as a se-
quence of blocks {B1,B2, . . . ,Bn}, which strictly corresponds
to the increasing sequence of slots {sl1,sl2, . . . ,sln}. During
the generation of a block in each slot, most PoS protocols run
a Byzantine fault-tolerant sub-protocol to tolerate malicious
users. It is usually assumed that the majority (greater than
2/3) of stakes involved in each consensus process is held by
honest users. We say that each block is valid provided that a
majority of committee members approved it.

6.2 Applications to PoS blockchains
. As we have discussed earlier, most of the existing PoS pro-
tocols suffer from the issue of posterior corruptions. In PoS
protocols Ouroboros Praos [31] and Ouroboros Genesis [7]

as well as Thunderella [64], to resist posterior corruption at-
tacks, the signature on each block is generated with traditional
forward-secure signature schemes, which mainly build on hi-
erarchical identity-based encryption. We can apply Piexl+
or Piexl++ in these PoS protocols to achieve the same secu-
rity goal, while possibly reducing the storage overhead and
communication cost in some special scenarios where many
users broadcast a large number of signatures on the same
message. In addition, there are a few PoS protocols like Snow
White [16] and Ouroboros [54] that use ordinary signature
schemes to sign each block. Therefore, Piexl+ and Piexl++ can
also be deployed in these PoS protocols to enable them to re-
sist posterior corruption attacks. Below we provide the details
of integrating our proposals into general PoS blockchains.

Registering public keys. When a user intends to participate
in the consensus, he needs to register the public key of his
voting keys. To this end, a user runs the Setup algorithm of
Pixel+ or Pixel++ to generate a key pair. Then, the user issues
a key registration transaction that includes the public key and
the corresponding proof of possession. Furthermore, those
verifiers participating in the Byzantine fault-tolerant protocol
check the validity of both the key registration transaction
and the proof of possession. If the check passes, the newly
generated voting keys are added to the user’s account. After
this, if the user is eligible to participate in the consensus
protocol, he employs either Pixel+ or Pixel++ to sign blocks.

Voting on blocks. The stake ownership is generally shown
through the possession of corresponding signing keys. So,
the number of signing keys is proportional to the stake. Each
committee member participating in the consensus is required
to vote on a new block B j to be generated. This is conducted
by letting participants sign blocks with their voting keys and
propagating signatures to the blockchain network. The voting
details are slightly different when we use Pixel+ or Pixel++,
respectively.

In the case of Pixel+, we treat the block number j as the
current time period. Thus, participants first need to update
their secret keys to the current time period by repeatedly
invoking the update algorithm in sequence. Then, using the
current voting keys, they independently perform the signing
algorithm to produce corresponding signatures on the same
block B j. As in Pixel+, the block number j is necessary for
checking B j’s validity.

Recall that in Pixel++, each user can produce a correct
signature on a message only if the secret key has not been
punctured with this message. Therefore, when we use Pixel++
to authenticate the voting, each participant should make sure
that his voting key has not been punctured with the block
to be signed. Furthermore, during the voting process, each
participant freely chooses a key component corresponding to
a position l of the Bloom filter’s string T such that T [l] = 0,
and then directly runs the signing algorithm to generate a vote
on the block B j.



Particularly, Pixel++ has a non-negligible probability of
signing failure due to the use of the Bloom filter. That is, it
might be possible that even if the user’s secret key has not
been punctured with the block to be signed, signing the block
still yields a failure symbol ⊥. This failure probability can
be as small as possible by adjusting the parameters of the
Bloom filter, which implies a trade-off between the failure
probability and the cost of generating and storing the signing
key. Moreover, for those committee-based PoS consensus
protocols, we can exclude participants who fail to sign. In fact,
in exchange for the vast efficiency gain, most PoS blockchain
protocols like Ouroboros and Snow White tolerate a non-
negligible signing error.

Propagating and aggregating signatures. After the voting
is done, the corresponding signature σi, j on the block B j from
the i-th committee member would be broadcast through the
blockchain network. When a designated aggregation node
receives N signatures {σ1, j, . . . ,σN, j} on the same block B j,
where N is a predefined threshold, it terminates the propaga-
tion, and invokes the aggregation algorithm to aggregate all
signatures into a single multi-signature σ j. Then, after σ j is
verified to be correct, B j is written into the blockchain.

