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Abstract
Passwords are the most widely used authentication method,
and guessing attacks are the most effective method for pass-
word strength evaluation. However, existing password guess-
ing models are generally built on traditional statistics or deep
learning, and there has been no research on password guessing
that employs classical machine learning.

To fill this gap, this paper provides a brand new technical
route for password guessing. More specifically, we re-encode
the password characters and make it possible for a series
of classical machine learning techniques that tackle multi-
class classification problems (such as random forest, boosting
algorithms and their variants) to be used for password guess-
ing. Further, we propose RFGuess, a random-forest based
framework that characterizes the three most representative
password guessing scenarios (i.e., trawling guessing, targeted
guessing based on personally identifiable information (PII)
and on users’ password reuse behaviors).

Besides its theoretical significance, this work is also of prac-
tical value. Experiments using 13 large real-world password
datasets demonstrate that our random-forest based guessing
models are effective: (1) RFGuess for trawling guessing sce-
narios, whose guessing success rates are comparable to its
foremost counterparts; (2) RFGuess-PII for targeted guessing
based on PII, which guesses 20%∼28% of common users
within 100 guesses, outperforming its foremost counterpart
by 7%∼13%; (3) RFGuess-Reuse for targeted guessing based
on users’ password reuse/modification behaviors, which per-
forms the best or 2nd best among related models. We believe
this work makes a substantial step toward introducing classi-
cal machine learning techniques into password guessing.

1 Introduction
Passwords are likely to remain the dominant method in the
foreseeable future due to its simplicity to use, easiness to
change and low cost to deploy [12,13,22,30]. However, users
tend choose popular strings, employ personally identifiable
information (PII), and reuse an existing password. Such behav-

iors make passwords vulnerable to guessing attacks (including
trawling guessing [11, 47] and targeted guessing [44, 63]).

To address this issue, service providers often employ a
password strength meter (PSM) [15, 66] to detect weak pass-
words, and research shows that well-designed PSMs do help
users improve their password strength [54]. In practice, guess
number is found to be a good metric to evaluate password
strength [15, 39], and those easily guessed by an attacker are
considered weak passwords. Thus, it is imperative to study
password strength from the attacker’s perspective. While un-
ending password data breaches [3, 6, 8] provide favorable
material for attackers, there are still realistic attack scenarios
(e.g., for e-banking sites, and for passwords from sites beyond
USA, China, and Russia) where training data is scarce (e.g.,
size≤106), and/or when little is known about the target. There-
fore, it is equally imperative to understand guessing threats
when the available training data is not abundant.

In 1979, Morris and Thompson [40] designed several
heuristic transformation rules to generate variants of dictio-
nary words, and exploited them to perform password guessing.
Since then, a series of trawling password guessing approaches
that employ users’ behavior of choosing popular passwords
have been proposed, major ones are probabilistic context-free
grammar (PCFG [65]), and Markov-based models [38,41]. Be-
sides, frequent large-scale PII leaks (e.g., 240 million Deezer
leak [53], 553 million Facebook leak [9] and 77 million Ni-
tro PDF leak [25]) make targeted password guessing (e.g.,
Targeted-Markov [61] and TarGuess-I [63] that employ users’
PII, and TarGuess-II [63] that employ users’ sister passwords)
more and more realistic. All these password guessing algo-
rithms are statistics-based models that crack passwords by
counting the frequency of elements in the training set (such
as the letter segments in PCFG and the n-gram strings in
Markov). These “simply counting” models have the inherent
limitations of data sparseness and overfitting [38].

To address these limitations, deep learning based guess-
ing models (e.g., RNN [39], PassGAN [31], Adams [46] and
CPG/DPG [47]) have been proposed. They mainly use com-
plex neural networks to process the short length and small
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feature dimension texts (i.e., passwords). While the model
training only happens once for these models, they usually
require extremely large training set (e.g., >108 for dynamic
dictionaries [46]), but have no significant success-rate advan-
tages over statistics-based guessing models (e.g., PCFG [65]
and Markov [38]) within 1010 guesses [57].

Since Melicher et al. [39] first modeled password guessabil-
ity using long short-term memory (LSTM) in 2016, sustained
attention has been attached to applying deep learning to pass-
word guessing research [31,46,47]. It turns out that password
guessing research has bypassed classical machine learning
and entered into the era of deep learning directly from the
statistics-based period, leaving a huge gap. In reality, as the
development of statistical learning and also the foundation of
deep learning, classical machine learning1 techniques (e.g.,
support vector machine [42] and random forest [14]) have
shown extensive applications in various fields like natural
language processing (NLP), speech recognition and computer
vision [33]. Compared with traditional statistical methods,
classical machine learning algorithms usually have stronger
fitting and predictive abilities; Compared with deep learn-
ing techniques, classical machine learning techniques usually
have more concise models, entail easier parameter tuning, and
require less training data to achieve satisfactory results.

However, to the best of our knowledge, no attention has
been given to designing password guessing models based on
classical machine learning techniques. Particularly, there has
been no satisfactory answer to the following key questions:
(1) Can classical machine learning techniques be used to de-
sign password guessing models? (2) If it is possible, how can
these techniques be used for typical guessing scenarios? (3)
Whether password guessing models based on classical ma-
chine learning techniques can improve the attacking success
rate while reducing the computational overhead? In this paper,
we aim to provide concrete answers to these key questions.
Though applying classical machine learning techniques to
password guessing looks deceptively simple, it is actually
rather challenging. Now we explain why.

Firstly, passwords are essentially short texts and have the
following characteristics that differ significantly from tradi-
tional NLP tasks: (1) A password is usually composed of
6∼30 characters [38, 59], which is much shorter than stan-
dard NLP texts; (2) A password is a piece of artificially con-
structed sensitive text, which may contain rich semantics, but
it is not limited by (and often deliberately deviated from)
the syntactic structure of the ordinary text, such as the pass-
word loveu4ever (with the semantic love you forever); (3)
For password guessing, it is required that the generated pass-
words can precisely match the target. This means any incon-
sistency will lead to the failure of password cracking. For
example, we take P@ssword123 as the target and generate a
series of guesses that are very close to it but different, such

1For simplicity of presentation, the term “machine learning” that appears
in this work stands for the “classical machine learning”.

as password123, p@sswrod123, Password123, etc. Though
they are all similar to the targeted password, none of them
constitutes a correct guess. This is particularly concerned in
guessing scenarios where the number of guesses allowed is
limited, e.g., online guessing [63], while online guessing is
the primary security threat that normal users need to devote
efforts to mitigate (see [12,24,63]). In contrast, some amount
of ambiguity is allowed in traditional NLP tasks, as long as
the ambiguity does not significantly impair understanding.
Hence, classical machine learning techniques originally de-
signed for NLP tasks (or computer vision) cannot be directly
or easily used for password guessing.

Secondly, password guessing models based on deep learn-
ing ( [31, 39, 47]) usually use one-hot encoding for password
characters, and use neural networks to learn the internal con-
nections of these characters automatically. However, classical
machine learning techniques usually require manually extract-
ing and constructing features (i.e., feature engineering). Thus,
it is a considerable challenge to tackle the question of how to
accurately characterize passwords, so that we can not only re-
flect the inherent properties of the characters, but also ensure
the effectiveness of the machine learning algorithm.

We summarize our contributions as follows:
• A new technical route. We represent each password

character in an n-order (e.g., n=4, 5, 6) string in four
dimensions: 〈character type, the rank of the character
(e.g., letter a is the first lower letter in a∼z), keyboard
row number, keyboard column number〉, and represent
the entire n-order string in two additional dimensions:
〈position of the character in a password, position of the
character in the current segment〉. These representations
are generic and make the classic machine learning tech-
niques (e.g., Random Forest and Boosting), for the first
time, be successfully applied to password guessing.

• A new PII matching algorithm. To overcome the limi-
tations of existing PII matching algorithms (i.e., using
heuristic tags to represent PII usages in passwords [63]),
we propose a new approximately optimal PII matching
algorithm that more accurately captures users’ PII us-
ages, and can improve the success rates of leading guess-
ing models by 7%∼13%. We show the effectiveness of
our algorithm through both theory and experiments.

• Extensive evaluation. We perform a series of experi-
ments to demonstrate the effectiveness and general ap-
plicability of our models. Results show that the guessing
success rate of our RFGuess is comparable to its fore-
most counterparts in trawling guessing scenarios, and is
7.03%∼27.54% higher than its counterparts in targeted
guessing scenarios based on PII.

• Some insights. When predicting the next character after
the n-order strings in a password, RFGuess can clearly
show the importance of each character in different dimen-
sions (e.g., type/continuity/position-information). Such
knowledge can help us optimize the model training and
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password generation time by making easier the detection
(and elimination) of password features with low impor-
tance, and also sheds light on the design of new machine
learning based guessing models.

2 Background and related work

2.1 Three guessing scenarios
Trawling guessing. Trawling guessing means that the at-
tacker does not care who the specific target is, and its only
goal is to guess more passwords under the guess number al-
lowed. In 2009, Weir et al. [65] proposed a fully automated
password guessing algorithm based on a rigorous probabilis-
tic context-free grammar (PCFG). First, the algorithm di-
vides a password string into three categories: letter segment
L, digit segment D, and special character segment S. Then,
the password is transformed into a template structure (e.g.,
Password123!→ L8D3S1) and the corresponding terminals
that fit into the structure (e.g., L8→Password). Finally, the
probability of a generated password is calculated according
to the probability of its structure multiplied by those of its
terminals. In this context, researchers have proposed a series
of improved techniques, such as performing further semantic
mining in passwords [56], adding keyboard and multiword pat-
terns [32] and adaptive improvement for long passwords [27].

Unlike PCFG [65], which divides passwords into different
segments according to the character type, the Markov model
proposed by Narayanan and Shmatikov [41] trains the whole
characters in a password, and calculates the probability of
passwords through the connection between the characters
from left to right. Particularly, the n-gram Markov needs to
record the frequency of a character followed by a string of
length n-1. Like PCFG, many researchers have conducted
follow-up research on the Markov model. For example, Ma et
al. [38] smoothed and normalized the Markov model to allevi-
ate the problem of data sparseness and overfitting; Markus et
al. [21] enumerated the passwords in descending probability
order to improve the guessing speed.

At USENIX’16, Melicher et al. [39] first introduced deep
learning techniques to password guessing. More specifically,
they build a neural network composed of LSTMs (which are
denoted as FLA, i.e., Fast, Lean, and Accurate). Compared
with the traditional statistical password guessing models (e.g.,
PCFG [65] and Markov [38]), FLA has better cracking rate
under relatively large guesses (i.e., >1010). In 2019, Hitaj et
al. [31] introduced generative adversarial networks (GAN) to
password guessing, and proposed the PassGAN, which shows
the potential of GAN’s application in this field. After that,
Pasquini et al. [47] alleviated the mode collapse problem of
GAN during training, so that the cracking rate of GAN-based
approaches under large guesses has been significantly im-
proved. On this basis, they constructed two password guessing
frameworks, that is, conditional password guessing (CPG) and

dynamic password guessing (DPG). However, compared with
statistics-based models (e.g., PCFG [65] and Markov [38]),
CPG/DPG [47] generally requires extremely large training
data (e.g., size>107), consumes longer training time, and suf-
fers cumbersome parameter tuning.
Targeted guessing based on PII. The goal of a targeted pass-
word guessing is to crack the password of a given user in a
given service (e.g., an online banking account, and personal
mobile phone) as quickly as possible [63]. Thus, the attacker
would use PII related to the target victim to enhance the perti-
nence of cracking. Overall, the current research on targeted
password guessing is still in its infancy, mainly focusing on
how to use demographic information (such as name, birthday
and mobile phone number). In 2015, Wang and Wang [61] first
proposed a targeted guessing model based on Markov [41]
(namely Targeted Markov). Their basic idea is that the fre-
quency of names in the training sets reveals the likehood of
the targeted user choosing a name-based password. In 2016,
Li et al. [36] proposed a targeted guessing model based on
PCFG [65]. The difference with trawling PCFG is that some
PII segments representing different lengths have been added
to the original LDS segments. At CCS’16, Wang et al. [63]
revealed the inherent limitation of length-based PII matching
method, and proposed a new targeted guessing model with a
type-based PII matching method, namely TarGuess-I.
Targeted guessing based on password reuse. At NDSS’14,
Das et al. [19] proposed the first cross-site password-guessing
algorithm based on transformation rules. This algorithm per-
forms several artificially defined transformations (e.g., delete,
insert, and leet) on users’ existing passwords, and then gen-
erates guesses in a pre-defined order. However, users would
hardly reuse/modify passwords in such a pre-defined unified
approach, hence limiting its performance in the real world.

