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QPASE: Quantum-Resistant Password-Authenticated
Searchable Encryption for Cloud Storage

Jingwei Jiang and Ding Wang

Abstract—Searchable encryption is a powerful tool that enables
secure and private searches of encrypted data. It allows users
to outsource their data to cloud servers while maintaining the
confidentiality and privacy of their data. Password-authenticated
symmetric searchable encryption (PASE) can help users avoid the
complexity and security risks associated with key management
while maintaining the advantages of searchable encryption. To
the best of our knowledge, none of the existing PASE schemes can
resist security threats in the post-quantum era, and there is an
urgent need to design quantum-resistant solutions. However, post-
quantum cryptography (e.g., lattice-based cryptography) varies
significantly from traditional cryptography, and it is challenging
to design a quantum-resistant PASE for cloud storage.

In this work, we take the first step towards this challenge by
proposing QPASE, a quantum-resistant password-authenticated
symmetric searchable encryption for cloud storage. We em-
ploy lattice-based threshold oblivious pseudorandom function
(TOPRF) to achieve password re-randomization and formally
prove that QPASE is authentication secure and indistinguisha-
bility against chosen keyword attacks (IND-CKA) secure under
quantum computers. QPASE can be extended to multi-keyword
search and allows servers to update keys without affecting the
users. The comparison results show that QPASE outperforms its
foremost counterparts in security and computation overhead.

Index Terms—Lattice, password authentication, searchable
encryption, data outsourcing, cloud storage

I. INTRODUCTION

W ITH the continuous development of the Internet of
Things, a massive number of devices and objects are

being connected to the Internet. Users with limited computing
and storage resources can outsource large amounts of data to
cloud servers for management [1], which in turn brings about
a vast amount of data [2]. The abundance of sensitive informa-
tion (e.g., personal identification, financial) within outsourced
data poses significant challenges to data management [3]. Data
encryption is the most direct technique to prevent data leakage
[4], however, it complicates user querying [5].

To address this issue, cloud servers (e.g., Google Drive
[6]) allow users to control online-key decrypted data via
authentication and retrieve items of interest. But such a so-
lution crucially depends on the cloud servers’ honesty, as they
have the potential to gain access to the plaintext of data [7].
Alternatively, users download all encrypted data and decrypt
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data locally to search for the required data but incur heavy
communication costs for uploading and downloading.

Searchable encryption (SE) [8], [9] provides an elegant
solution. SE enables users to perform searches on encrypted
outsourced data while maintaining the confidentiality of data
from the cloud server. Currently, SE can be classified into
two main categories based on the structures: 1) Symmetric
searchable encryption (SSE) schemes [10], [11] that employ
high entropy shared keys; and 2) Public key encryption with
keyword search (PEKS) schemes [12], [13] that require a high
entropy private-public key pair. In practice, the high entropy
keys are difficult to remember and require additional storage
devices. This reduces the flexibility of users to outsource data,
or retrieve and recover data using multiple different devices
unless the high entropy keys are stored in all devices [14].
Symmetric searchable encryption. Song et al. [8] propose
the first practical SSE based on symmetric primitives. In SSE,
data is organized and indexed in a way that allows efficient
search while preserving confidentiality [8]. After that, Goh
[15] first proposes indistinguishability against chosen keyword
attacks (IND-CKA) to characterize the semantic security of
SSE. Such these works spark a series of studies on the
security [16], [17], [18], [19], performance [20], [21], [22], and
functionality [23], [24], [25] of SSE. Overall, SSE employs a
masked index table to achieve ciphertext retrieval [26], [27].

At a high level, the user employs a symmetric encryption
scheme to encrypt a set of data and output a ciphertext C.
Meanwhile, the user creates a masked index Ct based on the
message keyword. Then, the user can upload C and Ct on
the cloud server. When users need to access data, they can
generate a search token based on the encrypted keyword index
and request the cloud server to return a C based on Ct.

Another variant of SSE is dynamic SSE (DSSE) [28],
[29], [30], [31]. DSSE supports the addition and deletion
of outsourced data. Driven by leakage-abuse attacks [32],
a series of studies employ padding [33] and secure multi-
party computation [34] to achieve forward security [35] (i.e.,
the added data cannot be associated with the original data),
and backward security [17] (i.e., the deleted data cannot be
retrieved). SSE allows users to preprocess data by building
an index, and subsequent search queries can be performed
efficiently, with only a small amount of computation required
by both the user and the server [36]. Hence, SSE is a practical
scheme for cloud storage where data needs to be searched and
accessed frequently, while also being kept confidential.
Public key encryption with keyword search. Boneh et al.
[37] propose the first PEKS using bilinear maps and trapdoor
permutations. PEKS allows users to associate keywords and
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outsourced data without disclosing any data-related informa-
tion [38], [39]. Baek et al. [40] propose a secure channel-free
PEKS and carry out the proof under the random oracle.

