
1

QPause: Quantum-Resistant Password-Protected
Data Outsourcing for Cloud Storage

Jingwei Jiang, Ding Wang, and Guoyin Zhang

Abstract—Cloud storage provides an efficient and convenient
way to manage data, but it also poses significant challenges to
data security. The central issue with cloud storage is to ensure the
ability of the data owner to control and manage the outsourced
data. The password-protected secret sharing (PPSS) integrates
password authentication and secret sharing to offer a fresh
approach to secure private data. Users can share the risk of
device corruption with a well-designed PPSS scheme and manage
outsourced data with only human-memorizable passwords. To
the best of our knowledge, none of the existing PPSS schemes
can resist security threats in the post-quantum era, and there is
an urgent need to design quantum-resistant solutions. However,
post-quantum cryptography varies significantly from traditional
cryptography, and it is challenging to design a quantum-resistant
password-protected secret-sharing scheme for cloud storage.

In this work, we take the first substantial step towards this
challenge by proposing QPause, a quantum-resistant password-
protected data outsourcing scheme for cloud storage. We first de-
sign a basic quantum-resistant PPSS scheme based on the lattice
secure against semi-honest adversaries with a secure channel. On
this foundation, we propose a quantum-resistant round-optimal
password-protected data outsourcing scheme against strong ad-
versaries. In addition, we formally prove that our scheme is
secure and robust under various attacks against adversaries with
quantum computing capabilities. The comparison results show
that our new scheme outperforms its foremost counterparts.

Index Terms—Quantum security, Lattice, Password protected,
Secret sharing, Cloud storage.

I. INTRODUCTION

THE wide use of fifth Generation (5G), edge computing,
and Internet of Things technologies has produced an

enormous amount of data. According to IDC’s prediction, the
global data will grow to 175 zeta bytes by 2025 [1]. Data
storage is becoming increasingly critical. Cloud storage can
effectively integrate and utilize the traditional scattered and
isolated data information. Hence, the in-depth value contained
in the data can play an influential role. Outsourced data to the
cloud servers relieves the users from complex local storage
management and maintenance. However, it may make users
lose control of their data and bring significant challenges to
data security. These days it is no news to hear that user
data are breached in attacks targeting cloud service providers,
such as [2], [3]. With attacks targeting cloud service providers

J.W. Jiang, and G.Y. Zhang, are with College of Computer Science and
Technology, Harbin Engineering University, Harbin 150001, China. J.W. Jiang
is also with Henan Key Laboratory of Network Cryptography Technology.

D. Wang is with Key Laboratory of Data and Intelligent System Security
(Nankai University), Ministry of Education, Tianjin 300350, China, and also
with Henan Key Laboratory of Network Cryptography Technology. (E-mail:
wangding@nankai.edu.cn.). Ding Wang is the corresponding author.

User U Key server KS
Data encryption key: dek

❶ Request wrap dek

❷ Wrapk (dek)

Cloud server CS

❹ IDdata,Wrapk (dek),E(data)

❻ Request unwrap dek

Symmetric dek encrypts data

Key management

Application

❸ Enc

❼ Dec

Key encryption key: k
User's privacy data

❺ IDdata,Wrapk (dek),E(data)

Fig. 1. An exemplary overview of a symmetric encryption system for cloud
storage. The user U selects a data encrypting key dek and ❶ sends dek
to the key server KS. ❷ KS wraps dek with the key encryption key k
and returns to U . ❸ U uses dek to encrypt the data, and ❹ uploads the
data ID IDdata, the wrapping value Wrapk(dek) and the encrypted data
E(data) to the cloud server CS. When U needs data, she ❺ downloads
{IDdata,Wrapk(dek), E(data)} from CS, and ❻ sends the wrapping value
to KS for unwrapping. ❼ U can decrypt E(data) with dek to get the data.

happening on a daily basis [2], it is essential to protect the
privacy and security of outsourced data kept in cloud storage.

Encryption of outsourced data is the most direct technique
to prevent data leakage [4]. In practice, cloud servers are
not always honest, and it is not secure for users to manage
cloud-based encryption data through authentication only [5].
Furthermore, users expect to gain more control over the data
they own [6], so allowing users to encrypt data locally and
then upload the ciphertext is a more secure way to store cloud
data [7]. However, the management of data encryption keys
causes additional storage overhead to the user.

An alternative solution is to introduce an independent third-
party key management system (KMS) (e.g., Google Cloud
[9]) that uses the wrap-unwrap approach to support users in
managing large amounts of symmetric data encryption keys
(dek) to encrypt outsourced data as shown in Fig. 1. However,
the key encapsulation mechanism has a significant potential
security vulnerability. In the first step of Fig. 1, dek is sent
to the KMS in plaintext, ensuing in dek being exposed to a
malicious KMS and easily obtained by adversaries through
man-in-the-middle attacks. Additionally, updating k requires
unwrapping and re-wrapping all dek.

Jarecki et al. proposed the oblivious key management
system (OKMS) [10]. The OKMS employs an oblivious
way (oblivious pseudorandom function [11]) to address key
compromises arising from a remote KMS. (Unlike updatable
encryption [12], [13] that solves the security problem of key
management locally on the client side). Moreover, OKMS is
extended to updatable OKMS (UOKMS) through key rotation
to ensure the forward security of the system. Despite the great
benefits that UOKMS brings, the inadequacy of an effective
authentication mechanism can make UOKMS vulnerable to

Accepted by IEEE transactions on Services Computing, 2023,  Doi:  10.1109/TSC.2023.3331000



2

1992 Bellovin et al. (PAKE) 

2005 Abdalla et al. 

2003 Di Raimondo et al.  
server interaction

2000 Bellare et al. (CDH)
ROM model

2001 Katz et al. 
standard model

2001 Jablon et al. 

1999 Perlman et al. 
2000 Boyko et al. 

ROM model

1993 Gong et al. 

1995 Gong et al. 

2001 Goldreich et al. without setup

PKI model
2006 Mackenzie et al. 

2003 Brainard et al. 

2005 Katz et al. 

2003 Mackenzie et al.  

2003 Xu et al.  

2006 Di Raimondo et al. 

2005 Szydlo et al. 

2016 Blazy et al. 

2014 Kiefer et al. 

2016 Kiefer et al. 

2014 Camenisch et al. [45]

2013 Benhamouda et al. 

2013 Katz et al.
2014 Shirvanian et al. 

2019 Davidson et al. 2021 Krawczyk et al. 2021 Sullivan et al. 

2019 Jarecki et al. [10] 2020 Baum et al. 

2022 Das et al. [5]

2018 Davidson et al.

2021 Roy et al. [18] 

2016 Abdalla et al. 
robustness

2015 Camenisch et al. [46]
proactive security

2000 Ford et al.  
n-out-of-n

2002 Mackenzie et al.  
TPAKE

2002 Jakobsson et al. 
t-out-of-n

2012 Camenisch et al. [25]
UC security

2015 Yi et al. [47] 
TPASS

2014 Jarecki et al. [28]  
without PKI

2016 Jarecki et al. [11]  

2017 Jarecki et al. [29]
2018 Jarecki et al. 

1999 Halevi et al. 
formal model

2011Bagherzandi et al. [8] 
No server interaction

IETF

Fig. 2. A brief history of password-protected secret sharing (PPSS). The
seminal contributions of some works are shown in corresponding blue words.
Bagherzandi et al. [8] propose the first formal PPSS, which is marked in red.

impersonation attacks. Specifically, the adversary impersonates
the target user to download encrypted data from the cloud
server, and interacts with the KMS to obtain the data decryp-
tion key. Finally, the adversary extracts the private data. Hence,
both the cloud server and KMS need to authenticate the user
to confirm their access to resist impersonation attacks. Both
the cloud storage provider and KMS need to authenticate the
user requesting the service to confirm their access. Password-
protected secret sharing (PPSS) provides an elegant solution
for implicit authentication while achieving key management.

In this work, we propose a lattice-based PPSS under the
PPSS secure model [8] to resist various attacks (e.g., offline
password guessing attack [14], corrupt attack [15], signal
leakage attacks [16], and key mismatch attack [17]) from both
quantum computing and classical computing adversaries. We
solve the challenge of leaking the secret shares of server-
side keys during distributed decryption in Roy et al.’s lattice-
based PPSS [18] and implement a quantum-resistant data
outsourcing scheme, named QPause. Under a stricter password
distribution model (i.e., Zipf-distribution [19], see Fig. 4), our
formal proof demonstrates that QPause is secure and robust.

II. RELATED WORKS

Password-based authentication remains the most frequently
used authentication mechanism in various web systems [20].
Although passwords have inherent defects in both security
and usability, passwords are still stubbornly surviving among
various alternative authentication schemes and are surging with
almost every new network service [21]. There is a growing
consensus that password-based authentication is likely to retain
its status for the foreseeable future [22]. However, it is

unrealistic to rely solely on passwords to achieve outsourced
data security. Because the data encryption key is generally a
series of random long numbers with high entropy, while there
are 20-22 bits of entropy on average for a human-memorizable
password [23], [24]. How can users authenticate and manage
outsourced data by employing a password only?

Bagherzandi et al. [8] propose password-protected secret
sharing (PPSS), which provides an elegant solution to this
problem. With the PPSS scheme, the user U can encrypt data
locally and upload them to the cloud server CS. Then, U
data encryption key is shared with N key servers KS. After
downloading the data cipher from CS, U only needs to input
a correct human-memorizable password to retrieve data by
interacting with at least t+ 1 responding to honest KS.

No password-related files need to be stored on the key server
side, so even if t key servers are corrupted, the scheme’s
security remains the same as that of password-based authenti-
cation schemes. In addition, PPSS schemes can employ non-
interactive zero-knowledge proofs (NIZK) [8], [25], [18] to
meet security in malicious-resistant environments.

Bagherzandi et al. [8] spark a number of studies in the field
of PPSS [11], [26], [27], [25], [28], [29]. For a more concrete
grasp, we summarize the history of PPSS in Fig. 2. Note that
a series of other important schemes about PPSS cannot be
incorporated into the Fig. 2 only because of space constraints.

To the best of our knowledge, none of those mentioned sc-
hemes in Fig.2 can resist security threats in the post-quantum
world: 1) All but one scheme (i.e., Roy et al.’s [18]) are
built on the hardness of traditional cryptography assumptions
(e.g., large integer decomposition, discrete logarithms, elliptic
curves), which is vulnerable after the advent of quantum
computers (which are known to perform Shor algorithms [30]
to solve traditional hardness problems efficiently); 2) Roy et
al.’s PPSS scheme [18] is based on learning with errors (LWE)
and attempted to resist the quantum attacker, but as we show
in Section III, it is vulnerable to the man-in-the-middle attacks
and cannot achieve its goal (i.e., protecting the secret key).
Problem Statement. With the recent advancements in quan-
tum computing [31], [32], standards organizations (e.g., IETF,
IEEE, and NIST) are preparing solutions in the post-quantum
age. Lattice-based schemes are regarded as the most promising
general-purpose algorithms for public key encryption by NIST
[33]. Dozens of quantum-resistant password-based protocols
[34], [35] have been proposed over lattices. However, to
the best of our knowledge, there is no quantum-resistant
password-protected data outsourcing scheme (for cloud stor-
age). The main goal of our solution is to answer the question:

Is it possible to construct a quantum resistant
password protected data outsourcing scheme over
lattices to satisfy that only the user who knows the
password can outsource and retrieve data?

Our answer to the above question is affirmative.

III. OVERVIEW OF OUR TECHNIQUE

Motivations. According to the discussion above, we have
established a primary research direction, i.e., we first construct
a PPSS scheme, and then design a password-protected data



3

outsourcing for cloud storage on this basis. Since Bagherzandi
et al. [8] formally proposed the first PPSS scheme, consid-
erable efforts have been devoted to developing secure and
efficient PPSS schemes. Yet, no secure and effective quantum
resistance scheme has been formally proposed.