At CCS’16, Wang et al. [63] proposed a PCFG-based model
for password reuse, namely TarGuess-II. The core idea is to
characterize users’ password reuse behaviors in two levels of
modification operations (i.e., structure- and segment-level).
During training, it first learns the probability of the two-level
transformation path of sister password pairs to build a PCFG.
Second, the guess with the highest probability in the PCFG
is output each time through the priority queue, and then they
are transformed and inserted into the priority queue again. In
this way, the guesses sorted by probability can be obtained.

At IEEE S&P’19, Pal et al. [44] proposed Pass2Path, a tar-
geted guessing model for password reuse based on deep learn-
ing. Specifically, it employs a sequence-to-sequence (seq2seq)
model [52] to predict the path of modifications needed to
transform one password into its sister password. Its guessing
success rate is better than that where the input and output
of the model are directly the user’s original password and
the new password, respectively. In other words, this way of
training focuses the model better on learning common trans-
formations found in password datasets. We have analyzed the
problems in existing password models in Appendix D.
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2.2 Password guessing modeling
The Markov n-gram model was originally introduced at
CCS’05 [41] and improved at IEEE S&P’14 [38]. Generally, n
is recommended to be 3, 4, or 5 [38,62]. Its core assumption is
that: Each character is only related to the first d characters in
front of it and has nothing to do with other characters, where
d(=n+1) is the order of the Markov model. The conditional
probability for character ci following the string c1c2. . .ci−1 is

Pr(ci|c1c2 · · ·ci−2ci−1) = Pr(ci|ci−d · · ·ci−1)

=
Count(ci−d · · ·ci−1ci)

Count(ci−d · · ·ci−1·)
,

(1)

where Count(ci−d · · ·ci−1ci) denotes the number of occur-
rences of the string ci−d · · ·ci−1ci, and Count(ci−d · · ·ci−1·)
denotes the number of occurrences of the string ci−d · · ·ci−1
where it is followed by an undetermined character (i.e., where
it is not at the end of a string). Then the probability of the
string s=c1c2 · · ·cn is given by:

Pr(s) = Pr(c1)Pr(c2|c1) · · ·Pr(cn|cn−1cn−2 · · ·c1)

=

n∏
i=1

Pr(ci|ci−d · · ·ci−1).
(2)

In reality, while each character in a password may have
varying degrees of security impact on other characters [45],
this paper assumes that the order in which users create pass-
words is from left to right (i.e., the same order with how they
type passwords), and each character is only related to a few
characters before it (This means our model makes the same
assumption with the well-known Markov model [38,41]). Un-
der this assumption, the password generation process can be
regarded as a multi-class classification problem.

More specifically, given a password, the n-order string in
the front of its character can be seen as the target to be classi-
fied (and features can be extracted from this n-order string),
and the character itself can be seen as the classification la-
bel corresponding to the string to be classified. From this
perspective, all supervised machine learning algorithms that
tackle multi-classification problems can be applied to pass-
word guessing. Considering that when the data dimension is
low and the task accuracy required is high (which are exactly
the characteristics of password guessing tasks), ensemble
learning methods generally performs well (see the potential
applicability of some representative classification algorithms
like SVM [42] and Boosting [50] in Appendix A). Without
loss of generality, in what follows, we take Random Forest as
a typical case study to show how to employ classical machine
learning techniques for password guessing.

Assume that T ={(x1,y1),(x2,y2), ...,(xn,yn)} is the train-
ing set, then we can build a mapping f from the input space X
to the output space Y by learning T. Here X ={n-order strings
of a password set}, Y ={95 printable ASCII codes}∪{Es},
i.e., 96 different categories, where Es denotes the end symbol.

X dataset

N1 features N2 features N3 features N4 features

Tree #1 Tree #2 Tree #3 Tree #4
Class A Class C Class C Class B

Majority Voting

Final Class
Figure 1: A high-level example of random forest [14]. Here, X is all the n-
order strings of a training dataset, N = {N1,N2, ...,} is a randomly extracted
feature subset, and class {A, B,...} represents the category (95 printable
ASCII codes and the end-symbol) to which each n-order string belongs.

2.3 Introduction of random forest
Random forest [14] is a an ensemble learning method for
classification (and regression) that consists of multiple deci-
sion trees [49]. When predicting the category of a sample,
the algorithm counts the prediction results of each tree in the
forest, and then selects the final result by voting (see Fig. 1).
“Randomness” lies in two aspects: the random selection of
features and the random selection of samples. Hence, each
tree in the forest has both similarities and differences.

Formally, we denote the decision tree model as {hk(X),k =
1,2,3, ...}. Given an independent variable x in X dataset, each
decision tree has one vote to select the optimal classification
result. The final classification decision is:

H(x) = argmax
y∈Y

k∑
i=1

I(hi(x) = y), (3)

where H(x) represents the combined classification model (i.e.,
the random forest), hi is a single decision tree, y ∈ Y is the
output, and I(·) is the characteristic function.

The decision tree [49] has three mainstream node splitting
algorithms: ID3, C4.5 and CART. These algorithms use differ-
ent feature selection criteria, namely, information gain, gain
ratio and Gini impurity. Among them, the Gini impurity repre-
sents the probability that two samples are randomly selected
from the dataset and their categories are different. It has a
relatively small calculation cost and is easy to understand.
Therefore, this paper uses the CART decision tree (see Fig. 2).
For a dataset D (composed of n-order strings), the calculation
formula of the Gini impurity is as follows:

Gini(D) =

|y|∑
k=1

∑
k′ 6=k

pk pk′ = 1−
|y|∑

k=1

p2
k , (4)

where |y| represents 96 classification categories (i.e., 95 print-
able characters and the end-symbol Es), and pk represents the
proportion of the category k in D. When dividing features, the
Gini impurity of feature a (the detailed feature construction
method of n-order strings can be seen in Sec. 3.1) is:
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··· ···

efg123, bnm444
vbn333, aaa765
···

3334d4, 6789d9 
q6a6s6,  d1d2d3
···

Rule 1: 
The position of the last prefix 

char in the password ≥ 7

Rule 2: 
Type of 6th char is digit

Yes

Yes

Yes

No

No NoYes

No

Class = ‘d’Class = ‘4’

asswor, 
Loveyo,  
···

123abc,
efg123,  

102455, 
6-order prefix
to be classified

Rule n: 
Type of 2nd char is letter

Rule 3: 
Type of 5th char is digit

123abc, Loveyo,  
dearbo, ···

efg123, asswor,  
aaa765, ···

Figure 2: A high-level example of a decision tree for password prefix classifi-
cation. The node division is determined according to the corresponding rules
through the if-else logic, and finally, each prefix is divided into the character
category to which it belongs. For example, class=4 means that all prefixes in
this leaf node are followed by the character 4 like efg1234.

Gini(D|a) =
V∑

v=1

|Dv|
|D|

Gini(Dv), (5)

where v represents each value of feature a, and Dv represents
the subset of D divided according to the value v. Formula 5
indicates that when selecting features, the weighted average
method is used to calculate the total Gini impurity, and finally,
the feature that minimizes the Gini impurity after division is
selected as the optimal division feature.

2.4 Analysis of random forest

Now we explain why the random forest model [14] can solve
the shortcomings of the Markov n-gram model [41] when
applying to password guessing from three aspects.

Training 

set

123 abc···

abcd, abcd

abcd ···

abca, abca

···

abc1, abc2

···

1234, 1234

1234 ···

1231, 1231

···

123!, 1230

···

Figure 3: Tree diagram of the
Markov model [41]. Here we
take 3-order as an example.

The fitting principle. Fig.
3 shows that the Markov n-
gram model [41] can essen-
tially be seen as a decision
tree [49] divided by prefix
string of height one. It divides
all strings with the same pre-
fix into the same leaf node,
resulting in that when the pre-
fix string appears very rarely
in the training set (i.e., data
sparseness issue), it can only
be classified according to the few samples that appear in the
training set. In comparison, the decision tree divides its node
according to the impurity (representing how well the trees
split the data, and there are several impurity measures like
the Gini impurity as defined in Sec. 2.3.) of each feature (i.e.,
division rules) in the prefix. It selects the feature with the
least impurity as the rule of feature division, which makes the
final sample meeting the same division rule fall to the same
leaf node. These samples can be regarded as similar samples
with the same classification results (see Fig. 2 for a high-level
example). Thus, the prefixes that appear less frequently or

do not appear in the training set can also be divided into leaf
nodes composed of similar samples.
Automatic feature screening. The most critical parameter in
the Markov model [41] is the order d, which is the length of
the prefix that needs to be considered. When the order is too
high, the model is easy to overfit [38]. However, this is not a
problem for the random forest [14]. Specifically, the decision
tree [49] selects the feature with the smallest impurity (after
splitting) as the division rule. That is, it will select features
with a higher degree of importance for division, and will not
be affected by those with poor division effects. For example,
the string 1234 followed by the character 5 is a natural law
and should not be changed due to the training set, so the sub-
string 1234 is more important than the whole string #1234
when predicting the next character, while the 5-order Markov
model only considers the frequency of #1234.
Minimum number of samples in each leaf node. For sam-
ples that appear less frequently or have never appeared before,
the decision tree [49] will divide the samples into a specific
leaf node according to the training rules. Since the samples
that meet the same set of rules have the same classifications,
the probability of each category will be obtained according
to the distribution of the sample categories in the leaf nodes.
When the number of samples in the leaf node is large, the deci-
sion tree [49] can smooth the samples well; when the number
of leaf nodes is small, or even if there is only one sample in
a leaf node, this situation degenerates to the Markov model
with the low-frequency prefix problem. Fortunately, the de-
cision tree can reasonably solve this problem by limiting the
minimum number of samples in leaf nodes.

3 RFGuess: A new trawling guessing model
based on random forest

3.1 Password character feature construction

To construct a password guessing model based on classical
machine learning techniques, feature engineering is an essen-
tial step. A password is usually composed of characters and
has two important characteristics: the type of characters and
the continuity of characters. Particularly, there are three types
of characters used in passwords: digits, letters, and special
characters. Each type of character has a certain internal con-
tinuity, such as 0∼9 and a∼z. Therefore, to well represent
these two characteristics of characters in a password, we need
to re-encode the password characters.

We first represent the password characters in two dimen-
sions. The first is the character type. Here we use 0, 1, 2, and
3 to represent special characters, digits, uppercase letters, and
lowercase letters, respectively; the second is the serial number
of the characters in each type. For example, letters a∼z are
represented by 1∼26, digits 1∼9 represented by number 1∼9,
and digit 0 represented by 10 (since 0 stands for the beginning
symbol). In this way, the type and continuous characteristics
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of password characters can be displayed explicitly.
Secondly, keyboard pattern is a popular way to create pass-

words [63, 68], so the characteristics of keyboard pattern are
also considered in the feature construction. The keyboard
pattern usually means creating passwords through adjacent
keyboard positions, such as 1qa2ws and 123qwe. Thus, we
also use two-dimensional features to represent the keyboard
characteristics of password characters: the row and column
position of the keyboard in the form of coordinates. For ex-
ample, 1 is represented as (1,1), q is represented as (2,1), s
is represented as (3,2). Thus, the position coordinate repre-
sentation can clearly show the continuous characteristics of
the characters and improve the model fitting ability.

The last consideration is the length characteristic of the
string. More specifically, we construct two length features:
position of the character relative to the entire password (i.e.,
trained length) and position of the character relative to the
current segment (i.e., trained length in the current L/D/S seg-
ment). Considering that the password length of most users is
at least six [38, 59], we set the order of our model to six. That
is, we use a 6-order prefix to predict the next character.