Subsequently, a series of variants of PEKS were stud-
ied, such as conjunctive keyword search [41], fuzzy key-
word search [42], ranked keyword search [43], attribute-based
keyword search [44]. However, malicious clouds can obtain
underlying keywords by guessing candidate keywords offline.
Thus, a line of work [45], [46], [47] has been done against
the keyword guessing attacks by the public-key authenticated
encryption. Other variants of PEKS include multi-user set-
tings, deterministic searchable encryption [48], and plaintext-
checkable encryption [49], enriching the research of PEKS.
Password-authenticated searchable encryption. In practice,
SE relies on high entropy keys for encryption and retrieval.
Therefore, users need to employ a storage device to hold high-
entropy keys, which increases the burden of key management
when outsourcing and retrieving data using different devices.
Chen et al. [14] present a password-authenticated symmetric
searchable encryption (PASE) scheme to avoid costly key man-
agement for users, and achieve device-agnostic. Specifically,
a user registers a human-memorable password on the server
and reuses the password to outsource and retrieve data. PASE
transfers the management overhead of users on high entropy
keys to servers with strong storage capabilities.

Additionally, Huang et al. [50] propose a password-
authenticated keyword search (PAKS) scheme. PAKS employs
asymmetric primitives to encrypt data and retrieve target ci-
phertext, resulting in slower encryption and decryption speeds.
Hence, PAKS is suitable for many-to-one scenarios (e.g., data
sharing), where data owners use secret keys to generate trap-
doors for the keywords to be retrieved, instead of outsourcing
data of a single user. PASE employs symmetric primitives for
encryption and trapdoor generation, making it more suitable
for single-user data outsourcing scenarios. Our work aims in
the scenario where users outsource data to cloud servers, and
subsequently retrieve and recover their data from the cloud
servers. Therefore, we focus on the construction of PASE.

However, to the best of our knowledge, none of those
schemes [14], [50] mentioned above can resist security threats
in the post-quantum world. The reason is that all of them are
built on the hardness assumptions of traditional cryptography
(e.g., large integer decomposition, discrete logarithms, elliptic
curves). Hence, existing PASE is vulnerable after the advent of
quantum computers, which are capable of efficiently solving
traditional hardness problems using Shor’s algorithm [51].

In the realm of quantum-resistant schemes, lattice-based
schemes are considered the most promising general-purpose
algorithms for public-key encryption by NIST [52], [53]. Nu-
merous quantum-resistant password-based schemes [54], [55],
[56], [57], [58], [59] have been proposed over lattices. To the
best of our knowledge, there is no quantum-resistant password-
authenticated symmetric searchable encryption scheme. The
main goal of our scheme is to answer the following question:

Is it possible to construct a lattice-based password-
authenticated symmetric searchable encryption
scheme to satisfy that only a user who knows the
password can outsource and retrieve data?

Our answer to the above question is affirmative. Next, we
show the design challenges and overview of our technique.

A. Overview of Our Technique

Before elaborating on our results and techniques, we first
highlight two crucial observations. On the one hand, PASE is
not simply a combination of a password-based authentication
scheme and SSE. At a high level, PASE allows users to employ
a password to derive strong keys, which are shared in multiple
distributed cloud servers, to encrypt data [12]. PASE helps
users avoid complex key management while improving the
security of outsourced data [14]. Specifically, data encryption
on the user side is only related to the correct password. It is
independent of the device that stores the key, which increases
the usability of the data outsourcing scheme. In addition, the
user encrypts data locally which can prevent malicious cloud
servers from snooping on outsourced data. Even if the strong
key on distributed cloud servers is leaked, the adversary would
still need to guess the user’s password to retrieve and recover
the outsourcing data on cloud server [7], [60], [61], [62].

On the other hand, it is essential to accurately verify the
password to prevent the risk of data loss resulting from
typographical errors on the part of the user. Specifically, in the
recovery phase, PASE [14] allows users to employ the same
password used during encryption to retrieve data. However,
if the user inputs the wrong password during encryption (e.g.,
typing error), the “correct” password would lead to decryption
failure in the recovery phase. Even requiring users to input
the password twice before encryption cannot completely solve
this problem [7]. In addition, implicit authentication leads to
the server’s inability to recognize online password-guessing
attacks, which would increase the risk to the system.

Passwords are the most widely used identity authentication
mechanism, but their low entropy and vulnerability have
raised serious security concerns [63], [64]. Although there
is a growing consensus that password-based authentication is
likely to retain its status for the foreseeable future [65], [66],
how to protect low-entropy passwords remains a challenging
problem, especially in the coming post-quantum era [52], [53].

A feasible approach to constructing quantum-resistant PASE
(QPASE) is lattice-based cryptography, and the primary issue
is the re-randomization of passwords. Jiang et al. [4] proposed
a password re-randomization method based on lattice-based
fully homomorphic encryption [67], but this method can only
provide implicit authentication and is not suitable for our
goal. Although the password-authenticated secret sharing [61],
[7] has been constructed through an oblivious pseudorandom
function (OPRF), we cannot achieve the same goal simply by
employing lattice-based threshold OPRF (TOPRF) [68], which
can only provide the approximate protocol due to a series of
noise interferences. Inspired by Ding et al. [69], we adopt the
robust extractor [69] to “rounding” the noise, and propose a
variant TOPRF to realize the re-randomization of passwords.

At a high level, QPASE is modeled as an SSE scheme,
where the user U can register with the password pswu on a
set of cloud servers S = {S1, ..., Sn} and reuse pswu for mul-
tiple sessions of outsourcing and retrieval protocols. In each
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outsourcing session, users can outsource encrypted keywords
and data ciphertexts to S. The retrieval protocol implements
the search process based on the keywords input by U and
provides U with all data related to that keyword. We define
binary security to include authentication security and keyword
privacy security. Specifically, we characterize the authenti-
cation security of QPASE based on the Bellare-Pointcheval-
Rogaway (BPR) model [70] widely used in password-based
schemes. Then, we define keyword privacy security based
on indistinguishability against chosen keyword attacks (IND-
CKA). These two security models are not orthogonal, i.e.,
authentication security can prevent impersonation attacks and
protect for symmetric searchable encryption.