Note that the aggregation process in both Pixel+ and Pixel++
is non-interactive and incremental. This means that, on the one
hand, those signatures propagated through the network can
be aggregated by any party without interacting with the cor-
responding committee members (i.e., those original signers).
On the other hand, it allows propagating nodes to just broad-
cast the aggregation result of several committee members’
signatures, since adding a new signature to the current multi-
signature immediately yields a new multi-signature. These
two features bring huge communication overhead benefits.

Updating or puncturing secret keys. To achieve forward
security, the voting key should be immediately updated or
punctured after each new block is signed. In more detail,
when we use Pixel+ in PoS blockchains, its entire lifetime is
divided into T time periods, each of which corresponds to a
block number in a natural order. During each time period t,
the i-th participant’s voting key ski,t can only be used to sign
the corresponding block Bt once. Although this is an inherent
limitation of Pixel+, it just fits the actual application scenario
of the blockchain. After that, the current voting key ski,t is
updated to the next time period ski,t+1, while ski,t is erased
securely [65]. For those users who have not participated in the
consensus, they should first update their keys to the current
time period before voting on a new block.

In the case of using Pixel++ in PoS blockchains, the forward
security is captured by letting each participant puncture his
voting key with the signed block. Since Pixel++ enables a user
to conduct puncture operations on any position of a message,
and each block B j is uniquely identified by the correspond-
ing slot number sl j, so we can succinctly run the puncture
algorithm with the slot number, instead of the entire block.

Pixel++ allows a user to participate in the consensus on-the-fly.
That is, he can directly participate in a new consensus without
updating his voting key, even if he has not been elected to the
committee for a long time.

7 Performance Evaluation

As a proof-of-concept, we implement Pixel+ and Pixel++ using
Python4, and conduct several representative experiments.

Experimental setup. For Pixel+, we use a 3072-bit RSA
modulus N that provides 128-bit security. The hash func-
tion HPrimes(·) maps an integer to a 128-bit prime, and is
implemented with SHA256 and Rabin-Miller primality test.
We consider the maximum number of time periods for T ∈
{216,220,220,224,228,232}. As an exemplary scenario, for
T = 228, if the generation of each block takes 10 seconds,
then the lifetime of the public key is around 85 years.

For Pixel++, we use the BLS12-381 curve that also provides
128-bit security, and builds its implementation upon Python
implementation of BLS12-3815. The underlying Bloom filter
is implemented with Python package pybloom, and takes into
account three false positive probability f ∈ {0.1,0.01,0.001}
and capacity c ∈ {100,1000,10000}. The assignments of f
and c also determine the length ℓ of the binary string of the
Bloom filter and the number k of hash functions.

When comparing Pixel+ and Pixel++ with Pixel [35], we
use Pixel’s Python implementation 6. All experiments are
conducted on a PC with 3.00GHz Intel Core i7-9700 CPU
and 40.0 GB DDR3 memory.

Table 2: Comparison of the cost of generating and aggregating
public key and signature.

Scheme Sig. size pk size SigAgg KeyAgg

Pixel [35] 0.92 KB 0.62 KB 47.41 ms 42.25 ms

Pixel+ (Section 4.2) 0.90 KB 0.90 KB 0.42 ms 523.42 ms

Pixel++ (Section 5.2) 0.92 KB 0.62 KB 46.84 ms 41.46 ms

Storage cost. We evaluate the space complexity of these
schemes in terms of the sizes of signature, public key and
secret key, and obtain their specific values by storing the
corresponding data in a text file. From Table 2 we can see that
our constructions are almost as efficient as previous schemes
from the perspective of blockchain data storage overhead.
Figure 2 indicates that Pixel+ has smaller space complexity
on the user side than Pixel. In the setting of T = 232, it is less
than 60 KB. As indicated in Table 3, at the cost of achieving
fine-grained forward security and more efficient key update,

4https://github.com/Crypto4hub/Pixel-signatures
5https://github.com/kwantam/bls_sigs_ref
6https://github.com/algorand/pixel.