As a result, every 6-order prefix can be represented by a
26-dimensional feature vector (26=4×6+2), because there are
6 prefix characters, 4 feature dimensions for each character
and 2 additional feature dimensions for the length informa-
tion of the entire prefix. We take the 6-order prefix wer654 of
password qwer654321 as an example. First, each character in
wer654 can be uniquely represented as a 4-dimensional fea-
ture vector. For instance, character r is represented as (3, 18,
2, 4), where 3 represents the character type of lowercase letter,
18 is the rank of r in the lower letter sequence a∼z, 2 and 4
are the keyboard row and column positions of r, respectively.
Now, wer654 can be represented by a 24-dimensional feature
vector (24=4×6). Then, we add 2-dimensional length feature
(7, 3) of prefix wer654, where 7 represents the position infor-
mation relative to the entire password (i.e., digit 4 in wer654
is the 7th character of qwer654321), and 3 represents the po-
sition information relative to the current digit segment (i.e.,
digit 4 in wer654 is the 3th character of segment 654321).
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Figure 4: Impacts of varied orders
(1M Rockyou→Rockyou_rest).

Note that, we have
tested a number of dif-
ferent order values (i.e.,
n=3, 4, 5, 6, 7) of our
RFGuess, and found that
when n≥4, RFGuess can
achieve similar cracking
success rates (as shown in
Fig. 4). Generally, when
the order decreases (e.g., n=3), the number of features (i.e.,
4n+2) decreases accordingly, which may make RFGuess un-
derfit. While when the order is too large (e.g.,≥7), passwords
whose length is smaller than this value cannot be well mod-
eled. Since the cracking success rate is slightly better when
n=6, we set n=6 in the following experiments.

3.2 Feature importance analysis
To verify the effectiveness of the constructed features, the
feature importance scores are calculated by random forest
in different training datasets. According to the results shown
in Figs. 11, 12, and 14 (in Appendix H), we find that the
trained length feature (i.e., position of the last prefix character
in the password) has the highest score, indicating its signif-
icant impact on fitting RFGuess. Other top-ranked features
are mainly characters that are closer to the target character,
which is intuitive. Among the four different dimensional fea-
tures of the same character, the serial number feature (e.g.,
a is the first in alphabetic types a∼z, 0 is the first of digits
0∼9) and the keyboard column number feature are more effec-
tive, while the type of character (letter/digit/special character)
and the trained length of current segment features (position
of the character in the L/D/S segment) are relatively unim-
portant, and keyboard row number offers little gain on the
model fitting. A plausible reason is that when building pass-
words, users create more horizontal keyboard modes (e.g.,
qwerty) than vertical modes (e.g., 1qaz) [68]. Particularly,
we have counted the Top-10 most frequency keyboard pat-
terns of CSDN, Dodonew, Taobao, and Rockyou, and found
that the Top-10 patterns are either horizontal keyboard modes
or just the repetition of a single character (e.g., aaaaaa).

3.3 Model training and password generation
At a high level, our RFGuess is similar to the Markov 7-gram
model [41]. More specifically, it first processes the password
into the form of 6-order character prefixes and their corre-
sponding characters (e.g., the resulting 6-order set of pass-
word abc123 is {(BsBsBsBsBsBs,a),(BsBsBsBsBsa,b), ...,(a
bc123,Es)}, where Bs and Es stand for the beginning and end-
ing symbol respectively). Then, it represents the 6-order prefix
as a 26-dimensional vector (each character is represented by 4
dimensions, plus two additional length features for the entire
prefix), the single character following this prefix in an ASCII
value, and the beginning and ending symbol are represented
by 0 and -1, respectively. When training the model, RFGuess
traverses the 6-order set of each password in the training set,
takes the 26-dimensional prefix feature vectors as training
input, and takes the numerical label of the corresponding char-
acters as training output. Fig. 2 shows a high-level example
of the decision tree classification process.

The process of guess generation is quite similar to the
Markov n-gram model [38]. The key difference is that we
use the trained random forest (but not the Bayes formula)
to calculate the conditional probability. More specifically,
each decision tree will vote on which category (one of the
95 characters and end-symbol) the input sample (i.e., the
6-order string prefix) belongs to, and its probability is the
proportion of the number of votes obtained by this category to
the total number of trees. For example, suppose there are 10
decision trees in the random forest voting on the string prefix
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Table 1: Basic information about our 13 password datasets.†
Dataset Web service Language When leaked Total PWs Length>30 Removed % Unique PWs With PII
Taobao E-commerce Chinese Feb., 2016 15,072,418 88 0.01% 11,633,759
126 Email Chinese Oct., 2015 6,392,568 621 0.23% 3,764,740
Dodonew E-commerce Chinese Dec., 2011 16,283,140 13,4758 0.15% 10,135,260
CSDN Programmer Chinese Dec., 2011 6,428,632 0 0.01% 4,037,605
Wishbone Social English Jan., 2020 10,092,037 250 0.01% 5,933,902
Mate1 Dating website English Mar., 2016 27,401,505 12,430 0.06% 11,916,080
000Webhost Web hosting English Oct., 2015 15,299,907 4,159 0.76% 10,526,769
Yahoo Web portal English July, 2012 453,491 0 2.35% 342,510
LinkedIn Job hunting English Jan., 2012 54,656,615 17,162 0.22% 34,282,741
Rockyou Social forum English Dec., 2009 32,603,387 3,140 0.07% 14,326,970
12306 Train ticketing Chinese Dec., 2014 129,303 129,303 0 117,808 X
ClixSense Paid task platform English Sep., 2016 2,222,045 0 0 1,628,018 X
Rootkit Hacker forum English Feb., 2011 69,330 5 0.01% 56,835 X

†PW stands for password, and PII for personally identifiable information. We clean up passwords longer than 30 or containing non-ASCII characters.

“123456”. Among them, 6 votes are cast for the character “7”,
3 votes for the character “a”, and 1 vote for the character
“6”. Then the probabilities of the entire string (6-order prefix
plus a single character) are {“1234567”: 0.6; “123456a”: 0.3;
“1234566”: 0.1}. See more details in Appendix E.
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Figure 5: Impacts of varied values of
δ (0.1M Rockyou→Rockyou_rest).

Our exploratory ex-
periment shows that in
the process of generating
1.8 million (M) guesses
(training with 6M CSDN
passwords using 30 deci-
sion trees), an average of
70% of the characters do
not get a vote in one-step
prediction, constituting the majority of the alphabet. This indi-
cates that RFGuess may not be good at generating previously
unseen characters.To address this issue, we employ the add-δ
smoothing technique [38] to smooth characters that do not
get a vote. For example, Pr(#|123456) = PrRFGuess(#|123456)+δ

1+δ·|Σ|
(where PrRFGuess(#|123456) means the probability of #
calculated by RFGuess when the input string is 123456, and
Σ is the character table of the training set). We have tested a
number of values of δ (e.g., 0, 0.01, 0.02, 0.001), and found
δ=0.001 is the best among all (see Fig. 5).

3.4 Experimental setups and results
Datasets. We evaluate the existing password guessing ap-
proaches and our RFGuess model based on 13 large real-
world password datasets (see Table 1), a total of 241.27 mil-
lion(M) passwords. Eight of our password datasets are from
English sites and five from Chinese sites. As Table 1 shows,
three datasets (i.e., 12306, ClixSense and Rootkit) are origi-
nally associated with various kinds of PII (e.g., name, birthday,
email). To enable extensive targeted guessing evaluation, we
match the non-PII-associated password datasets with these
three PII-associated ones through email, and this produces a
total of six PII-associated password datasets (see Table 2). For
targeted guessing based on password reuse, we obtain eight
password pair datasets by matching email (see Table 4).
Ethical considerations. Though ever publicly available on
the Internet and widely utilized in existing studies [19, 44,
46, 47, 63], these datasets are private data. Hence, we only

illustrate the aggregated statistical information and keep each
individual account as confidential in order to avoid bring-
ing additional risks to the corresponding victim. While these
datasets may be misused by attackers for cracking, our use is
both beneficial for the academic community to understand the
strength of users’ password choices and for security adminis-
trators to prevent creating weak passwords. As our datasets
are widely used and publicly downloadable on the Internet,
this facilitates fair comparison and good reproducibility.
Experimental setup. To well establish the generality and
effectiveness of our RFGuess, we evaluate it on both one-
site (intra-site) and cross-site guessing scenarios. For intra-
site scenarios, we randomly select 0.01M, 0.1M, and 1M
(M=million) passwords from Rockyou as the training set, re-
spectively, and randomly select 100,000 passwords from the
remaining dataset as the test set. Since the attacker is smart
and will constantly improve her training set to make it as
close as possible to the test set (to improve her success-rates),
our intra-site experimental methodology just reflects this sit-
uation (this methodology is quite routine in password re-
search [60, 63, 65]). Particularly, many sites (e.g., Yahoo [43],
Flipboard [4], Twitter [29] and Anthem [23]) have leaked
their user passwords more than once, and thus it’s practi-
cal/realistic to conduct/consider the intra-site guessing scenar-
ios. For cross-site scenarios, we apply the trained model (on
an older leaked dataset) to crack a newer leaked dataset (i.e.,
Rockyou→000Webhost and 000Webhost→Wishbone). Note
that we do not remove the identical password pairs (i.e., direct
reuse) that occur in the training sets from the test sets, because
the attacker has no prior knowledge of which passwords are
used by the target account, and excluding duplicate passwords
from the test set hinders the evaluation of a guessing model’s
fitting ability. We discuss this point in detail in Sec. 6.

We compare RFGuess with three leading guessers (i.e.,
PCFG [65], Markov [38], and FLA [39]). Also, we introduce
the Min_auto approach [55] to avoid the bias of a single
approach. The setups of each approach are as follows.

PCFG. The PCFG we use is consistent with [38], that is,
the probability of the L segment comes from the training set,
which is better than the original version in [65].

Markov. For the Markov model, due to the great influence
of order, this paper carries out the 3-order and 4-order exper-
iments at the same time, and adopts the Laplace smoothing
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(a) 0.01M Rockyou → Rockyou_rest
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(b) 0.1M Rockyou → Rockyou_rest
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(c) 1M Rockyou → Rockyou_rest
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(d) 0.01M Rockyou → 000Webhost
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(e) 0.1M Rockyou → 000Webhost
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(f) 1M Rockyou → 000Webhost

Figure 6: Guessing performance of our RFGuess in comparison with other approaches (i.e., PCFG [65], 3/4-order Markov [38], FLA [39] and Min_auto [55]) in
the intra-site and cross-site trawling guessing scenarios. Note that Min_auto [55] represents an idealized strategy: A password is considered cracked as long as
any of these five real-world password models cracks it. Rockyou_rest means the original Rockyou dataset excluding the corresponding training set.

and end symbol regularization as used in [38].
FLA. We use the source code of FLA [39], and follow its

recommended parameters in our experiments. More specifi-
cally, we train a model consisting of three LSTM layers with
200 cells (namely the “small” model in [39]) in each layer
and two fully connected layers, a total of 20 epochs.

RFGuess. As detailed in Appendix B, we train a random
forest with 30 decision trees. Its minimum number of leaf
nodes is 10, the maximum ratio of features is 80%, and the
rest are in default of the scikit-learn framework [2].

Min_auto. It represents an idealized guessing approach
[55], in which a password is considered cracked as long as
any of these real-world guessing models cracks it.
Experimental results. Considering that the way of enumer-
ating large guesses is computationally intensive, we use the
Monte-Carlo algorithm [20] to estimate a password’s guess
number. That is, how many guesses it would take for an at-
tacker to arrive at that password when password guesses are
attempted in descending order of likelihood. Fig. 6 shows the
results. To accurately show the attack success rates of differ-
ent approaches, we give the concrete result values at some
specific guess numbers (i.e., 107 and 1014; see Table 10 in Ap-
pendix C). In intra-site guessing scenarios, our RFGuess per-
forms slightly better than FLA [39], and beats PCFG [65] and
Markov [38] beginning at around 107 guesses. In cross-site
guessing scenarios, the guessing success rates of our RFGuess
are slightly worse than FLA [39] within 1014 guesses, but are
significantly higher than PCFG [65] and Markov [38].