Finally, there are two challenges in constructing QPASE.
The first challenge pertains to updating server-side keys. To
resist the perpetual leakage [71], server-side keys need to be
updated in a fixed period. Although the generation of user-
specific keys is closely related to server-side keys, the update
of server-side keys should not affect the decryption of out-
sourcing data. Secondly, it concerns the password distribution
model. It is commonly assumed in password-based schemes
[61], [62], [72], [7], [73], [14] that the selection of passwords
is uniformly distributed. Recent research [74] suggests that
human-chosen passwords follow the Zipf distribution. Wang
et al. [74], [75] showed that the advantages of the adversary are
underestimated in the uniform model. The impact of password
distribution assumptions should be fully considered.
Contributions. We propose the first quantum-resistant pass-
word-authenticated symmetric searchable encryption for cloud
storage, named QPASE. Our construction starts with PASE
[14] and follows the more general approach to realizing an
SSE but employs quantum-secure cryptographic primitives. In
summary, our contributions are three-fold:

- QPASE. We design a quantum-resistant PASE for cloud
storage, called QPASE, to help users avoid costly and
security-risky key management when using cloud storage
services. Registered users can perform outsourcing, and
retrieval of data via human memorable passwords only.
By a password re-randomization method based on the
lattice-based TOPRF, QPASE is secure against offline
password-guessing attacks. Users can retrieve all data
under the same keyword without revealing data. More-
over, QPASE allows servers to actively and independently
update keys to resist perpetual leakage.

- Security analysis. We employ the BPR model [70] to
characterize the authentication security of QPASE, and
define the privacy of QPASE keywords through IND-
CKA. On this basis, we make a rigorous security proof
based on the Zipf model [74] and formally prove that
QPASE is secure and robust under various attacks from
both attacks of classical and quantum computers.

- Performance comparison. We evaluate the quantum se-
curity level of our QPASE under two parameter settings.
The experimental analysis shows QPASE is not only more
secure (our implementation can provide 128-bit post-
quantum bit-security) but also offers better computation
efficiency than the state-of-the-art traditional PASE [14].

TABLE I: Notations.

Symbol Description Symbol Description

U the user S the server
w the keyword sig the signature
µu the counter A the adversary
Ct hidden indexes pswu password of user U
A random matrices Ku the user-specific key
IDu identity of user U d the plaintext of data
X noise distribution C the ciphertext of data
Enc symmetric encryption Dec symmetric decryption

B. Paper organization

In Section II, we review the related notions and the basic
components required for constructing the scheme. In Section
III, we formally model the functionality and define the primary
security properties of QPASE. In Section IV, we articulate
QPASE and provide a formal correctness analysis. In addition,
we provide a server key update protocol and an extended
version supporting multiple keywords. In Section V, we for-
mally demonstrate that QPASE satisfies authentication security
and IND-CKA security, discuss the parameter selection and
security level of QPASE, and provide evidence of QPASE’s
resilience against corruption attacks. In Section VI, we present
the results of the experiments and compare the related works
with QPASE. Finally, in Section VII, we conclude the paper.

II. PRELIMINARIES

Notations. Let κ be the security parameter. Z and R denote
the set of all integers and the set of real numbers, respectively.
For any integer q, Zq is the ring of integer mod q. We write
lower-case bold x letter as vectors and upper-case bold letter A
as matrices. Let x← D to denote the sampling of x according
to distribution D and x ← S for a finite set S to indicate
sample uniformly at random from S. In addition, we employ
a series of intuitive notations listed in Table I.

A. Lattices, LWE, and Gaussian Sampling

Definition 1 ([76]). Let Λq(A) = {As | s ∈ Zn
q } denotes

an m-dimensional lattice with the basis A ∈ Zm×n
q for m ≥

nlog q, and the determinant of Λ is det(Λ) =
√

det(BTB).

Definition 2 ([76]). If χ = χ(κ) over the integers is a distribu-
tion ensemble and it satisfies Pr[x

R←− χ; |x| ≥ B] ≤ 2−Ω̃(n),
then we have |χ| ≤ B and χ is called B-bounded.

Definition 3 (Gaussian distributions, [77]). For a stan-
dard deviation σ > 0, define the discrete Gaussian distribution
over an integer lattice Λ ⊆ Zm centred at c ∈ Rn with
parameter σ to be: DR,σ(z) = ρc,σ(x)/ρc,σ(Λ), where
x ∈ Λ, ρc,σ(x) = eπ||x−c||2/σ2

, and ρc,σ(Λ) =
∑

x∈Λ ρc,σx.

Definition 4 (Decision-LWEn,q,χ,m, [76]). For a prime integer
q, integers m,n > 0, and a noise distribution X over Zq ,
sample A ← Zm×n

q , s ← Zn×1
q , e ← χm×1

σ ,b ← Zm
q . The

DLWEn,q,χ,m problem is to distinguish between (A,A · s +
e mod q) ∈ Zm×n

q × Zm×1
q and (A,b) ∈ Zm×n

q × Zm×1
q .

For any PPT adversary A, the two distinct distributions are
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computationally indistinguishable, i.e.,

AdvDLWE
A (κ) =|Pr[A(q,m, n,Xσ,A, s)]

− Pr[A(q,m, n,Xσ,A,b)]| ≤ ε(κ).