Fundamentally, the design of a secure cryptographic scheme
needs to rely on the intractable problem, which no known
algorithm can solve in polynomial time. But Shor’s algorithm
[30] can efficiently solve the intractable problems relied on by
traditional cryptography via quantum computers. In the com-
ing quantum era, it is necessary to design a quantum secure
password-protected data outsourcing scheme for cloud storage.
However, we cannot directly translate existing schemes into
quantum resistant schemes because of a series of challenges
inherent in the computational methods and security objectives.

On the one hand, we discuss the challenges in the com-
putational methods. First, the construction of Bagherzandi et
al. [8] employed ElGamal encryption, which is vulnerable
to adversaries of quantum computing power. We need to re-
design the basic PPSS using a quantum-resistant homomorphic
encryption algorithm and a threshold decryption algorithm
over lattices. However, the lattice-based homomorphic gro-
up encryption [36], [37] provide no support for password re-
randomization. Roy et al. [18] devised an ingenious construc-
tion with fully homomorphic encryption (FHE) [38].

However, they try to thresholdize FHE decryption in the de-
cryption phase by directly applying t-out-of-N Shamir secret
sharing to sk. The user computes the Lagrange coefficients
λi for the subset S ⊆ {1, ..., N} of size t, and recombine the
shares as

∑
i∈S λi ·⟨ct, ski⟩ = ⟨ct,

∑
i∈S λi ·ski⟩ = ⟨ct, sk⟩,

where ct denotes the ciphertext, and ski denotes the share of
the secret key sk. However, Boneh et al. [39] pointed out that
each partial decryption operation leaks information about ski

by publishing the inner product of ski with ct. Concretely, the
adversary A can launch man-in-the-middle attacks to obtain
the results of partial decryption. Then, A can calculate the
server-side secret keys by the Gaussian elimination method.

Second, the threshold decryption algorithm of the PPSS
scheme is critical for data retrieval. However, the aggregation
process of the lattice threshold algorithm can amplify the
noise, which leads to decryption failure. Therefore, when
designing a lattice-based PPSS scheme, it is necessary to
ensure that the aggregation coefficients are low-norm and
the coefficients remain integer after aggregation [40]. Third,
we extend the basic PPSS scheme to a password-protected
data outsourcing scheme for cloud storage. Based on resisting
quantum attacks [30], [41], offline dictionary attacks [42], and
corruption attacks [43], [15], we should fully consider the ex-
istence of malicious adversaries (including malicious users and
malicious key servers) in the real world, i.e., adversaries who
actively tamper with messages (e.g., tampering with random
numbers and re-randomizing encrypted passwords in cloud
servers) and malicious computations (incorrect execution of
protocols leading to data recovery failure).

On the other hand, we discuss the challenges in security
objectives. In the PPSS scheme, adversaries perform corrup-
tion attacks on key servers to obtain information about data
encryption keys. Under the assumption of the (t,N) threshold,

adversaries can corrupt at most t key servers. At this point,
the level of this protection is as expected of the password-
authenticated protocol. It is commonly assumed in PPSS [8]
that the selection of passwords is uniformly distributed, and
the probability that adversaries obtain outsourced data is at
most qsend/|D|, where qsend is the number of most online
attacks, and |D| is the size of the password dictionary. Recent
research results [19] suggest that password selection in fact
follows Zipf-distribution, i.e. the adversary’s advantage as
C ′ ·qs′send(κ)+ε(κ) for the Zipf parameters C ′ and s′. Wang et
al. [19], [14] showed that the advantages of the adversary are
underestimated in the uniform model. The impact of password
distribution assumptions should be fully considered.
Contributions. We take the first substantial step toward a
quantum-resistant scheme by proposing the Quantum resis-
tant Password-protected data outsourcing scheme for cloud
storage, named QPause. Our construction relies on the learning
with errors (LWE) for which efficient quantum algorithms are
not known. Our construction starts with the general scheme
of PPSS [8] but employs quantum-secure cryptographic prim-
itives. In summary, our contributions are three-fold:

- A PPSS over LWE. We first design a basic quantum-
resistant PPSS over lattices secure against semi-honest
adversaries with secure channels. We devise a method
for a re-randomization password applicable to lattice-
based fully homomorphic encryption. It ensures that the
outsourced data remains masked with a re-randomization
password, which cannot be distinguished from random
numbers. Besides, we employ clear out their denomina-
tors [40] to get low-norm interpolation coefficients. It
reduces the impact of noise on the decryption phase.
Finally, we add well-structured noise to the partial de-
cryption without affecting the final decryption. It ensures
that the inner product leaks nothing about the secret share.

- QPause for cloud stotage. We formally propose a
quantum-resistant password-protected data outsourcing
scheme against malicious adversaries, named QPause.
The QPause requires no secure channels and has a round-
optimal. We generate temporary public-secret key pairs
in the QPause to encrypt the transmitted messages. It
can prevent eavesdropping attacks. Moreover, we em-
ploy promises and simulation sound non-interaction zero-
knowledge proof (SS-NIZK) [44] to ensure the freshness
and validity of computation. The SS-NIZK can instantiate
the universal thresholdizer to eliminate the impact of
reduced interpolation coefficients, i.e., the size of the
ciphertext now depends on the number of servers. It can
make our QPause achieve compactness and robustness.

- Security and performance. We evaluate the security
of QPause under two parameter settings, and make a
rigorous security proof under the Zipf model [19] and
the PPSS secure model [8]. Besides, we demonstrate the
compactness, robustness, and soundness of QPause. Per-
formance evaluations show that our scheme outperforms
the state-of-the-art PPSS [18] in terms of computation and
communication in the recovery phase. Comparison results
show that our scheme is superior to its counterparts [5],
[8], [10], [11], [25], [28], [29], [18], [45], [46], [47].



4

IV. PRELIMINARIES

Notations. We use κ to denote the security parameter. Let Z
and R denote the set of all integers and the set of real numbers,
respectively. For any integer q, let Zq denote the ring of integer
mod q. Let lower-case bold x letter denote vectors, and upper-
case bold letter A represent matrices. We use x← D to denote
the sampling of x according to distribution D and x← S for
a finite set S to indicate sample uniformly at random from S.

A. Lattices, LWE, and Gaussian Sampling

Definition 1 ([37]). Let Λq(A) = {As | s ∈ Zn
q } denotes

an m-dimensional lattice with the basis A ∈ Zm×n
q for m ≥

n · log q, and the determinant of Λ is det(Λ) =
√
det(BTB).

Definition 2 (Gaussian distributions [36]). For a stan-
dard deviation σ > 0, define the discrete Gaussian distribution
over an integer lattice Λ ⊆ Zm centred at c ∈ Rn with
parameter σ to be: DR,σ(z) = ρc,σ(x)/ρc,σ(Λ), where
x ∈ Λ, ρc,σ(x) = eπ||x−c||

2/σ2

, and ρc,σ(Λ) =
∑

x∈Λ ρc,σx.

Definition 3 (Decision-LWEn,q,χ,m [37]). For a prime integer
q, integers m,n > 0, and a noise distribution X over Zq ,
sample A ← Zm×n

q , s ← Zn×1
q , e ← χm×1,b ← Zm

q . The
DLWEn,q,χ,m problem is to distinguish between (A,A · s +
e mod q) ∈ Zm×n

q × Zm×1
q and (A,b) ∈ Zm×n

q × Zm×1
q .

For any probabilistic polynomial time (PPT) adversary A,
the two distinct distributions are computationally indistin-
guishable, i.e., AdvDLWE

A (κ) = |Pr[A(q,m, n,X ,A, s)] −
Pr[A(q,m, n,X ,A,b)]| ≤ ε(κ).

B. Shamir Secret Sharing

The Shamir secret sharing (SS) [43] allows the user to divide
the secret s into N pieces in such a way that s can be restored
from any t + 1 pieces, but even complete knowledge of t
pieces reveals absolutely no information about s. We provide
an introduction to the basic notations and terms in SS. Our
definitions are adapted from Boneh et al. [39].

Definition 4. Let P = {P1, ..., PN} be a set of parties, A
be a class of efficient access structures on P , and S be the
class of threshold access structures on P . For the secret space
S = Zp, where p is a prime. A Shamir secret sharing scheme
must contain the following two polynomial algorithms:

- (s1, ..., sN ) ← SS.Share(s,A): On input a secret s0 =
s ∈ S and an access structure A, the SS.Share algorithm
outputs a set of shares {s1, ..., sN} for each parties.

- s ← SS.Combine({si}i∈S): For any i, j ∈ [1, N ]
and the size of S is t + 1, the Lagrange coefficients
λS
i,j =

∏t
i ̸=j

−Ii
(Ij−Ii) , such that s0 =

∑
i∈S λ

S
i,j · si. The

SS.Combine outputs s = s0.

C. Fully Homomorphic Encryption

We briefly recall the encryption scheme of GSW
construction [38]. For x ∈ Zm

q , ℓ = ⌊log q + 1⌋, and
n = mℓ. We write BitDecomp(x) as the n-dimensional
vector x′ = (x1,0, ..., x1,ℓ−1, ..., xm,0, ..., xm,ℓ−1),
where xi,j is the j-th bit in the binary representation
of xi. The inverse of BitDecomp is represented

by BitDecomp−1 satisfying: BitDecomp−1(x′) =
(
∑ℓ−1

j=0 2
j · x1,j , ...,

∑ℓ−1
j=0 2

j · xm,j). We define Flatten(x′) =

BitDecomp(BitDecomp−1(x′)). Let Powesrof2(x) =
(x1, 2x1, ..., 2

ℓ−1x1, ..., xm, 2xm, ..., 2ℓ−1xm).

Definition 5 ([38]). For x,y ∈ Zm
q and any n-dimensional

vector x′, the following three equations hold:
- ⟨BitDecomp(x),Powersof2(y)⟩ = ⟨x,y⟩,
- ⟨x′,Powersof2(y)⟩ = ⟨BitDecomp−1(x′),y⟩,
- ⟨BitDecomp−1(x′),y⟩ = ⟨Flatten(x′),Powersof2(y)⟩.

Definition 6. According to Definition 3, let X is a noise
distribution, n ∈ Z+, q = poly(n) is power of 2, and
m = Θ(nlog q). N = (n + 1) · (⌊log q⌋ + 1). For pp =
(n, q,X ,m) and N , a fully homomorphic encryption scheme
of GSW contain the following three polynomial algorithms:

- (pk, sk) ← KeyGen(pp): On input the pp, sample k ←
Zn
q , A← Zm×n

q , and e← Xm. Compute a = A · k+ e
and set s = (1| − k) ∈ Zn+1

q . Output (pk, sk), where
pk = [a|A] ∈ Zm×(n+1)

q and sk = Powersof2(s).
- C ← Enc(pp,pk,M): On input a message M ∈ Zq ,

sample R← {0, 1}N×m and compute C = Flatten(M ·
IN + BitDecomp(R ·A)) ∈ ZN×Nq .

- M ← Dec(pp, sk,C): On input a ciphertext C and sk,
{1, 2, ..., 2ℓ−1} are the first ℓ coefficients of sk and ski =
2i ∈ (q/4, q/2]. Compute Ci · sk/ski, where Ci be the
i-th row of C, and rounding the noise to get M.

According to Definition 4 and Definition 6, we can construct
the threshold fully homomorphic encryption (TFHE). The
TFHE allows the decryption key to be split into shares, such
that any class of access structures can be combined into a
complete decryption of a given ciphertext. Our definitions are
adapted from Boneh et al. [39] as follows:

Definition 7. (TFHE) Let P = {P1, ..., PN} be a set of parties
and let S be a class of efficient access structure on P . A
threshold fully homomorphic encryption scheme must contain
the following five polynomial algorithms:

- (pk, sk1, ..., skN ) ← TFHE.Setup(1κ, 1d,A): On input
the security parameter κ, a depth bound d, and an access
structure A, the setup algorithm outputs a public key pk,
and a set of secret key shares sk1, ..., skN .