To demonstrate the generality of RFGuess, we evaluate it
with larger training datasets (i.e., 75% 000Webhost of size

11,474,930). Fig. 7 shows that, when using a ten million-
sized training set, RFGuess outperforms all its counterparts
in intra-site guessing scenarios, and is slightly better than (or
comparable to) its counterparts in cross-site guessing sce-
narios. This suggests that RFGuess is better at modeling
the guessability of passwords from the same (or similar) dis-
tribution. By employing the same training and test set (i.e.,
75% of 000Webhost→25% of 000Webhost), we also compare
RFGuess with dynamic dictionaries [46]. However, the suc-
cess rate of dynamic password guessing (DPG) [46] is only
0.13% within 5×109 guesses (which are the maximum num-
ber of guesses that can be reached using 75% of 000Webhost).
A plausible reason is that DPG is more suitable for extremely
large training sets, and this partially explains why the original
paper [46] uses the 1.4 billion-sized 4iQ as its training set.
Our RFGuess is just on the opposite: It is particularly suitable
for guessing scenarios where the training data is not abundant
(e.g., passwords from sites beyond USA, China, and Russia).

We further make an apples-to-apples performance compar-
ison of these approaches in three key criteria (i.e., training
time, model size, and time to generate guesses), and sum-
marize the comparison results in Table 7 (see Appendix C
for details). In all, RFGuess has relatively high training ef-
ficiency (it only takes 0.3 hours to train five million data),
but it has relatively large model size (i.e., 4.5G when the
compress parameter in the joblib tool is set to three), and
its guess generation is relatively slow (about 130∼677 pass-
words/s). This makes RFGuess particularly suitable for online
password guessing attacks where the number of guesses al-
lowed is small. In practice, online password guessing is the
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(a) 75% 000Webhost→25% 000Webhost
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(b) 75% 000Webhost→Wishbone

Figure 7: Evaluate our RFGuess using 75% 000Webhost of size 11,474,930.

most concerning (and unmatured) scenario regarding pass-
word security [7,44,63], because offline guessing can be well
eliminated by slow/memory-hard hashes (e.g., Bcrypt and
Argon2), but online guessing is unavoidable and its success-
rate is rather high (see Tables 3 and 5) even if there are rate-
limiting/blocking mechanisms. This is because the guess num-
ber allowed for an attacker cannot be too small, otherwise the
system will suffer from DoS attacks, which explains why 100
in one month is recommended by NIST-SP800-63B [26].

If one wants to improve the password generation efficiency
of RFGuess, she can set the number of trees to one (i.e., use
the decision tree model). At this time, the password generation
speed can be increased to 1,520 passwords/s, while the attack
success rate is reduced by about 0.4%∼2% (see Fig. 9).
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Figure 8: Impacts of varied features on
RFGuess (Taobao→Taobao_rest).

Insights. To understand
the impacts of features,
we remove the relatively
unimportant 5-, 10-, and
15-dimensional features
according to the feature
importance ranking, and
remove 4-, 8-, and 12-
dimensional features ac-
cording to the character position information (e.g., the 4-
dimensional features of character 123 in prefix 123456 are
removed in turn). Results show that the training time and
password generation speed of our RFGuess are improved by
up to 35%, while the success rates remain stable (see Fig. 8).

Thus, when designing new password guessing models
based on classical machine learning techniques, one can cre-
ate as many new features as possible (e.g., the number of
character types contained in the prefix, the Shannon entropy
of the prefix, etc.) to explore more effective password rep-
resentation. Then, the most effective features can be figured
out by measuring the feature importance score and/or success
rates. This improves the training efficiency while maintaining
the success rates, which makes our RFGuess highly scalable.

4 RFGuess-PII: A targeted password guessing
model based on PII

We now use random forest [14] to design a targeted password
guessing model based on PII, called RFGuess-PII. We first
analyze the limitations of the PII matching strategy used in
current targeted guessing models, and then propose a more

effective PII matching algorithm. Based on this algorithm and
the RFGuess model in Sec. 3, we propose RFGuess-PII and
demonstrate its effectiveness through large-scale experiments.

4.1 Problems in mainstream methods
Previous PII matching methods. Li et al. [36] first proposed
a PII matching method similar to PCFG [65] (for example, N4
represents name information with a length of four like Wang).
At CCS’16, Wang et al. [63] pointed out that this method has
severe limitations. Instead, they introduced a series of type-
based PII tags and achieved drastically better results. More
specifically, they use N standing for name usages, while N1
for the usage of full name, N2 for the abbr. of full name,· · · ;
U stands for username usages, U1 for full username, U2 for
the letter segment of the user name,· · · . We summarize these
notations in Table 6 of Appendix C.

In the process of training, the leftmost and longest matching
strategy is adopted for disambiguation when matching the PII
contained in the passwords. For example, if a user’s username
is Alice0102, name is Alicexxx, birthday is 19930102, and
password is Alice01021993, then according to the leftmost
and longest matching strategy used in [63], it should be rep-
resented as U1B5 instead of N3B2 (where B5 represents the
birthday year, N3 represents the full name of the surname, and
B2 represents the birthday in the MY format), because the
username Alice0102 will be matched first.

This matching strategy uses a greedy strategy to first match
the longest PII at the leftmost position, and it is not optimal.
“Optimal” here refers to the global optimum for the entire
training password set rather than the local optimal for a sin-
gle password. To explain the concept of global optima more
clearly, we introduce information entropy for analysis. The
Shannon Entropy [51] metric is proposed in 1948 to measure
the uncertainty of a distribution. The greater the information
entropy, the more random the password distribution, and the
more secure the password set. Thus, for the same password set,
the feature extraction and representation method that makes
the password set’s information entropy lower can better make
use of the characteristics of the training set.

4.2 New PII matching algorithm
The current strategy for PII matching is not optimal because
there will be ambiguities (multiple representations for the
same password) when matching, and as in the above example,
using the leftmost and longest matching strategy would result
in heuristically selecting one option for PII tagging. This
cannot minimize the information entropy. In other words, it
cannot entirely and accurately extract the PII usage behavior
of the entire user group. To address this issue, we propose an
approximately optimal PII matching algorithm.

The first step of our proposed algorithm is similar to the
type-based PII matching method [63], which subdivides the
various possible transformations of PII and use different tags
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Table 2: Basic information about our PII datasets.
Dataset Language Items num Types of PII useful for this work

PII-12306 Chinese 129,303 Email, User name, Name, Birthday, Phone
PII-CSDN Chinese 77,216 Email, User name, Name, Birthday, Phone
PII-Dodonew Chinese 161,517 Email, User name, Name, Birthday, Phone
PII-ClixSense English 2,222,045 Email, User name, Name, Birthday
PII-000Webhost English 79,580 Email, User name, Name, Birthday
PII-Rootkit English 69,418 Email, User name, Name, Birthday

to represent them. Notably, we use digital tags instead of letter
tags (e.g., N1∼N7,B1∼B10 in TarGuess-I [63]), and summa-
rize these notations in Table 6 of Appendix C. Thus, they can
be conveniently used as input to the machine learning model
for training. For example, starting from 1,000 to stand for
name usages, where 1,000 for the usage of full name, 1,001
for the lowercase letter of last name,· · · .

The second step is to list all the possible representations
with PII tags for each of the passwords in the training set
(e.g., three representations {4000, 2001}, {4001, 2003, 2004,
2001} and {1002, 2003, 2004, 2001} for Alice01021993).
After that, we sort the representations by frequency from
high to low. Specifically, the most frequent representation
(e.g., {4000, 2001}) is denoted as R1, the second is denoted
as R2 (e.g., {4001, 2003, 2004, 2001}),· · · . Then, we use R1
to represent all passwords that can be represented as R1, and
the frequency of each of their remaining representations (e.g.,
{4001, 2003, 2004, 2001} and {1002, 2003, 2004, 2001}) sub-
tracts one. Next, the remaining passwords (remove those al-
ready represented by R1) that can be represented as R2 are all
represented by R2, and their frequency of the remaining repre-
sentations continues to subtract one. The process repeats until
the frequency of all remaining representations is less than or
equal to one. Finally, the password whose representation has
not been determined is represented by the shortest structure,
and the algorithm ends. We formalize this process in Algo-
rithm 2, and demonstrate its generality and effectiveness both
theoretically and experimentally (see Appendix F).

4.3 New targeted guessing model based on PII

Based on RFGuess proposed in Sec. 3 and the approximately
optimal PII matching algorithm, we now propose a new tar-
geted password guessing model RFGuess-PII. The password
training and generating process is similar to the trawling
guessing scenario. The difference is that the PII string in
the password is replaced with the corresponding digital tag
through PII matching, and then the password set containing
PII tags is used for training. Also, the generated guesses may
have PII tags, and they need to be replaced with the corre-
sponding PII string of the target user to obtain a final guess.

Similar to the construction of character features in trawling
guessing scenarios, we also use four-dimensional features to
represent PII tags in targeted guessing scenarios. Specifically,
we have used 〈character type, the rank of this character in its
type, keyboard row number, and keyboard column number〉
to represent an ordinary character. For PII tags, they are sim-

ilar to ordinary characters except for the lack of keyboard
features. Therefore, we use 〈PII type, PII serial number, 0,
0〉 to represent PII tags. The last two 0s are to align with the
four-dimensional features of ordinary characters.

4.4 Experimental setups and results
Datasets. In Table 1, only 12306, ClixSense and Rootkit
datasets are with PII (name, email, birthday, etc.). To enable
extensive targeted guessing evaluation, we match the non-PII-
associated datasets with these PII-associated ones through
email, and this produces six PII-associated password datasets
(i.e., PII-12306, PII-CSDN and PII-Dodonew, PII-ClixSense,
PII-000Webhost and PII-Rootkit; See Table 2). Among them,
Rootkit is a hacker forum, and 000Webhost is a free web host-
ing site and is mainly used by web administrators. Therefore,
the users of both sites are likely to be more security-savvy
than normal users, and this has been observed in [63]. We use
these six PII-associated datasets to conduct six comparative
experiments. In each experiment, half of each dataset is used
as the training set, and the other half is used as the test set as
recommended in [15, 60, 63] (see Table 3).
Approaches for comparison. The current mainstream tar-
geted guessing models employing PII mainly include the
TarGuess-I [63] based on PCFG [65] and the Targeted-
Markov [61] based on the Markov model [38]. Note that
the original Targeted-Markov proposed by Wang et al. [61]
exploits only name information, but it can be easily extended
to incorporate user name, birthday, email, etc. For a more com-
prehensive comparison, we apply our proposed PII matching
algorithm to FLA [39], leading to FLA-PII. To our knowledge,
this is the first time that FLA can capture PII semantics.

More specifically, we first identify the PII in a password,
and encode it to a one-dimensional array based on the dictio-
nary order (e.g., wang666→[1001,6,6,6], where 1001 and 6
are the numerical labels corresponding to the surname and
the digit 6 in the dictionary, respectively.). Here, we use an
embedding layer rather than the canonical one-hot encoding
layer to reduce the sparsity of the embedding vector due to the
large size of PII tags. Then, the embedded vector is fed into
LSTM neural networks. Finally, the dense layer converts the
hidden layers into the output size. The output is the possible
subsequent labels with probabilities, and FLA-PII chooses
the next label with the highest probability. Here we set the
embedding size to 128, and the remaining parameters are
completely consistent with trawling FLA [39] in Sec. 3.4.