Definition 5 (Rounding [78]). Let q,m, n ∈ Z+. For A ←
Rm×n

q , the rounding algorithm F is deterministic for the
”rounding” function ⌊·⌉ : Rq → Rp that enables x → u
s.t. F (x) = A · u.

Definition 6 (LWR [78]). For p, q,m, n ∈ Z+, the LWR
problems state that the two distributions (A, ⌊A · s⌋p) and
(A, ⌊u⌋p) are computationally indistinguishable, where A←
Rm×n, s ← Rm and u ← Rn.It means that for any PPT
adversary A, there is

AdvLWR =|Pr[A (A, ⌊A · s⌋p)→ 1]

− Pr [A (A, ⌊u⌋p)→ 1] | ≤ ε(κ).

Modulus Switching. As discussed in [78], for any positive
integers p, q, the modulus switching function ⌊·⌉ q → p is
denoted as:⌊x⌉p→q = ⌊(p/q) · x⌉(mod q). It is easy to show
that for any x ∈ Zq and p < q ∈ N, x′ = ⌊⌊x⌉q→p⌉q→p is
an element near to x, i.e.,|x′ − x(mod q)| ≤ ⌊q/(2p)⌉. When
⌊·⌉ q → p is used to an element x ∈ Zq or a vector x ∈ Zk

q′ ,
the procedure is applied to each coefficient individually.

Definition 7 (1D-SIS [79]). For q,m, t ∈ Z+, given a v ←
Zm

q , the one-dimensional SIS problem (1D-SIS) is to find a
non-zero z ∈ Zm s.t. ∥z∥∞ ≤ t and ⟨v, z⟩ ∈ [−t, t] + qZ .

B. Threshold Oblivious Pseudorandom Function

Threshold oblivious pseudorandom function (TOPRF) is
widely used in various password-based schemes [62], [72], [7]
to hide passwords to resist offline dictionary attacks. In Fig.
1, we employ the lattice-based TOPRF [68] (where ki is the
key of server Si and pki is the public key of Si) to implement
password re-randomization, and derive a special key for the
user U with servers S = {S1, ..., Sn}.

Let ℓ = ⌈log2q⌉. Define G : Rℓ×ℓ
q → R1×ℓ

q to be
the linear operation corresponding to left multiplication by
(1, 2, ..., 2ℓ−1) and G−1 : R1×ℓ

q → Rℓ×ℓ
q . It can be regarded

as the decomposition of G. Fix an array of a0,a1 ← R1×ℓ
q .

For any x = (x1, ..., xL) ∈ {0, 1}L subject to ax := ax1 ·
G−1

(
ax2 ·G−1

(
. . .

(
axL−1

·G−1 (axL
)
)))
∈ R1×ℓ

q . Based
on the Definition 4, a PRF Fk(x) is defined as follows.

Lemma 1 (PRF, [80]). Sample k ← Zq and recursively as
aF (x) = ax, the function Fk(x) = ⌊pq · a

F (x) · k⌉ is a PRF
over the decision-LWEn,q,χ,m if q ≫ p · σ · n · ℓ ·

√
L.

According to Albrecht et al. [79], for a PPT algorithm r ←
Πx(a0,a1) s.t. ∥r∥∞ ≤ B and ∃ c ∈ (q/p) ·Z+[−T, T ] with
non-negligible probability, where B is distribution bounded, c
is the coefficient of ax ·r, and T = 2σ2n2+σ′√n. Then there
is a PPT algorithm that can solve 1D-SISq/p,nℓ,max{nℓB,T}
with non-negligible probability. We write adv1D−SIS

A as the
advantage of the adversary. According to Definition 7, we have

Adv1D−SIS
A ≤ ε(κ).

Oblivious Computation of PRF Fk(x)

1. On input x, U chooses s← Zn×1
q and e← Xm×1

σ ;

2. Si chooses e
′
i ← X

m×1
σ′ responds with x∗ki = x∗ · ki + e′i;

3. After receiving at least t responses, U computes PK =

Sends x∗ = A · s+ e+ aF (x) to at least t-many Si.

∑t

i=1
λi,j · pki and output FK(x) = b p

q
· aF (x) ·mske.

Fig. 1: The TOPRF algorithm of Jiang et al. [68].

In addition, the amplified noise still causes the same input to
derive different PRF keys in practice. To tackle this challenge,
we employ the approach of Ding et al. [69] to eliminate noise.
Definition 8 (Robust Extractors [69]). Let δ be error toler-
ance. The robust extractor contains a deterministic algorithm
E and a hint algorithm S, which are as follows:

- σ ← S(y) is a hint algorithm. When input a y ∈ Rq and
outputs σ ∈ {0, 1}. Specifically, for prime q > 2, there
are two signal σ0(x), σ1(x) as follows.

σ0(x) =

{
0, x ∈ [−⌊ q4⌋, ⌊

q
4⌋]

1, otherwise.

σ1(x) =

{
0, x ∈ [−⌊ q4⌋+ 1, ⌊ q4⌋+ 1]

1, otherwise.

- k ← E(x, σ) is a deterministic algorithm. When input
an x ∈ Rq and a signal σ ∈ {0, 1}, outputs k ∈
{0, 1}. Specifically, we have E(x, σ) = (x + σ) · (q −
1)/2 mod 2.