- ct ← TFHE.Enc(pk,m): On input a public key pk,
and a single bit plaintext m ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct.

- ĉt← TFHE.Eval(pk,C, ct1, ..., ctk): On input a public
key pk, circuit C : {0, 1}k → {0, 1} of depth at most
d, and a set of ciphertexts ct1, ..., ctk, the evaluation
algorithm outputs a cipehrtext ĉt.

- pi ← TFHE.PartDec(ct, ski): On input a ct and a
secret key share ski, the partial decryption algorithm
outputs a partial decryption pi related to the party Pi.

- m̂ ← TFHE.FinDec(sk,B): On input a secret key sk,
and a set B = {pi}i∈S for S ⊆ {P1, ..., PN}, the final
decryption algorithm outputs a plaintext m̂ ∈ {0, 1,⊥}

Definition 8 (Compactness). Let poly(·) denote polynomial.
For the security parameter κ, depth bound d, circuit C :
{0, 1}k → {0, 1} of depth at most d, and m ∈ {0, 1} such



5

that (pk, sk1, ..., skN ) ← TFHE.Setup(1κ, 1d,A), cti ←
TFHE.Enc(pk,m), ĉt← TFHE.Eval(pk,C, ct1, ..., ctk), and
pj ← TFHE.PartDec(ĉt, skj), where i ∈ [k], j ∈ [N ].
According to Definition 7, a TFHE is compact if there are
|ĉt| ≤ poly(κ, d) and |pi| ≤ poly(κ, d,N) for i ∈ [N ].

Definition 9 (Correctness). According to Definition 7,
we say that a TFHE satisfies evaluation correctness if
Pr[TFHE.FinDec(pk,B) = C(m1, ...,mk)] = 1− ε(κ).

D. Zero-Knowledge Argument of Knowledge

The zero-knowledge argument of knowledge (ZKAoK) for a
language L allows a prover P to convince a verifier V that a
series of instance x is in L without revealing anything other
than this statement. Further, a ZKAoK allows P to convince
V with a witness ω evidencing a fact that x is in L, where L is
defined by a relation predicate PL(x,ω). Peikert and Shiehian
[44] proposed a non-interactive zero-knowledge proof (NIZK)
system for a wide class of NP L over DLWE. We employ the
generic conversion proposed by Sahai [48]) to transform the
NIZK [44] into a simulation-sound NIZK (SS-NIZK).

Definition 10 (SS-NIZK). LetWL(x) denotes a generic set of
witnesses. For any x ∈ L and ω ∈ WL(x), there is PL(x,ω) =
1. An SS-NIZK includes the following three algorithms:

- pp ← NIZK.Setup(1κ): on input the security parameter
κ, this algorithm outputs a common random string crs.

- π ← NIZK.P(crs, x, ω): on input crs, x ∈ L and ω ∈
WL(x), this algorithm outputs a proof π ∈ {0, 1}poly(κ).

- {0, 1} ← NIZK.V(crs, x, π). on input crs, x and π, it
outputs 1 if x ∈ L. Otherwise, it outputs 0.

Set the public parameters pp = {A,pk1, p̂k, H,Cp̃w, Ĉp̃w,
Cpj}. We need to prove the language Lst0

U =

{A,pk1, p̂k, H,Cp̃w, Ĉp̃w|∃(Rp̃w, p̃w) s.t.(Cp̃w, Ĉp̃w) =
(TFHE.Enc(pk1, H(p̃w)),TFHE.Enc(p̂k, H(p̃w)))} and
Lst0,i
S = {A,Cpj

|∃(Ri, ri,Comi, ski, p̃k, λ
z
i ,pj) s.t.Cpj

=

TFHE.Enc(p̂k,pj)}. There the language Lst0
U and Lst0,i

S

corresponding to the interaction information in our scheme

Definition 11 (NIZK Security, [44] ). The algorithm Π =
(NIZK.Setup,NIZK.P,NIZK. V) is a SS-NIZK for a relation
R. The language L is defined by R if the following holds.

- Completeness. Let x ∈ L. ω is the witness. If PL(x,ω) =
1, the following probability is negligible in κ:

1− Pr
[
1← NIZK.V(crs, x, π)

∣∣∣pp←NIZK.Setup(1κ)
π←NIZK.P(crs,x,ω)

]
.

- Soundness. For any P , Ext is a PPT extractor. For
any input x and pp ← NIZK.Setup(1κ), the following
probability is ε(κ):

Pr[⟨P(ω),V⟩ (crs, x) = 1∧(x, ω) /∈ L|ω ← ExtP(crs, x)].

- Zero knowledge. There exists a PPT simulator Sim such
that for any V∗ with auxiliary information aux, (x, ω) ∈
L, it holds that: V iew(⟨P(w),V∗⟩ (crs, x, aux)) ≈c

SimV
∗
(crs, x, aux). Where ExtP means that Ext has ac-

cess to the entire process of P (including the randomness)
and SimV

∗
denotes that Sim captures the randomness

from a polynomial-size space of V∗.

V. SCHEME ARCHITECTURE AND SECURITY MODEL

System Model. We present a quantum-resistant password-
protected data outsourcing for cloud storage, named QPause.
Specifically, the user U divides the data encryption key sk into
N parts and stores them in N key servers S = {S1, ..., SN},
respectively. The ciphertext of password-related information
and data are stored in the cloud server CS. Similar to the
architecture in Fig. 1, but with different specific operations.
Notably, the main interactive operations are concentrated with
U and S in QPause, which employs a basic password-protected
secret sharing (PPSS) scheme as the subprotocol.

A password-protected secret sharing scheme allows the
user to retrieve outsourcing data by interacting with at least
t+ 1 responding to honest key servers with a correct human-
memorizable password. We follow the definition of the first
PPSS scheme proposed by Bagherzandi et al. [8]. Let M de-
note the message space, and D is the dictionary of passwords.

Definition 12 (Password-protected secret sharing). A (t,N)-
PPSS scheme for the message space M, and the password
dictionary D contain the following two polynomial algorithms:

- st← Init(pw,m) is a probabilistic algorithm executed by
U . U picks a secret key sk, and inputs a message m ∈M
and a password pw ∈ D. The algorithm outputs st =
{st0, st1, ..., stN}, where st0 is the outsourcing data, and
{st1, ..., stN} are shares of sk among N key servers.

- m′ ← Rec(p̃w, st0) is an interactive protocol executed
between the user U and a subset of t + 1 key servers
indexed by an access structure S as follows:
· m′/⊥ ← RecU(p̃w, st0). U inputs a password p̃w ∈
D and st0 to retrieve m′ by interacting with t + 1
key servers in S. The algorithm outputs m′ or ⊥.
· RetS(sti, st0). is executed by the key server Si in

the S. Si inputs the secret share sti and st0 by
interacting with U . There is no local output.

Definition 13 (Correctness). For any m ∈ M and pw ∈ D,
st← Init(pw,m). The probability Pr[m′ = m] = 1, iff st←
Init(pw,m), m′ ← Ret(p̃w, st0) and pw = p̃w.

Security Model. We employ the PPSS security model of
Bagherzandi et al. [8] to characterize the security of our
(t,N)-PPSS. At the high level,A can corrupt at most t′ servers
to access the corresponding share {sti} and the outsourcing
data st0. A holds concurrent oracle access to Rec and RetS in
Definition 12. The advantage of A is to distinguish between
two PPSS instances initialized with two different messages
m0,m1 ∈M, where M is a message space.

Definition 14 (PPSS security). A (t,N)-PPSS scheme on dic-
tionary D and message space M is (t,N, T, quser, qsend, ε)-
secure if for any m0,m1 ∈M, any set Ŝ with the size t′ ≤ t,
and any PPT algorithm A with executing time T , there is

|p0 − p1| ≤
⌊
qsend(κ)

t− t′ + 1

⌋
· 1

|D|
+ ε(κ)

where pb is the probability that A(m0,m1, st0, stŜ) outputs
1 on access to quser sessions with RecU(p̃w, st0), and qsend
sessions with oracle RetS(stŜ , st0), for st← Init(pw,mb).



6

Notably, A making at most qsend online attacks, the adver-
sary’s advantage Adv is denoted as qsend(κ)/|D| + ε(κ)
for all dictionary sizes |D| in the existing uniform-model.
Recent research [19], [14], [34] provided a rigorous analysis to
constrain the adversary’s advantage as C ′ ·qs′send(κ)+ε(κ) for
the Zipf parameters C ′ and s′, with considering the password
distribution follows the Zipf-distribution. We show that the
advantages of the adversary are underestimated in the uniform-
model in Section VIII. Further, we update the definition of the
adversary’s advantage in Definition 14 as follows:

|p0 − p1| ≤ C ′ ·

⌊
qs

′

send(κ)

t− t′ + 1

⌋
+ ε(κ)

Definition 15 (PPSS robustness [8]). A PPSS scheme on
dictionary D and message space M is (T, ε)-robust if for any
(m, pw) ∈M×D, any S̃ s.t. n−|S̃| ≥ t+1, and any PPT al-
gorithm A with executing time T , the probability that m′ ̸= m,
where st ← Init(pw,mb) and m′ ← RecU(p̃w, st0) interact-
ing with A(m, pw, stS̃) and RetS(stS̃ , st0), is bounded by ε.

Definition 16 (PPSS soundness [8]). A PPSS scheme on
dictionary D and message space M is (T, ε)-sound if for any
(m, pw, p̃w) ∈M × D × D, and any PPT algorithm A with
executing time T , the probability that m′ /∈ {s,⊥}, where
st← Init(pw,mb) and m′ ← RecU(p̃w, st0) interacting with
A(m, pw, p̃w, st), is bounded by ε. We define weak soundness
in the same way but restricting p̃w to p̃w = pw.

Quantum resistance. The most influential quantum attack
algorithms are Shor’s [30] and Grover’s [41]. Quantum com-
puters can efficiently solve large integer decomposition and
discrete logarithm problems with Shor’s algorithm. Grover al-
gorithm allows quantum computers to speed up the search for
unstructured databases and hash collisions. In order to avoid
the effects caused by both algorithms above, we construct the
PPSS scheme based on DLWE in definition 3, i.e., for any
PPT A, the advantage holds that AdvDLWE

A (κ) ≤ ε(κ).
Note that, the key reuse attack remains a threat to public

key cryptography in the quantum setting [49] and includes
two types of attacks: the signal leakage attack [16] and the
key mismatch attack [17]. Specifically, 1) For signal leakage
attacks, A impersonates a user with the malformed secret key
to initiate a series of sessions, and then A observes changes in
the return signals by the servers. 2) For key mismatch attacks,
A as server sets special secret key share and error. Then, A
recovers the secret key of the victim whose public key remains
unchanged through multiple queries, and destroys the PPSS.

VI. QPAUSE: OUR NEW SCHEME

In this section, we present the quantum-resistant password-
protected data outsourcing for cloud storage (QPause). First,
we describe a basic lattice-based PPSS secure against honest
but curious adversaries, assuming secure channels. Then, we
extend the lattice-based PPSS to the QPause, which can
address active threats and achieve security against malicious
adversaries. To simplify the expression, we denote the steps of
bit-by-bit encryption and circuit-solving ciphertext uniformly
as encryption (and omit the expression for circuit depth).

A. Password Protected Secret Sharing over Lattices

In this section, we present a basic password-protected secret
sharing scheme over lattices. Our construction employs a fully
homomorphic encryption protocol of Gentry et al. [38] with a
threshold decryption from Shamir secret sharing [39], [43]. Fix
the security parameter κ. Let n,m, q and χ be an appropriately
chosen DLWE parameters according to Definition 3, where X
is a noise distribution, n ∈ Z+, q = poly(n) prime power of 2,
and m = Θ(nlog q). Let N = (n+1)·(⌊log q⌋+1), D denote
the dictionary, and M ∈ Zq is a standard message space. H is
a public collision-resistant hash function H : {0, 1}∗ → Zq .