Table 3: Performance evaluation of Pixel++ under different parameter settings of Bloom filter

f c ℓ k KeyGen Sign Verify KeyAgg SigAgg Puncture |pk| |σ| |sk|

0.1
100 480 4 1.57 min 0.20 s 2.91 s 41.46 ms 46.84 ms 0.05 ms 0.62 KB 0.92 KB 0.58 MB

1000 4796 4 15.51 min 0.20 s 2.91 s 41.46 ms 46.84 ms 0.05 ms 0.62 KB 0.92 KB 5.78 MB
10000 47928 4 154.45 min 0.20 s 2.91 s 41.46 ms 46.84 ms 0.05 ms 0.62 KB 0.92 KB 57.73 MB

0.01
100 959 7 3.08 min 0.20 s 2.91 s 41.46 ms 46.84 ms 0.05 ms 0.62 KB 0.92 KB 1.16 MB

1000 9590 7 31.45 min 0.20 s 2.91 s 41.46 ms 46.84 ms 0.05 ms 0.62 KB 0.92 KB 11.55 MB
10000 95851 7 311.63 min 0.20 s 2.91 s 41.46 ms 46.84 ms 0.05 ms 0.62 KB 0.92 KB 115.46 MB

0.001
100 1440 10 4.65 min 0.20 s 2.91 s 41.46 ms 46.84 ms 0.05 ms 0.62 KB 0.92 KB 1.73 MB

1000 14380 10 46.15 min 0.20 s 2.91 s 41.46 ms 46.84 ms 0.05 ms 0.62 KB 0.92 KB 17.32 MB
10000 143780 10 1038.24 min 0.20 s 2.91 s 41.46 ms 46.84 ms 0.05 ms 0.62 KB 0.92 KB 173.20 MB
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Figure 1: The time cost of main algorithms in Pixel [35] and our Pixel+ and Pixel++ under different numbers of time periods.
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Figure 2: The secret key size under different maximum num-
bers of time periods.

the secret key size of Pixel++ is several orders of magnitude
more expensive than the other two schemes.

Computation cost. In Figure 1 we provide the timing results
of main algorithms (in the case of a single signer or verifier)
in Pixel and Pixel+ as well as Pixel++. Observe that the sign-
ing and verification algorithms of Pixel+ are more efficient
than that of the other two, and only take 0.07 s and 0.13 s,
respectively. Pixel++ achieves the most efficient key update,
and only takes 0.05 ms which is 1000x faster than Pixel. Also,
note that the time cost of these three algorithms in Pixel time

cost is slightly dependent on the maximum number of time
periods. Moreover, as shown in Table 2, Pixel++ and Pixel are
almost as efficient in generating and aggregating public keys
and signatures.

Signing capacity of Pixel+ and Pixel++. The parameters
T and c state the maximum number of messages that can be
signed with Pixel+ and Pixel++, respectively. In our experi-
ments, we use a practical assignment of T = 232 and assign
the largest c = 10000 that is much less than T . This is mainly
because the cost of KeyGen in Pixel++ is roughly linear in c,
while Pixel+’s cost is logarithmic in T . As shown in Table 3,
given f = 0.001 and n = 1000, the running time of KeyGen is
roughly 17 hours. Thus, setting c = 232 is unpractical. On the
other hand, a small c is indeed not practical. Fortunately, as
suggested by Green and Miers [45] and Derler et al. [32], we
can increase Pixel++’s signing capacity by combining it with
a traditional FS-MS scheme, without sacrificing fine-grained
forward security. Of course, this will additionally bring loga-
rithmic computation cost and storage overhead.

The impact of Bloom filter parameters on Pixel++. The
performance of Pixel++ partially depends on the parameters
of the underlying Bloom filter. More precisely, the failure
probability of signing (i.e., false positive probability) can be
roughly computed as f ≈

(
1− e−

kn
ℓ
)k, where ℓ is the size
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Figure 3: The relationship between the false-positive probability and the size of Bloom filter.

of the bloom filter, k is the number of hash functions, c is
the maximum number of elements that tolerates the failure
probability of signing f . As indicated in Table 1 and Table 3,
the parameters ( f ,c, ℓ,k) of the Bloom filter do not affect
Pixel++’s signature size, public-key size and the computation
cost of signing, verification, key aggregation and puncturing.
On the other hand, the smaller f is, the better, and c are larger.
As demonstrated in Figure 3, for such desirable assignments
of f and c, we need to increase the size ℓ of the Bloom filter,
which brings more cost of generating and storing the signing
key. This is a trade-off between usability and performance.