- For any x, y ∈ Zq such that x−y is even and |x−y| ≤ δ,
then it holds that E(x, σ) = E(y, σ), where σ ← S(y).

The variant-TOPRF with robust extractors is shown in Fig.
2. Next, we analyze the correctness of variant-TOPRF.

Theorem 1 (Correctness). Let q,m, n, σ > 0 depend on κ
and ℓ = ⌊log q⌋. The secret input x is converted into binary
by the user U . The output FK(x) of the variant-TOPRF is
indistinguishable from the PRF Fk(x) in Definition 1.

Proof: The explicit expression of pki in Fig. 2 is pki =
⌊a·ki⌉p. Let λi be the Lagrange coefficient s.t. K =

∑t
i=1 λi ·

ki ∈ Rq . According to Fig. 2, we have

FK(x) =
t∑

i=1

λi · bki
−

t∑

i=1

λi · pki · r mod q

=a · r ·
t∑

i=1

λi · ki + ax ·
t∑

i=1

λi · ki

+ 2e
t∑

i=1

λi · ki + 2
t∑

i=1

λi · e′i

− a · r ·
t∑

i=1

λi · ki − 2r
t∑

i=1

λi · ei mod q

= ax ·K + 2e′′ mod q

where e′′ = e ·K +
∑t

i=1 λi · e′i + r
∑t

i=1 λi · ei. Thus,
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Ku = ⌊E(FK(x), σ)⌉p

= ⌊((ax) ·K + σ((bki
) · q − 1

2
) mod q + 2e′′) mod 2⌉p

= ⌊((ax) ·K + σ((bki) ·
q − 1

2
) mod q) mod 2⌉p

It means that the output Ku of the variant-TOPRF is indistin-
guishable from FK(x).

The security analysis of our TOPRF is divided into two
parts, i.e., unpredictability and obliviousness [79], [68]. Intu-
itively, unpredictability refers to the scenario where even the
adversary A can compromise the client, i.e., A gets x, and
corrupts t′ < t servers, A cannot predict the output FK(x) of
TOPRF. Obliviousness indicates that even A can get the output
FK(x) and corrupt t′ < t servers, A cannot learn anything
about x. Together, unpredictability and obliviousness ensure
that the output of the TOPRF remains independent of the input.
Notably, the use of signals does not undermine the security of
underlying intractable problem [69] (e.g. DLWEn,q,χ,m and
1D-SISq/p,nℓ,max{nℓB,T}). Moreover, robust extractors only
reveal the range of noise without affecting the output of
TOPRF since the noises are eliminated by rounding operations.

C. Hash Key Derivation Function

As a crucial component of the PASE construction, the hash
key derivation function (HKDF) is capable of deriving a single
input into multiple distinct secret values, serving as encryption
keys. This functionality ensures that different data can be
protected by unique symmetric keys, thereby preventing a
scenario where the compromise or loss of one key would
render all data vulnerable. We directly use the password
that has been authenticated to generate the data search key,
which prevents the user from permanently losing data due to
erroneous keystrokes. We can conveniently introduce lattice-
based PRF [80] in the framework proposed by Krawczyk [81]
to construct a quantum-secure HKDF.

Definition 9. Let TOPRF(1κ, psw, sk) denotes the algorithm
ΠTOPRF in Fig. 1. An HKDF must contain the following four
polynomial algorithms:

- pp← Setup(1κ) is a probabilistic algorithm that gener-
ates the set of parameters pp.

- {Ku, pki} ← TOPRF(1κ, psw,K) is a deterministic
algorithm that generates a user-special key Ku by taking
as input user’s password psw and server’s secret key K.

- w ← Keyword(1κ,M) is a probabilistic algorithm that
generates a keyword w by inputting 1κ and message M .

- dsk ← HKDF(Ku,w) is a deterministic algorithm and
outputs a data search key dsk by taking as input a user-
special key Ku, and a keyword w.

Definition 10 ([81]). Let C denote the ciphertext of retrieved
information with dsk. The HKDF is called (T,Q, ε)-secure
if for any PPT algorithm A running in time T with at
most Q oracle queries the probability AdvHKDF

A (κ) ≤ ε(κ)
or distinguishing the output of dsk ← HKDF(Ku,w) from
uniformly random strings of the same length.

Initialization
Set (t,N) as threshold, where t,N ∈ Z+ and 0 < t < N . A subset S from [N ] of size t.

N servers execute the DKG algorithm to generate the key ki ∈ Rq , and compute vki,

TOPRF between the user U and N servers Si

U picks up r ←Rq , e← X and then input a secret x. U sends b = ba · r + aFx+ 2eep

recursively as aF (x) = ax. Concretely, vki = a · ki. gadgets G : R`×`
q → R1×`

q .

to each Si. Si responds with (bki
, S(vki)), bki

= bb · ki + 2e′iep, vki = ba · ki + 2eiep.
Here, U outputs Fmsk(x) = b((ax) ·msk + σ((bki

) · q−1
2

) mod q) mod 2ep.

Fig. 2: The variant-TOPRF algorithm ΠTOPRF.

D. Distributed Key Generation

Since lattice is an infinite additive group, it can not be directly
combined with Shamir’s scheme [82]. Fortunately, we can
share elements of a finite abelian quotient group G with
identity element 0 by (t,N)-threshold secret sharing scheme
[83]. Let e(G) denote exponent of G and s ∈ G.