Note that, theoretically, an online guessing attacker can
only perform very limited guessing attempts if the protec-
tion measures (e.g., lockout, rate-limiting [22]) are deployed
on the server. For instance, NIST requires that “the verifier
(server) shall limit consecutive failed authentication attempts
on a single account to no more than 100” [26]. However,
in reality, as revealed in [37], 72% of the top 182 websites
“allow frequent, unsuccessful login attempts without account
lockout or login throttling”. Overall, the system has to balance
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Table 3: Comparison of four PII-based models.†
Experimental setup RFGuess- 4-order Tar- Tar- FLA [39]-

Guessing scenario Guess # PII Markov [61] Guess-I [63] PII

50% PII-12306
10 11.19% 11.00% 10.60% 8.41%
102 21.37% 20.91% 20.30% 17.47%

↓ 103 28.89% 28.20% 26.30% 24.01%
50% PII-12306 107 52.75% 42.00% 44.79% 50.51%

1014 98.42% 87.68% 48.12% 97.50%

50% PII-CSDN
10 21.24% 20.13% 21.20% 15.94%
102 28.23% 27.01% 27.90% 21.96%

↓ 103 33.30% 32.96% 33.00% 26.97%
50% PII-CSDN 107 53.14% 46.94% 42.23% 52.85%

1014 94.68% 80.74% 44.00% 94.51%

50% PII-Dodonew
10 9.54% 9.52% 9.40% 6.07%
102 20.45% 20.33% 19.10% 16.00%

↓ 103 30.21% 30.29% 26.50% 24.93%
50% PII-Dodonew 107 61.21% 59.62% 59.45% 60.72%

1014 99.12% 92.61% 64.86% 93.80%

50% PII-Clixsense
10 5.99% 5.87% 4.90% 4.12%
102 9.51% 9.05% 7.70% 7.67%

↓ 103 13.48% 12.06% 11.70% 11.15%
50% PII-Clixsense 107 48.30% 41.01% 43.48% 33.75%

1014 92.38% 85.33% 56.38% 82.60%

50% PII-Rootkit
10 6.96% 6.77% 6.77% 3.97%
102 11.40% 11.07% 10.46% 8.21%

↓ 103 14.88% 15.17% 14.59% 12.45%
50% PII-Rootkit 107 39.45% 35.73% 27.73% 38.70%

1014 89.81% 76.01% 33.24% 86.91%

50% PII-000Webhost
10 3.86% 3.75% 0.90% 1.76%
102 7.31% 6.89% 6.10% 4.64%

↓ 103 10.88% 10.52% 9.54% 7.71%
50% PII-000Webhost 107 25.56% 22.26% 26.17% 25.73%

1014 77.10% 60.45% 36.43% 70.60%
†A bold value (attack success rate) means that it is the highest one in each row.

online guessing attacks and denial-of-service (DoS) attacks.
Without loss of generality, we set T = 103 as with mainstream
online-guessing literature [44, 63] in our experiments.

In reality, there also exist offline attack scenarios that target
specific users. For example, after obtaining a leaked password
file, attackers will focus on some specific, most valuable ac-
counts (such as celebrities, politicians, or specific common
users deemed valuable/profitable), and devote more effort to
them. In this case, the number of guesses will be limited only
by the cost the attacker is willing to pay, which can be ex-
tremely large (e.g., >1010). Thus, as recommended by [20],
we also evaluate all the PII-models under larger guesses (i.e.,
1014) through the Monte-Carlo algorithm.
Experimental results. We design six targeted guessing sce-
narios, and the results are summarized in Table 3. For a more
comprehensive comparison, we further use the guess-number-
graph to evaluate the effectiveness of our RFGuess-PII with
its counterparts, and put the details in Appendix C (see Figs.
10 and 13). For a fair comparison, all three counterpart tar-
geted models (i.e., TarGuess-I [63], Targeted-Markov [61] and
FLA [39]-PII) employ our improved PII matching algorithm.
Results show that RFGuess-PII achieves a slightly better at-
tack success rate in most cases within 10∼103 guesses. As the
number of guesses increases, the superiorities of RFGuess-
PII over its counterparts are enhanced. More specifically,
RFGuess-PII outperforms its foremost counterpart (i.e., FLA-
PII [39]) by 5.20%∼8.36% within 107∼1014 guesses.
Further exploration. We now show that our representation of
passwords can be easily transferred to other machine learning
algorithms. More specifically, we replace the random for-
est with Xgboost [16]/DecisionTree (We simply replace the
RandomForestClassifier class in our script with Xgboost
and DecisionTreeClassifier with all the remaining pro-
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Figure 9: Using Xgboost [16] and decision tree for password guessing: (a)
trawling guessing; (b) targeted guessing based on PII.

cessing flows unchanged), and perform two exploratory exper-
iments in both trawling and targeted guessing scenarios. Fig.
9 show that attack success rates of Xgboost and DecisionTree
(and also Targeted-Xgboost and Targeted-DecisionTree) are
comparable to state-of-the-art models. Notably, their param-
eters can be better tuned for potential optimization, and we
leave further exploration as future work.

5 RFGuess-Reuse: A new targeted guessing
model based on reuse

We now focus on modeling users’ password reuse behavior.
Based on our RFGuess in Sec. 3, we first design a targeted
guessing model called RFGuess-Reuse, and then conduct
large-scale experiments to demonstrate its effectiveness.

5.1 New targeted password guessing model
based on reuse

We now describe how the random forest model can be used for
password reuse-based scenarios. Inspired by TarGuess-II [63],
we also consider both structure-level and segment-level trans-
formations. First, we count structure-level transformations
like L8S2→L7D3) by calculating the editing matrix for each
password pair in the training set. Then we train a segment-
level transformation (i.e., a transformation within a string of
the same type, e.g., password→passwor in letter segment)
model based on random forest. The formula for calculating
the probability of generating a new password is

Pr(pw1→ pw2) =

(
n∏

i=1

Pr(Pt i
pw1→pw2

)

)
∗ pn, (6)

where Pt i
pw1→pw2

stands for a specific transformation
operation (e.g., inserting the digital structure 123) from pw1
to pw2, and pn represents the probability of ending after n
operations. For example, given a password password!!,
Pr(password!!→p@sswor123)=Pr(password!!→passwor
d)∗Pr(password→passwor)∗Pr(passwor→passwor123)∗
Pr(passwor123→p@sswor123)∗p4, where Pr(password!!
→password) (i.e., L8S2→L8) and Pr(passwor→passwor12
3) (i.e., L7→L7D3) are the probability of structure-level trans-
formation, and can be obtained by statistics of password pairs
in the training set; Pr(password→passwor) (i.e., delete a
single character d) and Pr(passwor123→p@sswor123) (i.e.,
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a→@) are the probability of segment-level transformation,
and can be obtained by the trained random forest model; p4
is the probability of ending after four transformations, and
can also be obtained by statistics of the training set.

For structure-level transformation, we take the insertion
of the structure 123 (i.e., D3) at the tail of passwor as
an example. Its probability is Pr(passwor→passwor123)=
Pr(T1)∗Pr(T2)∗Pr(123|D3), where T1 denotes the event “In-
sert structures at the tail of passwor”, and Pr(T1) can be ob-
tained by counting the reuse behaviors in the training set
according to the length distribution of the training set (see
Table 13 in Appendix G); T2 denotes the event “Insert the
specific structure D3”, and both Pr(T2) and Pr(123|D3) can be
obtained by training a PCFG model [38].

For segment-level transformation, we consider four atomic
transformations based on [63]: head insertion, head deletion,
tail insertion, and tail deletion. For three types of segments
(i.e., letters, digits, and special character), we train random
forests in positive order and reverse order, respectively, and
this generates 3×2 models in total. For example, when deter-
mining the probability of performing the tail insertion oper-
ation of passwor, we input passwor into the positive order
letter random forest to obtain this conditional probability;
when determining the probability of performing the head in-
sertion operation, we input rowssap into the reverse order
letter random forest to obtain this conditional probability.

We take the positive order letter random forest as an ex-
ample, and consider the operations related to the last char-
acter. When training the password password!!, three be-
havioral characteristics need to be trained for the letter string
password: inserting characters, unchanged, and deleting char-
acters. For inserting characters, our model uses asswor as
the training input, and uses d as the training output; for un-
changed, our model uses ssword as the training input, and
uses the end character Es as the training output; for deleting
characters, our model uses ssword plus any letter as the train-
ing input and uses -1 as the training output (i.e., the input is
sword* and the output -1, where * can be any letter).

Here we give a toy example of how to calculate the prob-
ability of a segment-level transformation. Given a password
password!!, it can be divided into two segments L8 and S2
(denoted as p1,p2), and we calculate the probability of delet-
ing d at the tail of the first segment p1 (denoted as event
Pt

1) as Pr(Pt
1)= Pr(S1)∗Pr(S2)∗Pr(S3)∗Pr(S4), where S1 de-

notes the event “Perform segment-level transformation" , and
Pr(S1) can be obtained by counting the reuse behavior of the
training set; S3 and S4 denote the event “Perform tail dele-
tion operation on p1” and the event “Delete character d at
the end of p1”, respectively, and both Pr(S3) and Pr(S4) are
calculated by the trained random forest model; S2 denotes the
event “Perform operation on p1”, and Pr(S2) is calculated by

1−Pr(Es|p1)+1−Pr(Es|p1)∑2
i=1(1−Pr(Es|pi)+1−Pr(Es|pi))

, where p1 represents the inversion

of p1 (i.e., password→drowssap), and Pr(Es|p1)/Pr(Es|p1)
is obtained by the positive/reverse order random forest model;

Table 4: Basic information about password reuse datasets.

Dataset Language Items # Same
password pair

# Similar
password pair†

CSDN→126 Chinese 195,832 62,686 47,690
CSDN→12306 Chinese 12,635 7,079 2,815
12306→Dodonew Chinese 49,775 35,395 9,386
CSDN→Dodonew Chinese 5,997 2,040 1,597
000Webhost→Clixsense English 150,273 35,470 41,731
000Webhost→LinkedIn English 231,452 50,875 52,731
000Webhost→Yahoo English 36,936 5,960 6,303
000Webhost→Mate1 English 51,942 7,613 25,504
† Similar means that the similarity score s is within [0.5, 1.0], and it is calculated

as s = 1−EditDistance(pw1, pw2)/max(|pw1|, |pw2|).

“1−Pr(Es|p1)” represents the probability of performing the
tail operation (because Pr(Es|p1) represents the probability
of unchanged operation), and “1−Pr(Es|p1)” represents the
probability of performing the head operation.

The formula of calculating Pr(S2) is used to solve the prob-
lem of unequal operation probability of each segment. For
instance, the structure of password!! is L8S2, and the op-
eration probability (e.g., insertions or deletions) on differ-
ent segments (i.e., L and S) is not equal in practice, while
TarGuess-II [63] regards it as equal in the structure-level. To
address this issue, we treat the probability of each segment
(take L segment as an example) be expressed by the ratio
of “the sum of the operation probabilities of L segment (i.e.,
password) to that of all the segments (L and S segments)”.

In the guess-generation phase as with [63], after each oper-
ation performed on the original password, the corresponding
probability is calculated and inserted into a priority queue,
and the guess with the highest probability is output. Then
we repeat this process until the number of generated guesses
reaches the predefined threshold (e.g., 103).

5.2 Experimental setups and results
Datasets. We select four English and four Chinese datasets to
conduct experiments on password-reuse guessing scenarios
(see Table 4). Among them, 000Webhost→ClixSense and
CSDN→126 are selected as the training set for English and
Chinese guessing scenarios. We take the dataset “000Web-
host→ClixSense” as an example. It is obtained by matching
two datasets (000Webhost and ClixSense) through email and
consists of password pairs like (emailUi , pwi1, pwi2) for user
Ui. In the training phase, Ui’s password pwi1 comes from the
1st dataset (000Webhost), and the attackerA learns/trains how
it can be used to guess pwi2 from the 2nd dataset (ClixSense).
Then, suppose the dataset “000Webhost→Yahoo” is used
for testing. A exploits pw j1 from 000Webhost as victim j’s
leaked password, and uses the trained password model to
generate guesses until pw j2 from Yahoo is generated.

We compare our proposed model with TarGuess-II [63]
and Pass2Path [44]. TarGuess-II and our RFGuess-Reuse
require additional PCFG structure dictionaries (see Sec. 5.1)
and popular password dictionaries (see Sec 4.2 in [63]), and
we maintain the same datasets for these two models. For
Pass2Path, we use the recommended parameters in [5] to
train the model. Similar to the targeted guessing scenarios
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Table 5: Comparison of three password reuse models.†

Experimental setup RFGuess- Pass2- TarGuess-
Guessing scenario Guess number Reuse Path [44] II [63]

CSDN → 12306
10 68.41% 68.80% 68.13%
100 73.09% 70.72% 73.19%

1,000 75.86% 72.16% 75.57%

CSDN → Dodonew
10 48.59% 48.82% 48.44%
100 53.86% 51.79% 54.56%

1,000 57.71% 53.84% 57.58%

12306 → Dodonew
10 84.14% 83.44% 84.11%
100 86.00% 85.69% 86.34%

1,000 87.65% 86.78% 87.58%

000webhost → Mate1
10 27.70% 25.11% 30.17%
100 31.29% 26.42% 32.14%

1,000 33.77% 27.73% 34.37%

000webhost → LinkedIn
10 35.67% 32.65% 36.17%
100 37.77% 34.06% 38.16%

1,000 39.52% 35.69% 39.72%

000webhost → Yahoo
10 26.53% 24.84% 27.12%
100 28.59% 25.87% 28.69%

1,000 30.13% 26.99% 30.19%
†A value with dark gray (resp. light gray) represents the highest one (resp. 2nd one).

based on PII, we also generate 103 guesses for each model.
Table 5 shows that RFGuess-Reuse achieves the best or

2nd best results among three models. In particular, within
103 guesses, the attack success rates of TarGuess-II [63] and
our RFGuess-Reuse are about 1%∼7% higher than that of
Pass2Path [44]. For English datasets, although the attack suc-
cess rate of RFGuess-Reuse is slightly lower than that of
TarGuess-II, it is still 7%∼22% higher than Pass2Path.