8 Conclusion

In this work, we presented Pixel+ and Pixel++, two forward-
secure multi-signature schemes from RSA and pairing, respec-
tively. Pixel+ is based on the GQ signature and uses the RSA
sequencer to maintain signing keys. It outperforms previous
FS-MS constructions in terms of signing and verification effi-
ciency. Pixel++ provides more practical forward security (i.e.,
fine-grained forward security) and more efficient key update
by using the Bloom filter, but at the cost of a non-negligible
probability of signing failure. We proved the security of Pixel+
and Pixel++ in the random oracle model, and demonstrated
how to integrate them into PoS blockchains. We also imple-
mented our proposals, and conducted several representative
experiments that show its practicability.
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A Complexity Assumptions

A.1 Number Theoretic Assumptions
The security of our first FS-MS construction Pixel+ is built
upon the following RSA assumption.

Definition 5 (RSA Assumption [67]). Given a security pa-
rameter λ, let p = 2p′+1 and q = 2q′+1 be two safe primes
of size λ, and N = p ·q. Denote by e a prime randomly sam-
pled from [2λ,2λ+1 − 1] and QRN the p′q′-order group of

quadratic residues in Z∗N . Randomly select x ∈ QRN and as-
sign y≡ xe mod N. Then, given (N,e,y), the RSA problem is
required to compute x such that y≡ xe mod N. We define the
advantage of an algorithm B solving this problem as

AdvRSAB (λ) = Pr[x← B(N,e,y) : y≡ xe mod N].

We say that the RSA assumption holds provided that for any
PPT algorithm B , its advantage AdvRSAB (λ) is negligible in
the security parameter λ.

We will also use the following lemma in the security proof
of Pixel+ and another theorem about the number of primes.

Lemma 1 (Shamir’s Trick [69]). Given x,y ∈ ZN and a,b ∈
Z that satisfy gcd(a,b) = 1 and xa ≡ yb mod N, then there
exists an algorithm of efficiently computing z ∈ ZN such that
za ≡ y mod N.

Theorem 3 (Prime Number Theorem). Let π(x) be the num-
ber of primes less than x. Then, for x > 1, we have that

7
8
· x

lnx
< π(x)<

9
8
· x

lnx
.

A.2 Bilinear Groups and q-BDHE Assumption
Let G1 and G2 be two groups of prime order p with a non-
degenerate bilinear map pairing e :G1×G2→GT . Let g1 and
g2 be generators of G1 and G2, respectively. For simplicity,
we assume that there exists an efficient algorithm BilGen that
can generate bilinear groups for the given security parameter
λ, i.e., (G1,G2,GT ,g1,g2, p,e)← BilGen(λ). In this paper,
we use the Type-3 pairing. That is, it holds that G1 ̸=G2, and
there exists a public and efficient isomorphism ψ : G2→G1
such that ψ(gx

2) = gx
1 for any x ∈ Zp.

The security of our second forward-secure multi-signature
construction Pixel++ is built upon the weak q-bilinear Diffie-
Hellman exponent (q-BDHE)7 assumption [22], which was
originally defined in the setting of Type-1 pairing. We utilize
its variant for Type-3 pairing (denoted by ℓ-BDHE∗3), and
define it as follows.

Definition 6. Given bilinear groups (G1,G2,GT ,g1,g2, p,e)
← BilGen(λ), let {gα

i , . . . ,g
αq

i ,gαq+2

i , . . . ,gα2q

i ,gγ

i}i=1,2 be
random group elements, where α,γ ∈ Zp are random inte-

gers. Let Adv
q-BDHE∗3
A (λ) be the probability (a.k.a advantage)

of an algorithm A successfully outputting e(g1,g2)
αq+1γ. We

say ℓ-BDHE∗3 assumption holds if for any PPT algorithm

A , its advantage Adv
q-BDHE∗3
A (λ) is negligible in the security

parameter λ.

7We use a specific case of this assumption in our scheme, i.e., q = 2.
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