Definition 11. There is the smallest m ∈ Z+ such that
ms = s + s + ... + s = 0, i.e. s is a module over the
ring R = Ze(s). The value s can be share by a formal
polynomial f(X) =

∑t
j=0 fjX

j ∈ S[X] of the maximum
degree at t, where f(0) = s and the f(i) ∈ G for i ∈ [1, n] are
uniformly random and independent. At least t + 1 participants
can reconstruct the secret s.

In order to use the above secret sharing over lattices, we also
need to set relevant parameters. Let k ≥ logp(n + 1), where
p is the smallest prime divisor of e(G), we can share s ∈ G
among n servers using shares in Gk. By [83], we can use R =
Ze(G)[X]/F (X) for any monic degree-k polynomial F (X) =∑k

i=0 FiX
i ∈ Ze(G) that is irreducible modulo every prime

dividing e(G) that is irreducible modulo every prime dividing
e(G). We write [s]i to denote i-th server’s share and the tuple
of all shares by [s]. By combining the idea of integer sampling
and MPC, we can realize distributed server key generation
without the trusted center as follows:

Definition 12 ([83]). The Distributed Key Generation (DKG)
must contain the following two polynomial algorithms:

- [si]← Genshare(Ze(G),Zq) is a probabilistic algorithm
that sample Fi ← Ze(G) and generates [si]← Zq .

- kj ← Genkey(i, j, [si]
j) is a deterministic algorithm that

generates secret key kj =
∑n

i=1[si]
j by receiving n

tuple of (i, j, [si]
j). After receiving n numbers of [si]

j ,
Sj computes kj =

∑n
i=1[si]

j .
An unknown master secret key K =

∑t
j=1[s]

0
j that cannot

be recovered unless at least t+ 1 malicious servers collude.

E. EUF-CMA Signature

In digital signature schemes, existential unforgeability under
chosen-message attacks (EUF-CMA) ensures that signatures
cannot be forged by public keys. Moreover, there are three se-
curity properties of signatures beyond unforgeability: 1) Exclu-
sive ownership [84] guarantees that a public key can only ver-
ify one corresponding signature; 2) Message-bound signatures
guarantee that a signature is only valid for a unique message;
3) Non re-signability [85] guarantees that no signature can be
generated with another key given the signature of a certain
unknown message. In the post-quantum signature scheme of
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6

NIST Round 3 candidates (i.e., CRYSTALS-Dilithium [86],
FALCON [87], and Rainbow [88]), CRYSTALS-Dilithium is
the only signature scheme that provides EUF-CMA and all
three security properties beyond unforgeability above [89].

CRYSTALS-Dilithium [86] is a lattice-based signature
scheme and is designed based on the lattice hardness problem
(i.e., LWE and a variant of the shortest integer solution
problem). In the absence of a secure channel, we employ an
instance of the CRYSTALS-Dilithium to prevent adversaries
from tampering with the information.

Definition 13 ([86]). The CRYSTALS-Dilithium signature
scheme for a message space M is a tuple of PPT algorithms
as follows:

- (pk, sk)← Gen(1κ) outputs a verification key pk and
a signing key sk.

- sig ← Sign(sk,m) outputs a signature sig ∈ {0, 1}∗
by input sk and a message m ∈M.

- {0, 1} ← Ver(pk,m, sig) outputs either 1 (accepts) or
0 (rejects) by input pk, m, and sig.

Correctness. For any m ∈ M, the verification algorithm
Ver(pk,m, σ) outputs 1 with overwhelming probability, if
(pk, sk)← Gen(1κ, pp) and sig← Sign(sk,m).
Security. The CRYSTALS-Dilithium signature scheme is
EUF-CMA-secure if the advantage of any PPT adversary
A without knowing sk to forge a signature sig∗ is that
AdvSig

A (κ) ≤ ε(κ). A can output a list of query messages
m1, ...,mQ, and query Gen(1κ, pp) and Sign(sk,m). In
addition, according to Proposition 6.1. in [89], CRYSTALS-
Dilithium signature scheme can provide the security properties
of signatures beyond unforgeability, i.e., exclusive owner-
ship, message-bound, and non re-signability, if CRYSTALS-
Dilithium employ a collision-resistant and non-malleable hash.

Notably, in QPASE, both the user and servers employ the
user’s fixed public key for verification. Hence, a signature
meeting EUF-CMA-secure provides the necessary security and
eliminates the need for encryption together with the message.

F. Symmetric Encryption

In our QPASE, we employ symmetric encryption to protect
the outsourced data and retrieval index. The definition of a
symmetric encryption algorithm is as follows:

Definition 14. A symmetric encryption for a message space
M and a key space K is a tuple of PPT algorithms as follows:

- ct ← Enc(k,m) is a encryption algorithm that picks
k ← K and m←M and outputs a ciphertext ct.

- m← Dec(k, ct) is a decryption algorithm that employs
the same key k as Enc(k,m) and inputs a ct. Then, the
decryption algorithm outputs the plaintext m.

To the best of our knowledge, the Grover algorithm [90]
is currently the most effective algorithm for symmetric cryp-
tosystems under the quantum computing model. The Grover
algorithm can reduce the exhaustive search practice of 2n-
bit keys to

√
2n. In other words, AES-256 still has 128-bit

security in the exhaustive search of quantum computers.

III. SCHEME ARCHITECTURE AND SECURITY MODEL

A. Scheme Architecture

We first model the functionality and formally define the
security of QPASE. QPASE in Fig. 3 comprises two entities.