According to Definition 12, the basic PPSS scheme with se-
cure channels consists of two algorithms as follows:
Init(pw,m): On input a password pw ∈ D and a secret
message m ∈M, the algorithm samples a uniformly random
matrix A ← Zm×n

q , a uniformly random vector kτ ← Zn
q ,

where τ = {1, 2} an error vector eτ ← Xm. Let pp =
{A,kτ , eτ , c}, where τ = {1, 2} and c is a constant. Let
d be the depth bound, and an access structure S. Then,
it sets pk, sk1, ..., skN ) ← TFHE.Setup(1κ, 1d,S). Next,
Init samples random matrix Rpw,Rm ← {0, 1}N×m, and
encrypts H(pw) and m: Cpw ← TFHE.Enc(pk1, H(pw))
and Cm ← TFHE.Enc(pk2,m). Finally, the algorithm output
st = {st0, st1, ..., stN}, where the outsourcing data st0
includes {pk1, H,Cpw,Cm}, and the secret sharing sti = ski

sends to the key server Si for i ∈ [1, N ].
Rec(p̃w, st0): between the user U inputs a password p̃w and
the outsourcing data st0 downloaded from the cloud server,
and the key server {Sj}nj=1 on inputs stj proceeds as follows:

1. U samples a random matrix Rp̃w ← {0, 1}N×m,
and encrypts the H(p̃w) by computing Cp̃w ←
TFHE.Enc(pk1, H(p̃w)). Then, U sends Cp̃w to each
Sj . Notably, there is pw = p̃w for a legitimate user.

2. Sj samples a random matrix Rj ← {0, 1}m×m, and ran-
domizes the password, i.e., Sj computes ∆j = (Cp̃w −
Cpw) ·Rj . Then, Sj sends ∆j to U .

3. U picks a set S of t+1 servers (for the sake of clarity, we
assume that U picks the top t+1 servers.) and computes
∆ =

∑t+1
j=1 ∆j . For j ∈ S, U sends (S,∆) to each Sj .

4. Sj executes pj ← TFHE.PartDec(∆ + Cm, skj) and
sends pj to U . Specifically, Sj computes λz

j = (N !)2 ·∏
i∈S/{j}

−i
j−i mod q and executes the partial decryption,

i.e., Sj sends pj = λz
j (⟨skj , (∆+Cm)⟩+ (N !)2 · ej) to

U , where ej ← Xm and λz
j ≤ (N !)3.

5. U computes mbit
k ← TFHE.FinDec(sk,B) and output

m, where mbit
k is the k-th bit of m.

Notice that we modify the form of the public key, i.e., we
added a multiplicative constant c to the noise e. This modifica-
tion can maintain security while keeping the decryption noise
as an integer multiple of c [39]. In addition, at the fourth
step of Rec(p̃w, st0), we must add a noise ej to prevent the
adversary from performing Gaussian elimination to extract the
information of the secret share ski. However, the noise ej
is amplified by the Lagrange coefficient in the aggregation
phase, which leads to decryption failure. We employ clear out
their denominators [40] to limit the Lagrange coefficients to
an integer. Specifically, Let the Lagrange coefficient λi ∈ R.



7

For N servers, give t (t ≤ N) numbers I1, ..., It ∈ [1, N ].
Define the Lagrange coefficients λi =

∏t
i̸=j

−Ii
(Ij−Ii) . Let the

secret space be Zp for a series of prime p with (N !)3 ≤ p.
Then, for every 1 ≤ j ≤ t, the integer Lagrange coefficients
λz
j = (N !)2 ·

∏t
i ̸=j

−Ii
(Ij−Ii) is bounded λz

j ≤ (N !)3. Thus, the
final form of adding noise to the partial decryption is (N !)2·ej .
We follow the instance of [Section 5.3.1, [39]], and set e ≤ B,
ej ≤ Bsm, where B = σ

√
n and Bsm = q−4σ

√
n

4(N !)3·N .

Lemma 1 (Correctness). Let q,m, n, σ > 0 depend on κ, and
e ≤ σ

√
n, ej ≤ q−4σ

√
n

4(N !)3·N . For any m ∈ M and pw ∈ D,
st ← Init(pw,m). The user U and each server {Si}Ni=1

execute st ← Init(pw,m) and m′ ← Rec(p̃w, st0). The
probability Pr[m′ = m] = 1, iff pw = p̃w.

Proof: When all the user U and key servers {Si}Ni=1

are honest, at the fifth step of Rec(p̃w, st0), there is p =∑t+1
j=1 pj =

∑t+1
j=1 λ

z
j (⟨skj , (∆ + Cm)⟩ + ej) = ⟨

∑t+1
j=1 λ

z
j ·

skj , (∆ + Cm)⟩ +
∑t+1

j=1 λ
z
j · ej = ⟨sk2, ((Cp̃w − Cpw) ·∑t+1

j=1 Rj + Cm)⟩ +
∑t+1

j=1 λ
z
j · ej , where Cp̃w − Cpw =

Flatten((H(p̃w)−H(pw)) · IN ) + BitDecomp(Rp̃w · p̂k1 −
Rpw · pk1). Acorroding to Definition 6, the result of the
decryption p = q

2 · (t+1) · (H(p̃w)−H(pw))+ q
2 ·m+ c · e ·

R̂+
∑t+1

j=1 λ
z
j ·ej , where R̂ =

∑t+1
j=1 Rj ·(Rp̃w−Rpw)+Rm

is a low-norm integer vector. The decryption noise is the inner
product c · e · R̂ is an integer multiple of c, and

∑t+1
j=1 λ

z
j · ej

is an integer multiple of the integer Lagrange coefficients
λz
j = (N !)2 · λj . Therefore, the message m can be recovered

with TFHE.FinDec iff H(p̃w)−H(pw), i.e., pw = p̃w.

Theorem 1. According to the setting of our basic lattice-based
PPSS scheme, let A can get st0 from CS. A can access the
client-side oracle quser times and the server-side oracle qsend
times. For any PPT A, the advantage of obtaining data that

AdvPPSSA (κ) ≤ C ′ · qs
′

send(κ) +AdvDLWE
A (κ) + ε(κ).

Sketched proof. The basic PPSS scheme with secure channels
can ward off the eavesdropping attack. In addition, p̃w is
protected against offline dictionary guessing attacks by a fully
homomorphic encryption (FHE) algorithm, i.e., the security
follows from the hardness of DLWEn,q,χ,m. Assuming both
U and {Si}Ni firmly implement the PPSS. At the fourth step
of the basic PPSS, Si executes the threshold decryption for
∆ + Cm. Intuitively, m is masked by the re-randomized
password. Especially, if p̃w ̸= pw, the variable q

2 · (t + 1) ·
(H(p̃w)−H(pw)) in pi acts like a pseudorandom mask. This
means that the server’s response pi is indistinguishable from
the random value on the session while (p̃w − pw) ̸= 0.

Next, we discuss the case of p̃w = pw, i.e., A guesses
the correct password. Despite m loses the mask of q

2 · (t +
1) · (H(p̃w) − H(pw)), the value e · R̂ still acts like a
pseudorandom one-time pad masking the partial decryption,
where R̂ =

∑t+1
j=1 Rj · (Rp̃w − Rpw) + Rm. Benefit from

the Shamir secret sharing security assumption [43], when
the adversary corrupts t′ ≤ t key servers, there are also
t−t′ masked values, which are indistinguishable from random
values on the session. Consequently, the PPSS scheme holds
the level of protection expected of password authentication [8].

The detailed security proof follows from the proof technique
of the QPause with restrictions at Section VII.

B. QPause via PPSS

We now propose QPause in Fig 3, a quantum resistant pass-
word protected data outsourcing for cloud storage. We first
describe how to modify the basic PPSS to provide security
against malicious adversaries without any secure channels.
Then, we formally propose the construction of QPause. To
meet the new challenges posed by changes in adversaries, we
modify a series of steps of the basic PPSS as follows:

- We considers a specific session sid = (S1, ..., SN , sid′)
and only accepts inputs from Si with the sid. IDj de-
notes server ID of j-th Server session, IDj ∈ {1, ..., N}.

- The optimization of the calculation sequence can fur-
ther change the basic PPSS scheme to a round-optimal
scheme. U requests st0 while determining the access
structure S with t + 1 servers, and sends the S together
with Cp̃w. Then, Sj executes the partial decryption im-
mediately after calculating the re-randomization password
∆j at step 10 of RecS in Fig. 3. Finally, U executes the
final decryption to output the message m.

- In the step 3 of RecU, A can save Cpw to impersonate
a legitimate U . Hence, U needs to prove that the output
Cpw uses a fresh random value Rp̃w. We consider to
encrypt H(p̃w) again, denoted as Ĉp̃w, with the same
random value Rp̃w and a fresh public key p̂k, and then
proving that the same Rp̃w is used for both Cp̃w and
Ĉp̃w by a lattice-based zero-knowledge in Section IV-D.

- When the basic PPSS scheme is without any secure
channels, it is insecure that the response pi of Si is sent
back in cleartext. A passive eavesdropper on the channels
between U and S can easily access t + 1 shares and
recover m. To counter such an eavesdropping attack, we
employ the fully homomorphic encryption [38] again. In
the first step of Rec, U computes the public key p̃k with
a random secret r ← Zn

q . U sends p̃k to each server in
the access structure. Si encrypt pi with p̃k, denoted as
E(pi) and return it to U instead of returning pi directly
in the fourth step of Rec. Finally, U can decrypt E(pi)
with a staging r to get pi.

- We employ clear out their denominators [40] to limit the
Lagrange coefficients to an integer. This makes the size
of the ciphertext positively correlated with the number of
servers N violates the compactness. Inspired by Boneh
et al. [39], we overcome this quandary by employing
the universal thresholdizer to thresholdize the compact
fully homomorphic encryption [38]. Furthermore, the
instantiation of the universal thresholdizer can improve
the robustness of the basic PPSS scheme, since the ver-
ification algorithm can detect the maliciously generated
evaluation share. We need to amend the Init phase with
the set of commitment parameters [50] to the secret key
share {ski}Ni=1 of Si. Concretely, Init samples an extra
a uniformly random matrix A ← Z(n+1)×(mn−m−n−1)

q ,
and a series of uniformly random vectors ri ← Z(m+n)

q .
Let A1 = [In A] and A2 = [0(n+1)×m In+1 A].



8

User U Server Si

Init(pw,m) (U ⇒ Si)

1: Pick a set S of t+ 1 sessions {sidj}j∈S ,

2: Rp̃w ← {0, 1}N×m, r← Znq , e′ ← Xm,

S,sidj ,Cp̃w,Ĉp̃w,p̃k,π1,j

7: If NIZK.V [π1,j ] = 1,

pkτ ← [A · kτ + e|A], p̂k← [A · k̂ + e|A], sk2 ← Powersof2(1| − k2), {ski}Ni=1 ← SS.Share(sk2),

Cpw ← TFHE.Enc(pk1, H(pw)),Cm ← TFHE.Enc(pk2,m),A1 ← [Im A], A2 ← [0m×m Im A]

{Comi ← Commit(ski, ri), st0 ← (A,A,pk1, p̂k, H,Cpw,Cm, {Comi}Ni=1), {sti ← (ski, ri)}Ni=1.}

kτ , k̂← Znq ,A← Zm×nq ,A← Z
n×(m+n)
q , e, ê← Xm, ri ← Zm+n

q , Rpw,Rm ← {0, 1}N×m,

RecU(st0, p̃w) {RecS(st0, stIDj
)}Nj=1

3: Cp̃w ← TFHE.Enc(pk1, H(p̃w))

4: Ĉp̃w ← TFHE.Enc(p̂k, H(p̃w))

5: (p̃k, s̃k)← TFHE.Setup(1κ, 1d, A)

6: π1,j ← NIZK.P
[
Lst0U

]
,

9: Rj ← {0, 1}N×m,

8: Compute λzj , ej ← Xm,

10: ∆j ← (Cp̃w −Cpw) ·Rj ,

11: Cjm = ∆j + Cm

12: pj ← TFHE.PartDec(Cjm, skj)

13: Cpj ← TFHE.Enc(p̂k,pj)
IDj ,sidj ,Cpj ,π2,j

15: If NIZK.V [π2,j ] = 1,

16: m← TFHE.FinDec(s̃k,Cpj )

H : {0, 1}∗ → Zq

14: π2,j ← NIZK.P
[
Lst0,jS

]

Fig. 3. Our QPause is secure against malicious adversaries with round-optimal, where τ = {1, 2} and the TFHE algorithm follows definition 7. The dashed box
indicates that the user can recover data when receiving at least t+1 responses. The NIZK algorithm is the non-interactive zero-knowledge proof algorithm de-
scribed in Section 10, where Lst0U = {A,pk1, p̂k, H,Cp̃w, Ĉp̃w|∃(Rp̃w, p̃w) s.t.(Cp̃w, Ĉp̃w) = (TFHE.Enc(pk1, H(p̃w)),TFHE.Enc(p̂k, H(p̃w)))}
and Lst0,iS = {A,Cpj |∃(Ri, ri,Comi, ski, p̃k, λ

z
i ,pj) s.t.Cpj = TFHE.Enc(p̂k,pj)}.