6 Discussion
We now discuss the security implications of this work and our
insights on online/offline password guessing.
Honeywords. At CCS’13, Juels and Rivest [34] proposed a
decoy password mechanism to timely detect password file
compromises, called honeywords. This mechanism can gen-
erate k−1 (e.g., k=20 in [34]) honeywords for each account,
and both the real password and its corresponding honeywords
are stored together. In addition, the index of each real pass-
word is stored in another server named honeychecker. When
an attacker tries to log in with a honeyword, the system signals
a possible leak. As a leading password model, RFGuess can
be potentially employed to generate honeywords to timely
detect password leakage. In this application scenario, the
model size and password generation speed are not particu-
larly important since the server only needs to generate 20∼40
honeywords (as recommended by [64]) for each account, and
such generation is conducted only once for an account. For
example, the Markov/TarMarkov model employed by the hy-
brid method proposed in [64] can simply be replaced by our
RFGuess/RFGuess-PII to generate flatter honeywords (that
are harder to be differentiated from real passwords).
Feature importance score. As shown in Sec. 3.2, RFGuess
can efficiently identify the dominant factors of password secu-
rity through the feature importance score to resist against data-
driven guessing. For example, we only need to set the number
of character classes as a password prefix feature, and RFGuess

can automatically show if it is one of the dominant factors
impacting password security through the feature importance
score. This can help administrators enforce more effective
password policies. For example, more character classes con-
tribute marginally improvement in password security due to
the imbalanced use of symbol strings, while more segments
(i.e. a continuous string whose characters have a strong cor-
relation) can significantly help resist against guessing [58].
Also, the feature importance score allows users to understand
which dimensions of a character (e.g., type, continuity, and
position-information) impact the password security to what
extent, thus helping them create more secure passwords.
Online/Offline password guessing. Before cracking, the of-
fline guessing attacker has the salted-password accounts, but
generally has no prior knowledge of which passwords are used
by the target accounts, and thus it is more realistic/reasonable
to do not exclude duplicate passwords in the training set from
the test set when evaluating a guessing algorithm, as done in
Sec. 3.4 (and [38,39,57]) and opposed to [31,65,67]. Besides,
excluding duplicate passwords can only evaluate/simulate the
generalization ability, but overlooks the evaluation of fitting
ability. In practice, the generalization ability corresponds to
offline guessing scenarios with relatively large guess num-
bers (e.g., >107). Although previous work [24] suggested
that 1014 could be a lower boundary for offline guessing, the
size of guessing dictionaries explicitly generated by existing
password guessing literature (e.g., [38, 39, 47, 65]) generally
does not exceed 1011 (due to the limitation of generation
speed and computing resources). This implies that the practi-
cal significance of guessing algorithms’ generalization ability
is mainly highlighted in 107∼1010 guesses. In contrast, the
fitting ability mainly corresponds to online guessing scenarios
with relatively small guess numbers (e.g., <107), while online
guessing is the most concerning threat that normal users need
to devote efforts to mitigate [7,24,63]. Thus, when evaluating
a guessing model/algorithm, it is of practical significance to
consider both the fitting ability and generalization ability.

In all, it is more realistic to do not exclude duplicate pass-
words in the training set from the test set. Actually, this prac-
tice has been preferred in password research (see [38,39,57]),
but we for the first time explain why it is acceptable.

7 Conclusion

This paper, for the first time, introduces classical machine
learning techniques for password guessing, and designs three
new guessing models for the three most representative guess-
ing scenarios: trawling guessing, targeted guessing based on
PII and on reuse. Extensive experiments with 13 real-world
datasets demonstrate the effectiveness and scalability of our
models. This work provides a brand new technical route for
modeling users’ password guessability and opens up new
directions for designing effective password guessing models.
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A Algorithm applicability analysis

In this section, we analyze the feasibility of several classical
machine learning algorithms that tackle multi-classification
tasks when applied to password guessing.
Support vector machine (SVM). SVM [42] maps the sam-
ple space to a high-dimensional space through a nonlinear
function, so that the sample is linearly separable in the fea-
ture space. The goal of SVM is to find a hyperplane that
maximizes the distance between the points closest to the de-
cision boundary in samples of different classifications. The
potential problem is that SVM is susceptible to noise inter-
ference. More specifically, due to the uncertainty of the pass-
word, that is, any string/character may be followed by any
string/character, the sample space is noisy. As a result, it is
not efficient when applying SVM to password guessing.
K-means clustering. K-means [28] is an unsupervised clus-
tering algorithm, and its goal is to classify similar samples
into a specific category automatically. Specifically, the algo-
rithm first selects K samples randomly as the initial clustering
center. Then the distances between each sample and K centers
are calculated. Next, each sample is assigned to the nearest
center, and the cluster center for each category is recalculated
by the mean value. This step is repeated until the termination
condition is met. However, when applying this algorithm to
password guessing, several tricky problems exist. First, it is
not easy to calculate the probability of classification. Second,
the algorithm is difficult to converge when the samples are
noisy. Third, the value of K needs to be set manually, and
different K values will get pretty different results.
K-nearest neighbor algorithm (KNN). The core idea of
KNN [18] is that if most of the K nearest neighbor sam-
ples of a given sample in the feature space belong to a spe-
cific category, then the given sample is classified into this
category. Compared with the statistical-based models (e.g.,
Markov [41]), this classification method has the potential to
address the issue of data sparseness (since it’s based on sam-
ple similarity). However, the calculation amount of KNN is
relatively large, and the value of K is difficult to determine.
In particular, this algorithm relies heavily on the quality of
feature construction, and the similarity is not learnt by the
algorithm itself, but relies on artificial definitions.
Random forest. Random forest [14] integrates multiple deci-
sion trees (it is a predictive model, which represents a mapping
relationship between object attributes and object values) in
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Table 6: The notations used in this paper.†

Notations Descriptions

Bs Es Begining symbol and Ending symbol

Ln Dn Sn The letters, digits and special characters strings with length n

N1∼N10

N stands for name usages,

while N1 for the usage of full name,

N2 for the abbr. of full name (e.g., lw from “lei wang”),· · · .

B1∼B5

B stands for birthday usages,

B1 for full birthday in YMD format (e.g., 19820607),

B2 for full birthday in MY, · · · .

U1∼U5

U stands for username usages,

U1 for full username,

U2 for the letter segment of the user name,· · · .

tdc tis Sp

tdc means deleting a character from the tail;

tis means inserting a structure from the tail;

Sp means special operation (e.g, leet and capitalization).

parallel through ensemble learning and votes together to get
the final result. When random forest is applied to password
guessing, the decision tree handles classification problems
similarly to KNN. That is, strings with similar features are
assigned to the same leaf node. The difference is that there
is no need to determine the value of k, and the calculation
amount is relatively small. For features that have never ap-
peared before, the algorithm will classify them according to
the samples with similar features in the leaf nodes.
Boosting. The Boosting algorithm [50] belongs to ensemble
learning. Its main idea is to reduce the training error by iter-
atively training multiple weak classifiers, and then perform
weighted fusion of these weak classifiers to produce a strong
classifier. It can better control the generalization error while re-
ducing the training error. At the same time, Boosting can add
regular terms to prevent overfitting and is insensitive to noise.
In the application of password guessing, the Boosting and
its variants can also overcome the limitations of the Markov
model well. While it’s likely to be suitable for applications in
password guessing, the training and guess-generation speed
are relatively slow in our preliminary exploratory experiments.
Thus, we leave related research as future work.
Algorithm analysis summary. Based on the above analysis
and our preliminary exploratory experiments, we find that
ensemble learning tends to be more suitable for password
guessing. In this work, we mainly take Random forest [14]
as a typical case study. As for the research on other machine
learning techniques unexplored (e.g., LightGBM [35], Stack-
ing and its variants [48]), we leave it as future work.

B Parameter selection

As far as we know, there are few scientific methods to find the
best hyperparameters. However, a task-oriented analysis along
with a number of empirical experiments provide a promising

Table 7: Performance of different trawling guessing models.†

Model RFGuess PCFG [65] 3-order Markov [38] FLA [39]
Training time 0.3h 24s 102s 16h
Model size 4.5G 93.2M 1.4G 5.8M
Generated PW/s 130 82,372 13,303 2,500

† CPU: Xeon silver 4210R 2.4GHz; GPU: GeForce RTX 3080 (5M dataset).

way: Since the password length of most users is at least six
[38, 59], the order of our model is set to six. In this way, the
total number of prefixes (6-order strings) is about 8.9∼10.4
times the number of passwords, so the minimum number
of samples in each leaf node is set to 10. For the number
of trees, we take the CSDN dataset as an example, and set
this value to 10, 30, 50, and 70, respectively. We find that
when the number of trees is >30, the increase in the attack
success rate is very limited (<0.5%). Also, the greater the
value, the larger the RAM consumed during training (e.g.,
with 30 trees and five million training sets, it occupies about
40GB of RAM), and the slower the password training and
generating will be. Therefore, we set this value to 30. In
addition, the maximum ratio of features is determined by
the importance score of each feature after our preliminary
exploratory experiment (see Sec. 3.4). Compared with the
complex parameters (e.g., number and type of layers, number
of neurons per layer, activation function, etc.) of deep learning
based models, the hyperparameter tuning of random forest
are more concise and straightforward.

Note that, we have conducted parameters tuning for deep
learning-based models implemented in this paper (i.e., FLA
[39] and Pass2Path [44]). For FLA, we have initially referred
to the parameter choices (i.e., the larger model that performs
better in the original paper [39]) in an existing paper (IEEE
S&P’21 [47]) that takes FLA as a baseline, but found its guess-
ing success rate is low due to the small training-set regime. So
we adopt the setup of the “small” model discussed in [39] and
get significantly better results. For Pass2Path, we have tried to
adjust the original setup in [44] (i.e., lowering the number of
LSTM layers from three to two, and lowering the hidden size
from 128 to 64). However, we find that its guessing success
rate decreases by 1%∼3% after the parameter adjustment. So
we retain the original parameter settings.

C Supplementary experiment results

We put some additional experimental results in this section to
show the performance of RFGuess against other models more
thoroughly. Table 10 summarizes the concrete result values
at some specific guess numbers in the trawling guessing sce-
nario, and Figs. 10, 13 and 16 are the guess-number-graph of
targeted guessing scenarios. Note that we have also compared
our RFGuess-PII with other PII-models in cross-site guessing
scenarios, and Fig. 15 shows the results.

We compare different approaches in terms of training time,
generation speed as well as trained model size. Table 7 re-
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Table 8: Model size of different PII-based models.†

Model RFGuess-PII TarGuess-I [63] 3-order Tar-
Markov [61] FLA [39]-PII

Model size 101M 893K 12.2M 5.8M
†CPU: Xeon silver 4210R 2.4GHz; GPU: GeForce RTX 3080 (50% CSDN-PII).

Table 9: Model size of different reuse-based models.†

Model RFGuess-Reuse Pass2Path [44] TarGuess-II [63]

Model size 121M 40.1M 1.04G
†CPU: Xeon silver 4210R 2.4GHz; GPU: GeForce RTX 3080 (CSDN→12306).

veals that statistics-based models (i.e., PCFG [65] and 3-order
Markov [38]) require the shortest training time, followed by
our RFGuess, and FLA [39] is the longest. Our RFGuess has
the largest model size even after the compress (we set the com-
press parameter in the joblib tool to three and the number of
trees to 30), but its fast training speed enables it to be trained
on site without the need to save/maintain model files, and this
property is quite desirable. While computational complexity
is not particularly important for online guessing, we give the
detailed model size of all tested models in targeted guessing
scenarios, and the results are shown in Tables 8 and 9.