- User: The user U , acting as the data owner, possesses
an identity IDu and a human-memorable password
pswu. To register with a set of servers S, U provides
(IDu, pswu) and subsequently log in with the correct
password to obtain the user-specific key Ku. Then, U can
derive the data search key and either outsource or retrieve
data using symmetric searchable encryption (SSE).

- Server: A set of servers S = {S1, ..., SN} stores the
user’s registration information. During the outsourcing
phase, at least t servers assist U in generating a user-
specific key and provide authentication for U .

The scheme proposed in this paper primarily addresses two
key issues. The first issue pertains to the interaction between
U and S, encompassing the processes of registration and
authentication. Given the potential for data loss due to typos,
it is crucial to authenticate and verify the correctness of the
user’s password. In addition, explicit authentication makes
S weaken the impact of online password-guessing attacks
through the rate limit. The other issue concerns the SSE. After
authentication, U derives Ku with the assistance of at least
t servers, and executes SSE. To achieve this, we extend the
dual-server PASE of Chen et al. [14] to a multi-server PASE
with active updates and quantum resistance. Specifically, we
formally define the QPASE functionality as follows.

Definition 15. A quantum-resistant password-authenticated
symmetric searchable encryption (QPASE) must contain the
following five polynomial algorithms:

- pp ← Setup(1κ) generates a set of parameters pp by
input κ. Si generates the server side key ki via the DKG
algorithm in Definition 12.

- Register is executed between U (running interactive algo-
rithm RegisterU) and S (running interactive algorithm
RegisterS) according to the following specification:
(pk, sk) ← RegisterU(pp, IDu, pswu, Si): The user
U chooses a password pswu and interacts with N servers
to obtain a key pair (pk, sk). U sends pk to all servers
and remembers (IDu, pswu).
{0, 1} ← RegisterS(pp, IDu, ki): Si assists U with
registration. If the registration fails, outputs 0. Otherwise,
it outputs 1 and stores the authentication information.

- Login is executed between U (running interactive algo-
rithm LoginU) and S (running interactive algorithm
LoginS) according to the following specification:
(Ku, pk

′
u, sk

′
u) ← LoginU(pp, IDu, pswu, Si): U in-

teracts with at least t-many Si using a registered pass-
word pswu to recover Ku. Then, U derives a key pair
(pk′u, sk

′
u) with Ku for check the correctness of pswu.

If confirming that pswu is correct, U achieves login and
can outsource or retrieve data.
{0, 1} ← LoginS(pp, IDu, ki, pku): Si assists U to
recovers Ku and check the valid of user’s credentials.
If U is valid, Si outputs 1 and provides data outsourcing

Page 9 of 36

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7

𝐼𝐷௨Username

𝑝𝑘௨Authentication

𝐾௜Secret key

③

User

❶ Register

derive

❷ Login

❸ Outsource

psw

𝐼𝐷୳

dsk

IX
❹ Retrieve

Data

①② Server

Fig. 3: An exemplary overview of the QPASE. For better
illustration, the user U selects the (IDu, pswu). Then, ❶ U
registers with servers and generates characteristic pku, which
is stored on each server. ❷ U logins to the servers using pswu,
and derives the data search key dsk with the assistance of
server-side key ki. Now, U can ❸ outsource data or ❹ retrieve
data. The adversary can perform ① offline password-guessing
attacks, ② online password-guessing attacks, and ③ chosen
keyword attacks to breach the security of QPASE.

and retrieval services. Otherwise, outputs 0 and aborts.
- Outsource is executed between U (running interactive

algorithm OutsourceU) and S (running interactive
algorithm OutsourceS) as following specification:
(Ct,C, i, sigct)← OutsourceU(pp,Ku, sku, w, d, Si):
U inputs Ku, sku, the outsourced data d, and the
keyword w to generate the data search key dsk. U output
ciphertext Ct of searchable index by dsk, ciphertext C
of d by Ku and a signature sigct of Ct.
{0, 1} ← OutsourceS(pp, pku, ki): Si verifies sigct by
pku. If sigct is valid, Si output 1 and receives (Ct,C, i).
Otherwise, Si outputs 0 and aborts.

- Retrieve is executed between U (running interactive algo-
rithm RetrieveU) and S (running interactive algorithm
RetrieveS) after Login as following specification:
(dsk, sigdsk, d)← RetrieveU(pp,Ku, sku, pku, w, Si):
U input Ku and w to recover the dsk and retrieve the
outsourced data by interacting with S. Then, U decrypts
C to get the plaintext d of data.
{Li,⊥} ← RetrieveS(pp, pku, Ct, C): S assists certi-
fied authentic U to retrieve the outsourced data. S returns
the search list Li. Otherwise, Si aborts.

Correctness. The correctness of the QPASE scheme means
that all data under the keyword can be retrieved whenever the
registered user inputs the correct password in Login.

Definition 16 (Correctness). Let IX denote all data under the
keyword w and C ∈ IX. pp ← Setup(1κ). The probability
Pr[C ∈ IX] = 1 iff U executes the following algorithm:

(pk, sk)← RegisterU(pp, IDu, pswu, Si);

(Ku, pk
′
u, sk

′
u)← LoginU(pp, IDu, pswu, Si);

(Ct,C, i, sigct)← OutsourceU(pp,Ku, sku, w, d, Si);

(dsk, sigdsk, d)← RetrieveU(pp,Ku, sku, pku, w, Si).

and all servers output 1 by executing the following algorithm:

1← ⟨RegisterS(pp, IDu, ki),LoginS(pp, IDu, ki, pku),
OutsourceS(pp, pku, ki),RetrieveS(pp, pku, Ct, C)⟩.