Then, it outputs the commitment {Comi(ski; r) ←
[A1 · ri∥A2 · ri + ski], where ski ∈ Zn

q . We add a
extra set {A,A,Comi} to st0, and ri to {sti}Ni=1.

According to Definition 10 and the analysis above,
we need to prove that the two languages Lst0

U ,Lst0,i
S

correspond to the messages transmitted by the two parties.
All these messages are parameterized by common parameters
st0 = (A,A,pk1, p̂k, H,Cpw,Cm, {Comi}Ni=1). L

st0
U =

{A,pk1, p̂k, H,Cp̃w, Ĉp̃w|∃(Rp̃w, p̃w) s.t.(Cp̃w, Ĉp̃w) =
(TFHE.Enc(pk1, H(p̃w)),TFHE.Enc(p̂k, H(p̃w)))} and
Lst0,i
S = {A,Cpj

|∃(Ri, ri,Comi, ski, p̃k, λ
z
i ,pj) s.t.Cpj

=

TFHE.Enc(p̂k,pj)}. The simulation-sound non-interactive
zero-knowledge proofs (SS-NIZK) enable round-optimal and
the messages well-formed. Peikert and Shiehian [44] propose
an SS-NIZK based on Decision-LWEn,q,χ,m, which can be
transformed to SS-NIZK by the generic conversion of Sahai
[48]. Thus, we can employ the SS-NIZK for Lst0

U and Lst0,i
S .

C. Further Discussion

Multi-user devices. The current setting of the QPause has
the advantage of not requiring any device on the user side to
store privacy information (the password can be recorded in
the user’s head). Users with weaker protection (as opposed to
more protected servers) are not afraid of the data security risks
associated with hacking their devices. Moreover, the QPause
is easily extended to multi-user devices (e.g., laptops, iPads,
mobile phones, etc.). Even if an adversary corrupts t out of the
N servers, it cannot access the user’s data stored in the cloud.
However, in the round-optimal setting of our scheme, each
server does not authenticate directly to the password input by
a user. Although such a setting improves the privacy of user
identities and the efficiency of communication, the system may
be vulnerable to online password-guessing attacks [51].

Specifically, the server side does not know whether the user
has completed the scheme, i.e. the server side does not see
the status of the user side after the server returns a series
of computation results. This provides a convenient condition
for adversaries to launch online password-guessing attacks.

The QPause cannot simply add an additional authentication to
solve this problem above since if the server is corrupted, the
adversary extracts the registered authentication information.
A feasible method is that the server-side limits the number
of user logins in a fixed period to prevent the adversary from
performing online password-guessing attacks.

In addition, for a static set of servers, the adversary may
be able to corrupt more than t servers through a perpetual
corruption attack [15]. We can employ the 0-share polynomial
(The constant term of the secret sharing polynomial is 0) to
update the server-side key share. This allows the adversary
to corrupt the server for only a fixed period of time, thus
preventing perpetual corruption attacks. However, there is
no fundamental solution to the problem of the server being
corrupted. Considering the desire of a certain part of users to
have more control over their data [6], rather than leaving data
security entirely in the hands of a subscribed cloud service.

Inspired by Bagherzandi et al. [8], we can improve secu-
rity through user-controlled shares (Although this increases
additional storage overhead and may result in a loss of
robustness). Specifically, the initialization phase of the QPause
generates 2N − t private key shares for the user. The user
stores N − t of these shares locally and shares the remaining
shares with servers. Currently, the threshold of the scheme is
N , i.e., at least t servers provide private key shares ski to
participate in the computation when recovering the secret, and
the user performs the calculation locally using N − t shares.
At this point, the adversary cannot extract the user’s secret
information through corruption attacks only. In addition, this
setting can resist the online password guessing attack because
the user side does not respond to adversary queries.
Actively disrupt. In practice, malicious adversaries can ac-
tively disrupt the system by launching denial-of-service attacks
(DOS) or by tampering with the data. For DOS attacks, it
is impossible to fully resist DOS attacks by password-based
schemes. Service providers need to employ methods such as
firewalls [52], [53] and intrusion detection systems [54], [55].
Notably, our QPause has the advantage of weakening DOS



9

attacks. Because our QPause is designed based on a distributed
system with multiple servers, effectively improving the overall
performance and capacity of the system. In particular, the
reconstruction task can be completed when the t + 1 servers
in the N servers are working. Our system can effectively
distribute attack traffic, reduce the load on individual servers,
and weaken the impact of DOS attacks.

VII. THEORETICAL ANALYSIS

In the following, we show that our scheme is provably secure
in the formal model defined in Section V, under the Decision-
LWEn,q,χ,m, is intractable [37]. To the best of our knowledge,
there is no known effective algorithm that can solve the
Decision-LWEn,q,χ,m problem in the average case. In addition,
we analyze the compactness, soundness, robustness (defined in
Section V), and the complexity of our QPause.

A. Security Analysis of QPause

We prove the security of our QPause based on subsection V
with the PPSS security model, where the capabilities of the
adversary A are modeled through queries and corrupt no more
than t servers in a fixed period. We employ the standard game-
based proof to characterize the security of our QPause.

Theorem 2 (Security). In QPause, a malicious A can get all
public parameters, control the entire external network, and
access client-side oracle and server-side oracle qu times and
qs times, respectively. Furthermore, A can corrupt t′ ≤ t
servers {Si}. For any PPT A, the advantage of cracking
QPause that:

AdvQPause
A (κ) ≤C ′ ·

⌊
qs

′

send(κ)

t− t′ + 1

⌋
+

nqs
2m2−1

+ (2qu + 2qs + 3) ·AdvDLWE
A (κ) + ε(κ).

Proof: Let A be an adversary against the semantic secu-
rity of the QPause, running in time T . We describe a series of
hybrid games Gn (n = 1, ..., 8), all initialized on secret m,
where G0 is the beginning to interact of A with QPause. With
slight modifications explained below, the games ending in G8.
Now the advantage of A is 0, and we can bound the difference
between any adjacent games. For each game Gn, we define
the following events: 1) Succn denotes that A successfully
guesses the bit b involved in the query. 2) Gi

j denote the sub-
games between Gj−1 and Gj , where Gi

j−1 follows Gj calls
on the first i sessions. k is the times of A access oracle.
Game G0. This game corresponds to the real attack. The
adversary enters an encrypted password to at least t−t′+1 ses-
sions executed by separate servers. According to the security
assumptions and previous analysis, the advantage of A learn-
ing the secret is equivalent to guessing the correct password.

By definition 14, we have: Pr[succ0] ≤ C ′ ·
⌊

qs
′

send(κ)
t−t′+1

⌋
+ε(κ).

Game G1. In this game, A access a RecU oracle by qu
times and attempt to distinguish Ĉp̃w ← Z(n+1)×m

q and
Ĉp̃w ← Flatten(H(p̃w) · IN + BitDecomp(Rp̃w · p̂k)). A
can get st0 from Init. The security of the fully homomorphic
encryption relies on the public parameter matrix p̂k being

computationally indistinguishable from a uniformly random
matrix in Z(n+1)×m

q by DLWE, even e is expanded by a fixed
constant multiple. The (A · ŝ+ ê) and c ·r are computationally
indistinguishable, and the scalar multiplication by a nonzero
integer over a prime modulus is bijective. Thus, Gi

0−Gi−1
0 ≤

AdvDLWE
A (κ), and Pr[succ1]−Pr[succ0] ≤ qu ·AdvDLWE

A (κ).

Game G2. This game is similar to G1 except that A access
a RecS oracle by qs times to distinguish pi ← Zq and
{pi} ← Zq , else pi ← λz

j ⟨ski,∆j + Cm⟩ + (N !)2 · ej .
Because of the presence of noise (N !)2 · ej , A cannot obtain
information about ∆j +Cm by Gaussian elimination, unless
A can solve the DLWE, i.e. Gi

1 − Gi−1
1 ≤ AdvDLWE

A (κ),
i ∈ [1, qs]. Another way is by decrypting Cpj = Flatten(pj ·
IN + BitDecomp(Rj · p̃k)). A access RecU oracle by qu
times and attempt to sample r ← Zn

q . A samples A ← st0
and computes s̃k ← Powersof2(1| − r). This means that
A can distinguish A · r + e′ and A · r′. By Definition 3,
we have: Gj

1 − Gj−1
1 ≤ AdvDLWE

A (κ), j ∈ [1, qu], and
Pr[succ2]− Pr[succ1] ≤ (qu + qs)AdvDLWE

A (κ).

Game G3. We define game G3 by A decrypted Ĉp̃w to get
H(p̃w). If A is successful, ∆j = (Cp̃w − Cpw) · Rj , else
∆j ← Zm×m. For any PPT A, the advantage of H(p̃w) ←
Dec(Ĉp̃w) without sk is AdvDLWE

A (κ). A can access a RecS
oracle qs times (Totally n · qs times) to get ∆j . In Gi

2 (i ∈
[1, qs]), A guesses R′j ← {0, 1}m×m. We have Adv

Gi
2

A ≤
( 12 )

m2

, and Pr[succ3]− Pr[succ2] ≤ AdvDLWE
A (κ) + nqs

2m2 .

Game G4. In this game, A access Init oracle to query ski.
For A can corrupt t′ ≤ t servers. This situation is the same as
that in G3. Because A does not know the correct password,
the variable q

2 · (t + 1) · (H(p̃w) − H(pw)) in pi acts like
a pseudorandom mask. A cannot distinguish whether the ski

queried is a share of 0. Hence, Pr[succ4]− Pr[succ3] = 0.

Game G5. This game is similar to G4 except that A attempt
to distinguish Cm ← Z(n+1)×m

q and Cm ← Flatten(m ·IN +
BitDecomp(Rm ·pk)). By Definition 3, we have Pr[succ5]−
Pr[succ4] = AdvDLWE

A (κ).

Game G6. In this game, A access a RecS oracle qs times
(Totally n · qs times) to get ∆j . In Gi

5 (i ∈ [1, qs]), A
gusses R′j ← {0, 1}m×m. Thus, we have Adv

Gi
6

A ≤ ( 12 )
m2

and Pr[succ6]− Pr[succ5] ≤ nqs
2m2 .

Game G7. This game is similar to G6 except that A attempt
to distinguish Cp̃w ← Z(n+1)×m

q and Cp̃w ← Flatten
(H(p̃w) ·IN +BitDecomp(Rp̃w ·p̂k)). Clearly, Gj

6−G
j−1
6 ≤

AdvDLWE
A (κ), and Pr[succ7]−Pr[succ6] = qs ·AdvDLWE

A (κ).