As for the guess-generation speed, RFGuess is first built on
the scikit-learn framework [2], which does not support GPU
acceleration. As a result, the generation speed is low: 130
passwords/s. We further migrate our RFGuess to the cuML
framework (which supports GPU acceleration) [1], and the
generation speeds increase by 5.2 times to 677 passwords/s
in our preliminary experiments with 1,000 training data. Be-
sides, if we use the decision tree model (i.e., set the number
of trees to one), the password generation speed will be further
increased to 1,520 passwords/s. In general, for online pass-
word guessing, an account should have been blocked quickly
after a predefined number of failed login attempts (e.g., 100
and 1,000 are typical values considered by the main-stream
standard [26] and academic literature [44, 63]); For offline
guessing, memory hard hash algorithms such as SCRYPT or
Argon2 are recommended [26], and they might move offline
attackers closer to 106∼107 guesses [10]. Thus, the guess-
generation speed of RFGuess is practically acceptable.

D Problems in mainstream approaches

PCFG. The core assumption of PCFG [65] is that different
types of segments (i.e., letter, digit, and special character)
in a password are independent. This is because the associa-
tion between segments is much smaller than that within seg-
ments for most passwords. However, there exist some popular
passwords that contain keyboard patterns or specific trans-
formations, such as “1qa2ws3ed” and “p@ssw0rd” with the
basic structure “D1L2D1L2D1L2” and “L1S1L3D1L2”. Such rel-
atively long structures have a very low probability in the train-
ing set. When generating such passwords, the probabilities of
each segment are inevitably required to be multiplied. This
leads to a extremely low generation probability of these pass-

words, making their strength overestimated. Moreover, to our
knowledge, PCFG has no effective smoothing method for the
basic structure that has not appeared in the training set.

Markov. The order of the Markov model [41] determines
how many characters need to be considered when predict-
ing the following character. Intuitively, the higher the order,
the better the cracking effect. However, in IEEE S&P’14,
Ma et al. [38] demonstrates that the cracking success rate is
best when the order is four, and a certain degree of overfit-
ting occurs when the order is too high. This is because the
Markov model calculates the conditional probability by the
Bayesian formula, and the calculation of the probability needs
to count the frequency of the string in the training set (i.e.,
Pr(ci|ci−d · · ·ci−1) =

Count(ci−d ···ci−1ci)
Count(ci−d ···ci−1·)

, where ci represents in-
dividual characters). When the order is too high, the frequency
of the prefix (i.e., n+1-gram string) in the training set is too
small or even zero (i.e., the data sparseness issue).

To address the issue of data sparseness, Ma et al. [38] pro-
posed a number of smoothing techniques, among which the
most straightforward and relatively effective technique is the
Laplace smoothing: One can add a small value (the recom-
mended value is 0.01) to the frequency of each character after
training. However, this smoothing technique is more just to al-
leviate this problem. We take the string *1234 as an example.
Generally, the string *12345 rarely or does not appear in the
training set, then Pr(5| ∗1234) = Count(5|∗1234)+0.01∑

α∈Σ +0.01·95 (here Σ is
the set of 95 printable characters) is still a tiny number even
after applying the smoothing technique. In reality, a practical
model should first consider the more important sub-string
1234 and then *1234. However, the 5-order Markov model
only considers the entire strings of length five and overlooks
some more important sub-string features.

Pass2Path. In 2019, Pal et al. [44] proposed a targeted guess-
ing model (called Pass2Path) based on deep learning. This
model is based on the transformation path between users’
reused password pairs. More specifically, it employs the
seq2seq model [17] for training, where the input is user’s
existing password, and the output is the transformation path.
However, there exist multiple transformation paths between
password pairs, but only one path will be used for training.
For example, password pair 12a3→12@ has two transforma-
tion paths. One is to delete 3 and then replace a with @, the
other is to replace 3 with @ and then delete a. Both of them are
possible paths with the same edit distance of two. However,
when the second path is used for training, the first path will
be regarded as noise, which is unrealistic. As a result, how to
determine which path to choose for training is a controversial
issue. In comparison, if we choose to count the number of
operations (e.g., number of substitutions and deletions), the
statistical results obtained by different transformation paths
will be the same. This inspires us more tend to propose a new
algorithm based on statistics of the transformation operation
number rather than the transformation path.
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Table 10: Comparison of the attack success rate of four different trawling guessing approaches.†

Experimental setup
RFGuess

4-order 3-order
PCFG [65] FLA [38] Min-auto [55]

Guessing scenario Number of guesses Markov [38] Markov [38]

#3: 0.01M Rockyou → Rockyou
107 36.76% 26.32% 27.35% 19.73% 31.63% 44.76%
1014 92.77% 75.47% 79.77% 20.24% 91.58% 94.27%

#1: 0.1M Rockyou → Rockyou
107 46.91% 38.84% 41.24% 36.68% 36.35% 55.66%
1014 94.59% 85.56% 89.34% 40.22% 92.33% 95.97%

#2: 1M Rockyou → Rockyou
107 54.22% 50.28% 45.01% 49.99% 44.07% 61.67%
1014 95.81% 91.30% 93.10% 58.78% 94.06% 97.11%

#6: 0.01M Rockyou → 000Webhost
107 6.19% 4.12% 4.06% 5.99% 4.24% 9.98%
1014 56.83% 31.04% 35.70% 7.19% 58.78% 63.00%

#4: 0.1M Rockyou → 000Webhost
107 9.61% 6.95% 7.35% 12.37% 7.40% 15.53%
1014 59.94% 41.29% 45.73% 19.00% 60.80% 66.47%

#5: 1M Rockyou → 000Webhost
107 12.56% 11.08% 9.05% 15.87% 9.92% 18.28%
1014 62.74% 48.88% 53.46% 34.04% 64.48% 70.15%

#7: 75% 000Webhost → 000Webhost
107 28.16% 19.29% 13.04% 22.89% 20.02% 31.56%
1014 76.88% 68.29% 71.32% 62.12% 76.52% 81.87%

#8: 75% 000Webhost → Wishbone
107 29.80% 25.79% 17.02% 28.09% 21.11% 37.07%
1014 93.26% 89.12% 91.35% 63.07% 94.50% 97.20%

† A bold value (i.e., the attack success rate) means that it is the highest one in each row (excluding the ideal Min-auto approach).

TarGuess-II. By observing the characteristics of users’ pass-
word reuse behaviors, Wang et al. [63] proposed TarGuess-II
in 2016. TarGuess-II [63] is based on PCFG [65] and defines
two types of transformations: the structure-level transforma-
tion (insertion and deletion of L, D, and S structure segments,
e.g., L6D3→L6) and the segment-level transformation (inser-
tion and deletion of characters in L, D, and S segments, e.g.,
123456→12345 in digit segment). We take the password pair
password and p@sswor123 as an example. The probability
is calculated by: Pr(password→ p@sswor123) = Pr(L8 →
tdc) ∗Pr(L8→ tis) ∗Pr(tis→ D3) ∗Pr(D3→ 123) ∗Pr(Sp→
Leet)∗Pr(Leet→ a,@), where tdc means deleting a character
from the tail, tis means inserting a structure to the tail, and Sp
means special operation (e.g, leet and capitalization).

Note that TarGuess-II [63] does not have the issue of trans-
formation path selection. However, it has the following three
shortcomings: (1) For structure-level transformation, since
the basic structure of some passwords (e.g., 1qa2ws3ed!) ap-
pears very rarely in the dataset, the probability of insertion
and deletion of each structure obtained through statistics on
the training set may lead to over-fitting. (2) For segment-level
transformation, the frequency in the training set is not accurate
because the probability of inserting and deleting characters in
the same segment is likely to be different. For example, the
probability of tail deletion for 123450 and 123456 is appar-
ently different. 123456 is likely to remain unchanged, while
123450 is likely to delete the last digit 0. However, the proba-
bility of inserting and deleting characters is the same for the
same structure segment (Here the basic structure of 123450
and 123456 are both L6). (3) Still considering the segment-
level transformation, if a character (e.g., #) is inserted after a

Algorithm 1: Password generation algorithm.
Input: The probability threshold T of generated passwords
Output: Passwords set X .

1 char_set = {PrintableCharacters}∪{Es};
2 P .push(Bs ∗ngram); /* P is the set of currently generated password

prefixes. */
3 L[Bs ∗ngram] = 1; /* L is the lookup table from currently generated

password prefix to probability. */
4 while !P .empty() do
5 current_pre f ix =P .pop();
6 next_char_prob = RandomForest(current_pre f ix);
7 for c in char_set do
8 new_prob = L[current_pre f ix]∗next_char_prob[c]
9 if new_prob > T then

10 if c == Es then
11 X .append(current_pre f ix);

12 else
13 P .push(current_pre f ix+ c);

L[current_pre f ix+ c] = new_prob;

14 return X

segment (e.g., 123456), the probability of this character is ob-
tained through a Markov model [38]. Since the Markov model
cannot deal with the low-frequency problem (i.e., data sparse-
ness issue) well, the probability calculation of TarGuess-II
also has the same problem when inserting characters.

E Password generation algorithm

Algorithm 1 briefly formalizes the process of generating pass-
words with our RFGuess. First, we take the password prefix
as the input of a trained random forest model to get the proba-
bility distribution next_char_prob of the next character. Then
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Algorithm 2: PII matching algorithm.
Input: Passwords set X = {pw1, pw2, ..., pwn}.
Output: Passwords with corresponding PII matching structures (P).

1 match_set = matchOrder(X );/* Get all PII structure
representations and their corresponding frequency of set X in
descending order. match_set is a priority queue.*/

2 item = match_set.pop(); /* item contains the PII structure
representation and its frequency i.e., (structure,frequency). */

3 while !match_set.empty() and item. f requency > 1 do
4 for pwi in X do
5 match_pwi = pwMatch(pwi)/* All PII structure

representations of pwi. */
6 if item.structure in match_pwi then
7 P .push((pwi, item.structure));
8 X .remove(pwi);
9 for remain_item.structure in match_pwi do

10 remain_item. f requency-=1;

11 while !X .empty() do
12 pw =X .pop();
13 structure = shortMatch(pw);/* The shortest PII matching

structure of pw. */
14 P .push((pw,structure))
15 return P

we insert a character to the end of the password prefix to gen-
erate a new password prefix. If the probability of the newly
generated password prefix is greater than the threshold T
(e.g., 1.2×10−8) , it is inserted to set P for subsequent pass-
word generation; otherwise, it is discarded. If the inserted
character is an end symbol (i.e., Es), it means that a new pass-
word has been generated, and we insert it to the passwords set
X . In the initialization phase, P contains only one password
prefix, namely Bs ∗n (n-order beginning symbol), and the cor-
responding probability is 1. In the generation process, the
password prefix in P will be continuously inserted and con-
sumed. When the P becomes empty, the algorithm runs to the
end. At this time, X contains all passwords with a probability
greater than the predefined threshold T .

F Evaluation of PII matching algorithm

Experimental evaluation. Considering that the Chinese
dataset contains complete PII (which can better reflect the
advantages of our PII matching algorithm), we take three Chi-
nese datasets as examples, and compare the attack success
rate of TarGuess-I [63] and Targeted-Markov model [61] (4-
order) after using the two PII matching methods, respectively
(the results can be seen in Table 11). We find that, within
100 guesses, our proposed PII matching algorithm can im-
prove the guessing success rate of TarGuess-I [63] by 7%,
and can improve Targeted-Markov [61] by 13%. For three
English datasets, our PII matching algorithm has not much
optimization effect. This is because: 1) Many PII attributes
in English datasets are missing; 2) The three English PII-
associated passwords are from more security-savvy users
(i.e., hackers/administrators/tech-savvyers) [63]. Specifically,
Rootkit is a hacker forum, and 000webhost is a free web host-

Table 11: The effect of PII matching algorithm (100 guesses).†
Targeted guessing model TarGuess-I [63] Targeted-Markov [61]

Attack scenarios Optimal Original Optimal Original
50% PII-CSDN→50% PII-CSDN 27.90% 22.90% 27.01% 25.55%
50% PII-Dodo→50% PII-Dodo 19.10% 19.00% 20.33% 17.48%
50% PII-12306→50% PII-12306 20.30% 20.20% 20.91% 17.86%
†Optimal means using our new proposed PII matching algorithm, and original means

using the leftmost&longest PII matching algorithm; Dodo=Dodonew.

ing site and is mainly used by web administrators. Therefore,
the users of both sites are likely to be more security-savvy than
normal users, and this has been observed in Fig.13 of [63].
Theoretical proof. We now prove the effectiveness of our
proposed PII matching algorithm (in Sec. 4.2) in theory. As-
sume that there are N passwords in the password set D. For
any two PII representations Rp and Rq, passwords that can be
represented as Rp is denoted as Sp, and passwords that can be
represented as Rq is denoted as Sq, where |Rp|> |Rq|. Then
D can be divided into the following four sets.