Game G8. Finally, in the G8, A access the Init oracle and
attempt to distinguish Cpw ← Z(n+1)×m

q and Cpw ← Flatten
(H(pw) · IN + BitDecomp(Rpw · pk)). By Definition 3 and
Definition 6, we have:Pr[succ8]−Pr[succ7] = AdvDLWE

A (κ).

In summary, for any PPT A, the advantage of disclosure
of sabotaging QPause holds that: AdvQPause

A (κ) ≤ C ′ ·⌊
qs

′
send(κ)
t−t′+1

⌋
+ nqs

2m2−1
+ (2qu + 2qs + 3) ·AdvDLWE

A (κ) + ε(κ).

We follow the Zipf model of Zhenai at Section VIII, where
|D| = 5, 260, 229, C ′ = 0.0491866 and s′ = 0.156027.



10

B. Further Security Discussion

To the best of our knowledge, the prerequisite for the powerful
arithmetic power of quantum computers is the existence of
efficient problem solving quantum algorithms. The most influ-
ential quantum attack algorithms are Shor’s [30] and Grover’s
algorithm [41]. Quantum computers can efficiently solve large
integer decomposition and discrete logarithm problems with
Shor’s algorithm. The Grover algorithm allows quantum com-
puters to threaten symmetric cryptographic algorithms and
hash functions. Nevertheless, the Grover algorithm requires
exponential levels of memory, so the symmetric encryption
and hash functions can resist quantum attacks with appropriate
parameter settings (e.g., double the security parameters).

From the security analysis in Theorem 2, it can be seen that
our scheme can be reduced to Decision-LWEn,q,χ,m [37] to
provide quantum resistance. Our security estimates are made
by employing the “lwe-estimator” [56] to show the security of
our QPause. In particular, we characterize LWE instances by
parameters the ciphertext dimension n, the standard deviation
σ, and the estimator defines noise rate α = σ ·

√
2π/q. We

follow the algorithm of determining security parameters [56],
and determine two settings of parameters to make the QPause
satisfy 82-bit and 128-bit quantum security, respectively. The
parameters are selected as shown in Table I. To obtain more
conservative parameters, we adopt the core-SVP methodology
using the classical cost 20.292∗β and quantum cost 20.268∗β .

Next, we discuss the compactness, soundness, and robust-
ness of the QPause. According to the PPSS security model in
Section V, we have the following three theorems.

Theorem 3 (Compactness). Let poly(·) denote polynomial
and yi = {Cpi

, π2,i}. Our QPause is compact, i.e. there are
|∆j+Cm| ≤ poly(κ) such that |yi| ≤ poly(κ,N) for i ∈ [N ].

Proof: The compactness of our QPause is similar to the
underlying TFHE scheme of Boneh et al. [39]. Fix the security
parameter κ and access structure S. Let (st0, st1, ..., stN ) ←
Init(pw,m), and {Cpi

, π2,i} ← RecS, where i ∈ S. Cpi
∈

Z(n+1)×m
q and there exists a polynomial poly1(·) s.t. Cpi

≤
poly1(κ). In addition, π2,i is parameterized by

Lst0,i
S = {A,Cpi |∃(Ri, ri,Comi, ski, p̃k, λ

z
i ,pj)}.

The Comi = [A · ri|A · ri + ski]. By the |ri|, |ski| ≤
poly(κ,N), there exists a polynomial poly2(·) s.t. |π2,i| ≤
poly(|Cpi

| + |Comi|) ≤ poly2(κ,N). In summary, let yi =
{Cpi

, π2,i} and poly = poly1 + poly2, we have:

yi ≤ poly1(κ) + poly2(κ,N) ≤ poly(κ,N).

Theorem 4 (Soundness). For any (m, pw, p̃w) ∈M×D×D,
and any PPT algorithm A, the probability that m′ /∈ {s,⊥},
where st ← Init(pw,mb) and m′ ← RecU(p̃w, st0) inter-
acting with A(m, pw, p̃w, st), is bounded by ε. Our QPause
satisfies weak soundness by restricting p̃w to p̃w = pw.

Proof: The soundness of QPause follows from the sound-
ness of SS-NIZK in Section IV-D. Because the SS-NIZK
forces the server to perform the computation exactly according
to QPause. We can add an additional public key PK to st0
and the corresponding secret key sign m. This way can extend

TABLE I
SECURITY LEVEL OF OUR SCHEME

n q σ β Classical Quantum

PARMS 1 784 232 − 4 56 307 90-bit 82-bit
PARMS 2 1024 232 − 4 128 479 140-bit 128-bit

TABLE II
RUNNING TIMES OF RELATED OPERATIONS (IN MS).

Operations TG TE TD TS Texe

Time 0.354 0.412 0.326 0.403 0.854

QPause to strong soundness. The user needs to verify the
validity of the signature by PK before recovering m.

Theorem 5 (Robustness). For any (m, pw) ∈M×D, any S̃
s.t. n− |S̃| ≥ t+1, and any PPT algorithm A with executing
time T , the probability that m′ ̸= m, where st← Init(pw,mb)
and m′ ← RecU(p̃w, st0) interacting with A(m, pw, stS̃) and
RetS(stS̃ , st0), is bounded by ε.

Proof: For any PPT A, if A outputs a fake partial
evaluation p∗i such that p∗i ̸= λz

j ⟨ski,∆j +Cm⟩+ (N !)2 · ej
and V

[
Lst0,j
S

]
= 1. This means that y∗i = (p∗i , π

∗
2,i) satisfies:

1) A has a valid witness, or 2) V
[
Lst0,j
S

]
= 1 without a

valid witness. For the first case, there is p∗i ̸= pi. A has
a valid witness iff A can find a randomness r∗i such that:
comi =

[
A A

]T · r∗i + [0n sk∗i ] . Nevertheless, this is a
contradiction with the binding of commitment in [50]. For the
second case, it clearly violated the soundness of the SS-NIZK
in Section IV-D. Hence, our QPause is robust.

If the user is assumed to choose a weak and easily guess-
able password, no password-based cryptographic schemes
will be secure. Thus, password-based cryptographic schemes
(see recently standardized ones like [57] and [58]) generally
implicitly assume a benign legitimate user that will follow the
best password practices, such as no use of weak passwords.
Note that, even if users choose a strong password, the entropy
that passwords can provide is not high (i.e., 20-22 bits [23]).
Thus, for security-critical applications, two-factor or multi-
factor credentials are employed. In practice, there are a series
of methods that can help users choose strong passwords, such
as password strength meters [59] and password managers [60].

C. Complexity analysis

According to Section VI-B, our QPause includes sampling,
matrix multiplication and addition, encryption and decryption,
secret sharing, commitment, and zero-knowledge proof. We
can achieve sampling with a complexity of O(1) based on the
Alias method proposed by Walker and Alastair [61].

In the Init phase, the generation of public keys includes
a matrix multiplication and a matrix addition. We employ
the number theorem transform (NTT) [62] to speed up the
matrix operations in LWE and the optimized complexity is
O(nlog m). In addition, the fully homomorphic encryption in
Definition 6 has a real complexity of O((nd)ω) [38], where n
is dimensional, d is the depth of circuit C, and ω < 2.3727.
The complexity of the SS.Share is O(tN), which is related
to the degree of the polynomial (i.e., threshold t) and the



11

number of servers N [39]. Finally, the commitment [50] can
also be adapted to NTT optimization, and the complexity is
O(nlog m). In practice, the parameter settings meet n ≥ m≫
d > N ≥ t ≥ ω [34], [38], [44]. Therefore, the computation
complexity of the Init phase is O(nω).

The decryption of the fully homomorphic encryption in
Definition 6 is essentially Regev decryption [38] with the
complexity of O(log n) [37]. Furthermore, the complexity
of the aggregation is squared with the threshold t. Hence, the
complexity of TFHE.FinDec is O(t2) + O(log n). Finally,
according to Peikert and Shiehian [44], the complexity of
the prove algorithm is O(nlog m + log2m + 2m), and the
complexity of the verify algorithm is O(nlog m+2m). Thus,
the computation complexity of the RecU and RecS are O(nω).
From the above analysis, it can be seen that the main overhead
of QPause is the fully homomorphic encryption operation.
Therefore, our QPause can benefit from more efficient fully
homomorphic encryption schemes, e.g., Heaws [63].

VIII. EXPERIMENTS

In this section, we evaluate the overheads and functions of our
password-protected secret sharing (PPSS) schemes.
Overheads. We calculate the computation cost in terms of ba-
sic cryptographic operations. We denote a key pair generation
as TG. We write TE as the fully homomorphic encryption
and TD as the decryption. TS denotes the (t,N) Shamir
secret sharing operation in Definition 4 and Texe denotes the
exponentiation. Our implementation is in C++ language and
complies with the NTL version 11.5.1, and the measurement
is obtained on a workstation with an Intel(R) Core(TM) i7-
8750H running at 2.20 GHz. The operating costs of basic
cryptographic operations are shown in Table II.

To ensure a 128-bit quantum security level, we employ the
recommended parameter set by NIST PQC round 2 [64]. Let
c is constant, we can obtain an LWE instance by parameters
n, q, α,m, where the dimension m = n, an odd prime q ≈ nc,
and the noise rate α ≈ n1/2−c. Specifically, we set n = 1024,
q = 232 − 4 ≈ 4, 294, 967, 291, σ = α · q/

√
2π = 128.

The practical parameters for implementing our QPause can be
found in the scripts of LWE-Frodo1 and GSW-FHE2.

We evaluate the computation, communication, and memory
overheads of the traditional and quantum-resistant PKI-based
schemes, including schemes of Bagherzandi et al. [8], Ca-
menisch et al. [25], Jarecki et al. [28], Roy et al. [18], and our
work, as shown in Table III. We adopt the threshold setting
of Camenisch et al. [25], where t = N = 2. Our scheme
performs TG twice in the initialization phase (one key pair is
used to encrypt and decrypt the outsourced data, and another
key pair is used to prove the freshness of the ciphertext in
the recovery phase). On the one hand, the main overhead is
homomorphic encryption operations. On the other hand, the
initialization phase can be computed offline. Therefore, such
additional overheads are acceptable in practice.

In addition, the additional generated key prevents the user
from encrypting random numbers in the recovery phase. Con-
cretely, we can reduce one operation of fully homomorphic

1https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
2https://github.com/google/fully-homomorphic-encryption

Real attacker

CDF-Zipf model

PDF-Zipf model

Uniform model

Min-entropy model

1 10 100 1000 104 105 106
0.0

0.2

0.4

0.6

0.8

1.0

Online gussing number qsend

A
dv
an
ta
ge
of
th
e
at
ta
ck
er
A
dv
P
,D
A
K
E
(A
)

Fig. 4. Online guessing advantages of a real attacker, the CDF-Zipf modeled
attacker, the PDF-Zipf modeled. The uniform-modeled attacker and min-
entropy-modeled attacker (using the 5,260,229 passwords leaked from the
dating site Zhenai). The overlap of the CDF-Zipf attacker with the real one
indicates well prediction.

encryption by generating additional keys in each phase, effec-
tively reducing the computation overhead (22.5%), communi-
cation overhead (49.6%), and memory overhead (37%) in the
recovery phase. Furthermore, Roy et al.[18] do not add noise
to the output in the partial decryption phase, which may lead
to the extraction of private key information by the adversary
through Gaussian elimination. Our work solves this security
problem by adding noise to the partial decryption and handling
the noise to ensure successful decryption.
Function. A comparison between Bagherzandi et al. [8],
Camenisch et al. [25], [45], [46], Jarecki et al. [28], [11], [29],
[10], Yi et al. [47], Das et al.[5], Roy et al.[18] and our work is
shown in Table IV. Compared to the (N,N)-threshold scheme
of Das et al.[5], our QPause provides more options for users to
recover data based on the assumption of secret sharing. On the
one hand, users have more freedom to choose trusted servers
to perform data recovery operations. On the other hand, users
can employ an (N, 2N − t) threshold scheme to have more
control over their data, which is discussed at Section VI-C.

In terms of security models, the universally composable
(UC) model appears to be more widely used [47], [11], [29],
[10], [5]. However, in the case of a quantum attack, it is
difficult to use the definition of UC security [29] since it
is hardness to construct programmable random oracles in
quantum random oracle model (ROM) [65]. To intuitively
analyze the password protection of private information, we
employ the ROM to portray the security of the scheme.

Next, we consider the impact of the different password
distributions on security. From Fig. 4, it is clear that in the
ROM, assuming that the password follows a uniform random
distribution brings about a “relax” of the security reduction.
Concretely, Fig. 4 shows that the advantages of the adversary
are underestimated in the uniform model. Notably, the CDF-
Zipf based formulation C ′ ·qs′send(κ)+ε(κ) well approximates
the real attacker’s Adv : qsend ∈ [1, |D|] (Here we use the Zipf
model of Zhenai, where |D| = 5, 260, 229, C ′ = 0.0491866
and s′ = 0.156027, the maximum deviation less than 0.491%).

This CDF-Zipf-based formulation is more accurate than
other used formulations such as the Min-entropy model [66].



12

TABLE III
COMPARING THE COSTS OF TRADITIONAL [8], [25], [28] AND QUANTUM-RESISTANT PPSS SCHEME [18] WITH OUR WORK.

Client Server

Scheme Comp.cost Total time Comp.cost Total time Comm.cost

Initialization

Bagherzandi et al. [8] ∗ 10Texe 8.51ms - - O(N)
Camenisch et al. [25] ∗ 18Texe 15.372ms 11Texe 9.194ms O(N)
Jarecki et al. [28] ∗ 6Texe 5.124ms - - O(N)
Roy et al. [18] TG + 2TE + TS 1.581ms - - O(N)
Our work 2TG + 2TE + TS 1.935ms - - O(N)

Recovery

Bagherzandi et al. [8] ∗ 33Texe 28.182ms 16Texe 13.664ms O(t)
Camenisch et al. [25] ∗ 19Texe 16.226ms 26Texe/30Texe 30.744ms/25.619ms O(1)
Jarecki et al. [28] ∗ 7Texe 5.978ms 2Texe 1.68ms O(t log N)
Roy et al. [18] 3TE 1.236ms TE + TD 0.738ms O(t)
Our work TG + 2TE + TD 1.092ms TE + TD 0.738ms O(t)

∗ Traditional (not post-quantum secure) PPSS schemes
† Comp.cost=Computation cost; Comm.cost=Communication cost.
‡ In the dual server PPSS scheme proposed by Camenisch et al. [25], the computational overhead of the two servers is different.

TABLE IV
COMPARISON AMONG RECENTLY PASSWORD-PROTECTED SHAMIR SHARING. CONSIST OF BAGHERZANDI ET AL. [8], CAMENISCH ET AL. [25], [45],

[46], JARECKI ET AL. [10], [11], [28], [29], YI ET AL. [47], DAS ET AL.[5], ROY ET AL.[18], AND OUR WORK.

Threshold Round Password
distribution

System
model

Security
model Technology ZK

proof
Quantum
security

Bagherzandi et al. (CCS’11) [8] (t,N) 2 UR PKI ROM HE Y N
Camenisch et al. (CCS’12) [25] (2,2) 1 - PKI UC HE Y N
Camenisch et al. (Crypto’14) [45] (t,N) 2 - PKI UC HE Y N
Camenisch et al. (PKC’15) [46] (2,2) 1 - PKI UC HE Y N
Jarecki et al. (ASIACRYPT’14) [28] (t,N) 1 UR CRS ROM OPRF Y N
Yi et al. (ESORICS’15) [47] (t,N) 1 UR CRS UC HE N N
Jarecki et al. (IEEE S&P’16) [11] (t,N) 1 UR CRS UC OPRF N N
Jarecki et al. (ACNS’17) [29] (t,N) 1 UR CRS UC OPRF N N
Jarecki et al. (CCS’19) [10] (t,N) 2 UR CRS UC OPRF N N
Das et al. (ASIACCS’20)[5] (N,N) 2 UR CRS UC OPRF Y N
Roy et al. (ACNS’21) [18] (t,N) 1 UR PKI ROM FHE N Y
Our work (t,N) 1 Zipf PKI ROM FHE Y Y

† UR=Uniform random; “-”=Not to consider; Zipf=Zipf distribution; ZK=Zero-knowledge; CRS=Common reference string; Y =Yes; N=No.
‡ HE=Homomorphic encryption ; OPRF=Oblivious pseudorandom function; FHE=Fully homomorphic encryption;
∗ PKI=Public key infrastructure; UC=Universally Composable; ROM=random oracle model.

We use the accurate Zipf-based formulation for our QPause to
achieve tighter security than PPSS schemes [8], [28], [18].

Compared to schemes without zero-knowledge proofs [28],
[11], [29], [10], [47], [5], [18], [25], [45], [46], our solution
can be better counter to malicious adversaries without secure
channels. In addition, we implicitly build the universal thresh-
oldizer [39] by incorporating commitment verification to make
the scheme compact. A series of solutions [28], [47], [11],
[10], [5] eliminate the public keys with the oblivious pseu-
dorandom function (OPRF). However, the additional random
numbers and noise introduced by password re-randomization
over lattices may cause server-derived key recovery to fail
(users may need to remember additional random numbers
instead of just the password). We note that the verifiable OPRF
scheme proposed by Albrecht et al. [67] may be used to
construct PPSS protocols on the lattice without the PKI model,
but this scheme cannot be used directly since low efficiency.

Finally, the security of our scheme can be reduced to the
Decision-LWEn,q,χ,m, in which the security of lattice-based
hardness problem is reduced to the hardness of finding a rela-
tively short vector over lattices. To the best of our knowledge,
the Block-Korkin-Zolotarev (BKZ) algorithm [68] is the best

solution to find the short vectors in the n-dimensional lattice.
We can ensure that our QPause has 128-bit quantum security
to resist the BKZ algorithm by setting suitable parameters.

IX. LATTICE-BASED TPAKE FROM PPSS

We convert a threshold password-authenticated key exchange
(TPAKE) protocol from our QPause. A TPAKE allows a user
can complete authentication with a set of servers and securely
establish session keys via a password in the public network.
Bagherzandi et al. [8] show that a public key infrastructure
(PKI)-based TPAKE protocol can be implemented by a chosen
ciphertext attacks (CCA) secure encryption scheme ΠE , an ex-
istential unforgeability under adaptive chosen message attacks
(EUF-CMA) signature scheme ΠS , and a secure password
protected secret share (PPSS) scheme ΠP .

Roy et al. [18] demonstrated that the CCA secure lattice-
based encryption scheme [69] and the EUF-CMA signature
[70] are competent for the component TPAKE protocol. How-
ever, the existing lattice-based PPSS decomposes the secret
agent at the server end, which will reveal the information
about the secret key, as we discussed in Section III. Our



13

QPause eliminates obstacles and provides strong security PPSS
components for TPAKE instantiation of quantum resistance.

At a high level, a user executes the key generation algo-
rithms of ΠE [69] and ΠS [70] to get the encryption key pair
(pk, sk) and the signing key pair (sskj ,vkj) respectively.
Then a user runs Init(pw, sk) of the QPause to complete the
initialization (ski as secret information, sskj as sharing share).
The user interacts with a set of servers based on Rec. In RecS,
each server Sj samples a key kj ← {0, 1}κ and signs it by
sskj to get Signj . Sj encrypts (kj , Signj) with pk to get
Ck and sends Ck to the user. The user recover sk by running
RecU of QPause and decrypts Ck to obtain (kj , Signj). If
Signj is valid, the user sets kj as the session key with Sj .

We encapsulate the key with the CCA secure lattice-based
encryption scheme [69] to ensure that adversaries can learn
nothing about the session key. The EUF-CMA signature [70]
guarantees that the transmitted information cannot be modified
or rerouted. Hence, all kj of users are independent of each
other. Notably, pk is inevitable and may result in the key
reuse attack. According to Section V, there are two attacks:
signal leakage attacks [16] and key mismatch attacks [17].

For signal leakage attacks [16], A plays the role of the user.
In our TPAKE, the user can recover the decryption key at
any time using the password without caching it. The signal
sent by the user does not contain sk. Thus, our TPAKE
is not influenced by signal leakage attacks. In addition, the
decryption is performed locally and is protected by an implicit
authentication (Section VI-B). Thus, unless an adversary has
access to the password to execute a key mismatch attack [17].

X. CONCLUSION

In this paper, our major goal is to construct a quantum-resistant
password-protected data outsourcing scheme for cloud storage.
It ensures that only a user who knows the correct password can
retrieve data. To achieve this goal, we first construct a basic
password-protected secret sharing (PPSS) scheme over lattices
with a secure channel. Our PPSS enables users to retrieve data
via their passwords secure against semi-honest adversaries.

Then, we formally propose a quantum-resistant password-
protected data outsourcing scheme against malicious adver-
saries, named QPause. Our scheme requires no secure channels
and achieves round-optimal. The security analysis shows that
QPause can resist various attacks from quantum computing
capable adversaries. In addition, we demonstrate the compact-
ness, robustness, and soundness of the QPause. The compari-
son with related works shows that our QPause maintains the
practicality of PPSS while guaranteeing quantum resistance.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their in-
valuable comments. This research was supported in part by
the National Natural Science Foundation of China under
Grant No. 62222208, by the Natural Science Foundation
of Tianjin, China under Grants Nos. 21JCZDJC00190 and
21JCZXJC00100 and by Henan Key Laboratory of Network
Cryptography Technology under Grant No. LNCT2022-A02.

REFERENCES

[1] D. Rydning, J. Reinsel, and J. Gantz, “The digitization of the world from
edge to core,” Framingham: International Data Corporation 2018.

[2] M. B. Hui, “Cloud services may become the biggest source of ddos
attacks,” 2019, https://www.freebuf.com/fevents/203988.html.

[3] M. Andrey, “Building a distributed network in the cloud: Using amazon
ec2 to break passwords?” 2017, https://blog.elcomsoft.com/2017/08/
breaking-passwords-in-the-cloud-using-amazon-p2-instances/.

[4] Y. Zhang, C. Xu, N. Cheng, and X. Shen., “Secure password-protected
encryption key for deduplicated cloud storage systems,” IEEE Trans.
Depend. Sec. Comput., vol. 19, no. 4, pp. 2789–2806, 2021.

[5] P. Das, J. Hesse, and A. Lehmann, “Dpase: Distributed password-
authenticated symmetric encryption,” in Proc. ASIACCS 2022.

[6] V. Mangipudi, U. Desai, M. Minaei, M. Mainack, and K. Aniket,
“Uncovering impact of mental models towards adoption of multi-device
crypto-wallets,” 2022, https://eprint.iacr.org/2022/075.

[7] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC
2010, pp. 136–149.

[8] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu, “Password-protected
secret sharing,” in Proc. ACM CCS 2011, pp. 433–444.

[9] “Google cloud key management service,” 2018, https://cloud.google.
com/kms/.pdf.

[10] S. Jarecki, H. Krawczyk, and J. Resch, “Updatable oblivious key
management for storage systems,” in Proc. ACM CCS 2019.

[11] S. Jarecki, A. Kiayias, and H. Krawczyk, “Highly-efficient and compos-
able password-protected secret sharing,” in Proc. IEEE EuroS&P 2016.

[12] D. Boneh, K. Lewi, H. Montgomery, and A. Raghunathan, “Key
homomorphic prfs and their applications,” in Proc. CRYPTO 2013, 2013.

[13] M. Klooß, A. Lehmann, and A. Rupp, “(r) cca secure updatable
encryption with integrity protection,” in Proc. EUROCRYPT 2019.

[14] D. Wang and P. Wang, “Two birds with one stone: Two-factor authentica-
tion with security beyond conventional bound,” IEEE Trans. Depend.Sec.
Comput., vol. 15, no. 4, pp. 708–722, 2018.