Apq = Sp
⋂

Sq, Ap = Sp−Sq,

Aq = Sq−Sp, Ao = D−Sp−Sq.
(7)

The calculation of information entropy is given by: H =∑n
i=1−pi · log(pi), so let

f (x) =− x
D
· log(

x
D
), (8)

where f (x) is an upward convex function. Then the infor-
mation entropy is expressed as H=

∑m
i=1 f (ci), where m is

the number of representation tags, and ci is the frequency of
representation tags Ri. We now prove that when only two rep-
resentations are considered, the information entropy is lower
when the password is first represented as Rp with higher fre-
quency than as Rq. Here, only the influence of Rp and Rq
on the information entropy is considered, so the passwords
that cannot be represented in these two ways (i.e., the set
Ao) is not considered. For the set Apq, Ap and Aq, if the pass-
word is first represented as Rp, and then represented as Rq, the
information entropy is Hp= f (|Apq|+ |Ap|)+ f (|Aq|). If the
password is first represented as Rq, the information entropy is
Hq = f (|Apq|+ |Aq|)+ f (|Ap|). Considering |Apq|+ |Ap| =
|Rp|> |Rq|= |Apq|+ |Aq|, we get |Ap|> |Aq|.

Let g(x) = f (x)− f (x+ |Apq|), where x > 0, and take the
derivative of g(x), we get

g′(x)= f ′(x)− f ′(x+ |Apq|)

=

−1−ln( x
|D| )

|D| −
−1−ln(

x+|Apq |
|D| )

|D|
ln2

=
ln( x+|Apq|

|D| )− ln( x
|D| )

|D| · ln2
> 0.

(9)

Since the derivative of g(x) is greater than 0, g(x) is a
monotonically increasing function. And |Ap|> |Aq|, we have
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g(|Ap|)> g(|Aq|), namely

g(|Ap|) = f (|Ap|)− f (|Ap|+ |Apq|)> g(|Aq|)
= f (|Aq|)− f (|Aq|+ |Apq|).

(10)

By shifting the term, we get

f (|Aq|)+ f (|Ap|+|Apq|)< f (|Ap|)+ f (|Aq|+|Apq|), (11)

that is, |Hp|< |Hq|. Therefore, when only two representations
are considered, the information entropy is lower when the
password is first expressed as Rp with higher frequency than
as Rq. It can be seen from this conclusion that preferential
representation as R1 can make the information entropy the
lowest. According to the algorithm proposed in Sec. 4.2, the
highest frequency representation taken out for the first time
is R1. Then the current highest frequency representation is
taken out in each round. That is, the representation taken out
each time can be used as a priority representation. As a result,
each round of selection is the current optimal choice, and the
representation obtained at the end of the algorithm can be
regarded as an approximately optimal solution.
Overhead. Although computational complexity is not partic-
ularly important for online guessing, we have tested the time
consumption of our optimal PII matching algorithm. More
specifically, it takes about 440s on a common server (CPU:
Xeon Silver 4200R; System: Ubuntu 20.04) to complete PII
matching on 50% of the Dodonew-PII dataset (about 80,000
pieces of data), which is acceptable.

G Structure-level transformation behavior
statistics

Through the analysis of the problems in TarGuess-II [63],
we find that the focus is whether the behavior of insert-
ing and deleting structures is related to the password it-
self. Taking the CSDN→126 dataset as an example (which
is a dataset composed of password pairs matched through
email), we count the similar but different password pairs
among them (“similar" here means the similarity score s
is greater than 0 and less than 0.5, and it is calculated as
s = 1−EditDistance(pw1, pw2)/max(|pw1|, |pw2|).). More
specifically, there are a total of 25,917 items, accounting for
26.47% of the entire dataset. We have made statistics on the
insertion and deletion of structural behaviors of them, and the
top-ten frequent ones are shown in Table 12.

Table 12 shows that the tenth-ranked reuse behavior (i.e.,
insert or delete the string “11”) only occurs 49 times, which
makes it challenging to learn the behavior of inserting and
deleting password structures based only on the number of oc-
currences in the dataset. To address this issue, we divide the
probability of structure-level transformation into two parts in
RFGuess-Reuse: the probability of the structure-level trans-
formation, and the probability of which specific structure is

Table 12: Structure-level insertion/deletion statistics.
Insertions/Deletions Position Frequency Example

a Prefix 264 a3221041 →3221041

123 Suffix 196 cwhwan123→cwhwan

a Suffix 154 4231294a →4231294

1 Suffix 93 wuchunlei→wuchunlei1

qq Suffix 87 qq849210 →849210

aa Suffix 79 5631842aa→5631842

aa Prefix 71 aa123321 →123321

. Prefix 56 3232334. →3232334

abc Suffix 53 81983064 →81983064abc

11 Suffix 49 resing11 →resing

Table 13: Structure-level transformation in each length.
Password length Tail insertion Tail deletion Head insertion Head deletion

3 0 0 0 0
4 3 0 11 0
5 14 0 128 0
6 1757 0 2274 0
7 1853 3 2339 2
8 396 1010 380 1223
9 178 1141 96 1667

10 95 1061 42 1169
11 37 429 37 556
12 23 358 2 373
13 5 159 1 166
14 3 131 1 115
15 2 39 0 19
16 0 30 0 20

performing on structure-level transformation.
For the first part, we consider the correlation between pass-

word length and structure-level transformation behaviors. We
still take the CSDN→126 dataset as an example, and the
statistics are summarized in Table 13. We find that the behav-
ior of structure-level transformation has a great relationship
with the password length. More specifically, passwords with
lengths of 6 and 7 are more likely to be inserted into new
structures, while passwords with lengths of 8∼10 are more
tend to delete existing structures. Therefore, the probability
of structure-level transformation can be obtained by statistics
of corresponding transformation behaviors of passwords with
different lengths in the training set. As for the transforma-
tion probability of a specific structure, it can be learned in a
relatively large password set through PCFG [65].

H Feature importance

Although there is a slight difference in feature importance
between the Chinese and English datasets (see Fig. 12), they
are still very similar overall (the value of the cosine similarity
between Chinese and English datasets is 0.98). Furthermore,
there is almost no difference in the feature importance of
the same language datasets (the cosine similarity within the
Chinese and English datasets are both 0.99). Therefore, we
calculate the average of the feature importance scores of the
four datasets for observation (see Fig. 14).
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(a) 50% PII-12306 → 50% PII-12306
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(b) 50% PII-CSDN → 50% PII-CSDN
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(c) 50% PII-Dodonew → 50% PII-Dodonew

100 102 104 106 108 1010 1012 1014

Guess Number
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

RFGuess-PII
FLA-PII
Targeted-Markov-3order
Targeted-Markov-4order
TarGuess-I

(d) 50% PII-000Webhost → 50% PII-000Webhost
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(e) 50% PII-ClixSense → 50% PII-ClixSense
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(f) 50% PII-Rootkit → 50% PII-Rootkit

Figure 10: Experiment results of our RFGuess-PII against other PII-models (i.e., TarGuess-I [63], Targeted-Markov [61], and FLA [39]-PII ) in the targeted
guessing scenarios. The guessing success rates of our RFGuess-PII are always the best within 1014 guesses (through the Monte-Carlo simulation [20]).
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Figure 11: Feature importance (for four datasets). The Y-axis represents the proportion of the feature as the model classification rule: It reflects the importance of
the feature. Thus, the larger the value, the higher the importance, and the sum of all feature importance scores for one dataset is one.
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Figure 12: Feature importance. The green bar is the average of the feature importance scores of the 000Webhost and Rockyou datasets (English datasets); the red
bar is the average of the Taobao and CSDN datasets (Chinese datasets). Overall, the length of the trained characters (position of the character in a password) and
the characters close to the predicted target character are more important in the Chinese datasets. While in English datasets, characters near the middle position
(relative to the order) are more important (third and fourth character). We calculate the cosine similarity of feature importance scores between the two language
and find this value to be 0.98. Besides, the cosine similarity scores in the same language datasets is greater than 0.99. This shows that these two scores are very
similar, indicating that language has little effect on feature importance scores, so we further calculate the average feature importance scores in Fig. 14.
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(a) 50% PII-12306 → 50% PII-12306
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(b) 50% PII-CSDN → 50% PII-CSDN
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(c) 50% PII-Dodonew → 50% PII-Dodonew
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(d) 50% PII-000Webhost → 50% PII-000Webhost
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(e) 50% PII-ClixSense → 50% PII-ClixSense
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(f) 50% PII-Rootkit → 50% PII-Rootkit

Figure 13: Guessing performance of our RFGuess-PII in comparison with other targeted guessing models (i.e., TarGuess-I [63], Targeted-Markov [61], and
FLA [39]-PII). One can see that, when explicitly generating 103 guesses, our RFGuess-PII matches or beats other most effective PII-models.
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Figure 14: Feature importance (average). We sort the average of feature importance scores of two Chinese and two English datasets. Among these features, the
serial number feature (e.g., a is the first in alphabetic types a∼z, 0 is the first of digits 0∼9) and the keyboard column number feature (e.g., d is located in the
third column of the keyboard) are more effective, while the type of character (whether this character is a letter, digit or special character) and the current segment
trained length (position of the character in the segment) are relatively unimportant, and the feature of keyboard row number has little effect on the model fitting.
Since random forest can filter features, existing of some unimportant features will not affect the fitting ability of the model. In particular, relatively unimportant
features can be selectively removed before training. For example, our experiments show that if the relatively unimportant 10-dimensional features are removed,
the model training speed is improved by 30%. However, the maximum decrease in success rates is no more than 0.4% compared with the original.
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(a) 50% PII-12306 → 50% PII-Dodonew
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(b) 50% PII-Dodonew → 50% PII-12306
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(c) 50% PII-Dodonew → 50% PII-CSDN
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(d) 50% PII-000Webhost → 50% PII-ClixSense

100 101 102 103

Guess number

0.00

0.04

0.08

0.12

0.16

0.20

Fr
ac

tio
n 

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

RFGuess-PII
TarGuess-I
Targeted-Markov-3order
Targeted-Markov-4order
FLA-PII

(e) 50% PII-ClixSense → 50% PII-000Webhost
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(f) 50% PII-ClixSense → 50% PII-Rootkit

Figure 15: Guessing performance of our RFGuess-PII in comparison with other targeted guessing models (i.e., TarGuess-I [63], Targeted-Markov [61], and
FLA [39]-PII) in cross-site guessing scenarios. We can see that, when explicitly generating 103 guesses, our RFGuess-PII is highly effective, and it matches or
beats other most effective PII-models in most cases. This indicates that our RFGuess-PII has satisfactory generalization ability.
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(b) CSDN → Dodonew.
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(c) CSDN → 12306.

100 101 102 103

Guess number
0.15

0.20

0.25

0.30

0.35

0.40

Fr
ac

tio
n 

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed RFGuess-Reuse
TarGuess-II
Pass2Path

(d) 000Webhost → Mate1.
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(e) 000Webhost → LinkedIn.
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(f) 000Webhost → Yahoo.

Figure 16: Guessing performance of our RFGuess-Reuse in comparison with other password reuse-based models (i.e., Pass2Path [44] and TarGuess-II [63]). One
can see that, our RFGuess-Reuse and Pass2Path [44] outperform TarGuess-II [63] within 10 guesses in Chinese datasets. While in English datasets, TarGuess-II
and our RFGuess-Reuse outperform Pass2Path. It’s likely because Pass2Path is based on deep learning techniques and is more suitable for extremely large
training sets (e.g., the 1.4 billion-sized 4iQ), and it does not consider users’ vulnerable behavior of choosing popular passwords.
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