[15] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in Proc. CRYPTO
1995, pp. 339–352.

[16] J. Ding, S. Alsayigh, R. Saraswathy, S. Fluhrer, and X. Lin, “Leakage
of signal function with reused keys in rlwe key exchange,” in Proc. ICC
2017, pp. 1–6.

[17] J. Ding, S. Fluhrer, and S. Rv, “Complete attack on rlwe key exchange
with reused keys, without signal leakage,” in Proc. ACISP 2018, pp.
467–486.

[18] P. Roy, S. Dutta, W. Susilo, and R. Safavi-Naini, “Password protected
secret sharing from lattices,” in Proc. ACNS 2021, pp. 442–459.

[19] D. Wang, H. Cheng, P. Wang, , et al., “Zipf’s law in passwords,” IEEE
Trans. Inf. Fore. Sec., vol. 12, no. 11, pp. 2776–2791, 2017.

[20] D. Wang, Y. Zou, Q. Dong, Y. Song, and X. Huang, “How to attack and
generate honeywords,” in IEEE S&P 2022, pp. 489–506.

[21] D. Wang, D. He, P. Wang, and C. Chu, “Anonymous two-factor authen-
tication in distributed systems: Certain goals are beyond attainment,”
IEEE Trans. Depend.Sec. Comput., vol. 12, no. 4, pp. 428–442, 2015.

[22] J. Bonneau, C. Herley, P. Oorschot, and F. Stajano, “Passwords and the
evolution of imperfect authentication,” ACM Commun., vol. 58, no. 7,
pp. 78–87, 2015.

[23] H. Zhu, M. Xiao, D. Sherman, and M. Li, “Soundlock: A novel user
authentication scheme for vr devices using auditory-pupillary response.”
in Proc. NDSS 2023, 2023, pp. 1–18.

[24] W. Burrand, D. Dodson, and W. Polk, “Electronic authentication guide-
line,” Nat. Inst. Standards Technol., 2013, doi: 10.6028/NIST.SP.XXX
CODEN:NSPUE2.

[25] J. Camenisch, A. Lysyanskaya, and G. Neven, “Practical yet universally
composable two-server password-authenticated secret sharing,” in Proc.
ACM CCS 2012, pp. 525–536.

[26] M. Abdalla, M. Cornejo, A. Nitulescu, and D. Pointcheval, “Robust
password-protected secret sharing,” in Proc. ESORICS 2016.

[27] J. Camenisch, A. Lehmann, and G. Neven, “Optimal distributed pass-
word verification,” in Proc. ACM CCS 2015, pp. 182–194.

[28] S. Jarecki, A. Kiayias, and H. Krawczyk, “Round-optimal password-
protected secret sharing and t-pake in the password-only model,” in
Proc. ASIACRYPT 2014, pp. 233–253.

[29] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “Toppss: cost-minimal
password-protected secret sharing based on threshold oprf,” in Proc.
ACNS 2017, pp. 39–58.

[30] P. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring,” in Proc. FOCS 1994, pp. 124–134.



14

[31] T. Ladd, F. Jelezko, R. Laflamme, , et al., “Quantum computers,” Nature,
vol. 464, no. 7285, pp. 45–53, 2010.

[32] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, pp. 79–99, 2018.

[33] G. Alagic et al., “Status report on the first round of the nist post-
quantum cryptography standardization process.” 2019, https://nvlpubs.
nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf.

[34] Z. Li, D. Wang, and E. Morais, “Quantum-safe round-optimal password
authentication for mobile devices,” IEEE Trans. Depend.Sec. Comput.,
vol. 19, no. 3, pp. 1885–1899, 2020.

[35] J. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum key
exchange for the TLS protocol from the ring learning with errors
problem,” in Proc. IEEE S&P 2015, pp. 553–570.

[36] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proc. STOC 2008.

[37] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, pp. 1–40, 2009.

[38] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Proc. CRYPTO 2013, pp. 75–92.

[39] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. Rasmussen, and
A. Sahai, “Threshold cryptosystems from threshold fully homomorphic
encryption,” in Proc. CRYPTO 2018, pp. 565–593.

[40] S. Agrawal, X. Boyen, V. Vaikuntanathan, P. Voulgaris, and H. Wee,
“Functional encryption for threshold functions (or fuzzy IBE) from
lattices,” in Proc. PKC 2012, pp. 280–297.

[41] L. Grover, “A fast quantum mechanical algorithm for database search,”
in Proc. STOC 1996, pp. 212–219.

[42] J. Bonneau, “The science of guessing: analyzing an anonymized corpus
of 70 million passwords,” in IEEE S& P 2012, pp. 538–552.

[43] A. Shamir, “How to share a secret,” ACM Commun. 1979, vol. 22, no. 11,
pp. 612–613.

[44] C. Peikert and S. Shiehian, “Noninteractive zero knowledge for np from
(plain) learning with errors,” in Proc. CRYPTO 2019, pp. 89–114.

[45] J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven, “Memento:
How to reconstruct your secrets from a single password in a hostile
environment,” in Proc. CRYPTO 2014, pp. 256–275.

[46] J. Camenisch, R. Enderlein, and G. Neven, “Two-server password-
authenticated secret sharing uc-secure against transient corruptions,” in
Proc. PKC 2015, pp. 283–307.

[47] X. Yi, F. Hao, L. Chen, and J. K. Liu, “Practical threshold password-
authenticated secret sharing protocol,” in Proc. ESORICS 2015.

[48] A. Sahai, “Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security,” in Proc. FOCS 1999, pp. 543–553.

[49] Q. Wang, D. Wang, C. Cheng, and D. He, “Quantum2fa: efficient
quantum-resistant two-factor authentication scheme for mobile devices,”
IEEE Trans. Depend.Sec. Comput., vol. 20, no. 1, pp. 193–208, 2021.

[50] C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C. Peikert,
“More efficient commitments from structured lattice assumptions,” in
Proc. SCN 2018, pp. 368–385.

[51] Y. Zhang, C. Xu, H. Li, K. Yang, N. Cheng, and X. Shen., “Protect: effi-
cient password-based threshold single-sign-on authentication for mobile
users against perpetual leakage,” IEEE Trans. Mob. Comput., vol. 20,
no. 6, pp. 2297–2312, 2020.

[52] A. Liu and M. Gouda, “Diverse firewall design,” IEEE Trans. Parall.
Distr., vol. 19, no. 9, pp. 1237–1251, 2008.

[53] C. Togay, A. Kasif, C. Catal, and B. Tekinerdogan, “A firewall policy
anomaly detection framework for reliable network security,” IEEE Trans.
Reliab., vol. 71, no. 1, pp. 339–347, 2021.

[54] G. Duan, H. Lv, H. Wang, and G. Feng, “Application of a dynamic
line graph neural network for intrusion detection with semisupervised
learning,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp. 699–714, 2022.

[55] D. Chou and M. Jiang, “A survey on data-driven network intrusion
detection,” ACM Comp. Surv., vol. 54, no. 9, pp. 1–36, 2021.

[56] M. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
learning with errors,” J. Math. Crypto. 2015, vol. 9, no. 3, pp. 169–203,
2015.

[57] D. Bourdrez, H. Krawczyk, K. Lewi, and C. Wood, “The opaque
asymmetric pake protocol draft-irtf-cfrg-opaque-11.” IETF Datatracker,
June 8, 2023, https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/.

[58] F. Hao, R. Metere, S. Shahandashti, and C. Dong., “Analyzing and
patching speke in iso/iec,” IEEE Trans. Inf. Forensics Secur., vol. 13,
no. 11, pp. 2844–2855, 2018.

[59] D. Wang, X. Shan, Q. Dong, Y. Shen, and C. Jia, “No single silver
bullet: Measuring the accuracy of password strength meters,” in Proc.
USENIX SEC 2023, 2023, pp. 1–28.

[60] S. Zibaei, D. Malapaya, B. Mercier, A. Salehi, and J. Thorpe, “Do
password managers nudge secure (random) passwords?” in Proc. SOUPS
2022, 2022, pp. 581–597.

[61] A. Walker and J. Alastair, “New fast method for generating discrete
random numbers with arbitrary frequency distributions,” Electronics
Letters, vol. 8, no. 10, pp. 127–128, 1974.

[62] S. Hwajeong, K. Hyeokdong, K. Yongbeen, K. Kyungho, C. Seungju,
K. Hyunjun, and J. Kyoungbae, “Fast number theoretic transform for
ring-lwe on 8-bit avr embedded processor,” Sensors, vol. 20, no. 7, pp.
20–39, 2020.

[63] F. Turan, S. Roy, and I. Verbauwhede, “Heaws: An accelerator for
homomorphic encryption on the amazon aws fpga,” IEEE Transactions
on Computers, vol. 69, no. 8, pp. 1185–1196, 2020.

[64] G. Alagic et al., “Status report on the second round of the nist post-
quantum cryptography standardization process.” 2020, https://nvlpubs.
nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf.

[65] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and
M. Zhandry, “Random oracles in a quantum world,” in Proc. ASI-
ACRYPT 2011, pp. 41–69.

[66] F. Benhamouda and D. Pointcheval, “Verifier-based password-
authenticated key exchange: New models and constructions,” 2013,
https://eprint.iacr.org/2013/833.

[67] M. Albrecht, A. Davidson, A. Deo, and N. P. Smart, “Round-optimal
verifiable oblivious pseudorandom functions from ideal lattices,” in Proc.
PKC 2021, pp. 261–289.

[68] C. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical
algorithms and solving subset sum problems,” Math. program. 1994,
vol. 66, no. 1, pp. 181–199.

[69] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter,
faster, smaller.” in Proc. EuroCrypt 2012, pp. 700–718.

[70] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert, “Bonsai trees, or how
to delegate a lattice basis,” J. of Crypto., vol. 25, pp. 601–639, 2012.

Jingwei Jiang is working toward a PhD degree from the
College of Computer Science and Technology, Harbin
Engineering University, China. As the first author, he has
published papers at ESORICS 2022, the Chinese Journal
of Computers, etc. His research interests include lattice-
based cryptography, passwords, and authentication.

Ding Wang received his Ph.D. degree in Information
Security at Peking University in 2017, and was supported
by the ”Boya Postdoctoral Fellowship” in Peking Univer-
sity from 2017 to 2019. Currently, he is a Full Professor
at Nankai University. As the first author (or correspond-
ing author), he has published more than 80 papers at
venues like IEEE S&P , ACM CCS, NDSS, Usenix
Security, IEEE TDSC and IEEE TIFS. His research has
been reported by over 200 media like Daily Mail, Forbes,

IEEE Spectrum, and Communications of the ACM, appeared in the Elsevier
2017 ”Article Selection Celebrating Computer Science Research in China”,
and resulted in the revision of the authentication guideline NIST SP800-
63-2. He has been involved in the community as a PC Chair/TPC member
for over 60 international conferences such as USENIX Security 2022/2020,
NDSS 2024/2023, ACM CCS 2022/2021, PETS 2022-2024, ACSAC 2020-
2023, RAID 2023, ACM AsiaCCS 2022/2021, IFIP SEC 2018-2021, ICICS
2018-2023, SPNCE 2020-2022. He has received the ”ACM China Outstanding
Doctoral Dissertation Award”, the Best Paper Award at INSCRYPT 2018, the
Outstanding Youth Award of China Association for Cryptologic Research, the
Young Scientist Nomination Award for Powerful Nation, and the First Prize of
Natural Science Award of Ministry of Education. His main research interests
focus on passwords, authentication, and provable security.

Guoyin Zhang received his Ph.D. degree in the College
of Computer Science and Technology from Harbin En-
gineering University Harbin, China, in 1999. Currently,
he is a full professor at the College of Computer Sci-
ence and Technology at Harbin Engineering University
Harbin, China. His main research interests include net-
work information security and embedded systems.