B. Security Model

We consider adversaries with quantum computing capabilities
to mount various attacks to capture outsourced data. For
our QPASE scheme, we consider three security goals: quan-
tum resistance, authentication, and indistinguishability against
chosen keyword attacks (IND-CKA). To formally capture
the capabilities of an adversary in our QPASE, and specify
how the adversary interacts with honest parties, we employ
the Bellare-Pointcheval-Rogaway (BPR) model [70], where
the adversary’s capabilities are modeled through queries and
define a series of security notions. We briefly recall the BPR
model as follows. Recalling Definition 15, each U ∈ User
holds a password psw, while Si ∈ S holds the server side
key ki. Let U i and Sj denote user instances and key server
instances, respectively, where i, j ∈ Z . We denote any kind
of instance by I ∈ User ∪ Server.

Adversarial model. We consider the adversary A with
quantum computing capabilities can fully control the external
network, which implies that A is free to manipulate messages
and adaptive request any session keys. Moreover, for N key
servers in the scheme, we define that the adversary can
simultaneously corrupt at most t′ < t < N servers.

Queries. A interacts with the participants by using oracle
queries that simulate the adversary’s capabilities in a real
attack. The query models available to A are as follows.

- Execute(U i, Sj) captures a passive attack, such as eaves-
dropping. The output of execution consists of the mes-
sages exchanged during the honest execution.

- Send(I,m) captures an active attack, in which A sends
a message to instance I and outputs the response of I to
handle the message according to the protocol.

- Text(I) is used to define the semantic security of the
session key and is only allowed to query once. This query
outputs a random bit b in the real-or-random flavor. If
b = 1,A gets the actual session key. Otherwise,A obtains
a random key of the same size.

- Reveal(I) allowed A obtains the session key of I .
- Corrupt(I) captures the corrupt attack. If I = U , it

outputs the password pswu. If I = Si, it outputs ki.
Partnering. Let sid denotes the session identifier and pid

denotes the partner identifier. For the U i and Sj in an instance
I , we said they are partnered if the following conditions are
satisfied: 1) Both of them have accepted; 2) sidUi = sidSj =
sid; 3) pidUi = S and pidSj = U .

Freshness. I is fresh if the following conditions are true:
1) I has accepted and computed a session key.; 2) Neither I
nor its partner has been asked for a query Reveal(I).

Semantic Security. In the sequences of games, A can ask a
polynomial number of query Execute(U i, Sj), Send(I,m), and
Reveal(I). Finally, A asks a query Text(I) to get a guess bit b′

for the bit b involved. For any PPT A, the advantage holds that
AdvQPASE

A = 2Pr[b′ = b]− 1. In the BPR model, each entity
can execute the PASE with all of the servers multiple times.
Furthermore, the BPR model permits any entity to instantiate
unlimited instances but each instance is used only once. A is
capable of accessing different instances of entities.

Let L denote a list maintained by the experiment. We define
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ExpAuthPASE,A(κ)
Authi ← ∅; sidj ← 0; params Setup(1κ);
(sidi∗ , w

∗, ix∗)← Aoracle(·)(param)

else rutrun 0

IX Retrieve(sidi∗ , w
∗);

(sidi∗ , w
∗, ix∗) /∈ L ∧ (ix∗ ∈ IX) return 1

ExpIND−CKA−bPASE,A (κ)

Authi ← ∅; sidi ← (−1); sidj ← 0;
L ∅;param Setup(1κ);
b′ ← Aoracle(·)(param);
return b′

2

Fig. 4: PASE security experiments.

that the adversary A can access the following oracles.

- Challenge(b, sidi, wi): The oracle aborts if (sid∗i ≥
0) ∨ (sidi ≥ sidj) ∨ ((sidi, wi) ∈ L). Otherwise, it set
sidi∗ ← sidi and access OutU(sidi∗ , wb, C

∗).
- Reg(i) The experiment first initializes Di,sidj

as
a database. Then, it randomly picks psw satisfy
(sidi, psw, i) /∈ L. A interacts with the honest user
and server (oracle) as the corrupted server. After access,
the experiment records L[sidi] ← (i, psw.authi,Ku),
delivers j to A and set j ← j + 1.

- LoginU(i) The experiment initializes Di,sidj
as

a database. Then, it randomly picks psw satisfy
(sidi, psw, i) /∈ L. A interacts with the honest user
and server (oracle) as the corrupted server. After access,
the experiment records L[sidi] ← (i, psw.authi,Ku),
delivers j to A and set j ← j + 1.

- LoginS(sidi): The oracle aborts if sidi ≥ sidj . Other-
wise, it gets (i, psw.authi) ← L[sidi]. A interacts with
the honest server as the corrupted server.

- OutU(sidi, w, C): The oracle aborts if sidi ≥ sidj .
Otherwise, it gets (i, psw.authi,Ku) ← L[sidi]. A
interacts with the honest user and server (oracle) as the
corrupted server. In ExpAuth

PASE,A(κ), the oracle addition-
ally computes L← L ∪ (sidi, w, C).

- OutS(sidi): The oracle aborts if sidi ≥ sidj . Otherwise,
it gets (i, psw.authi,Ku) ← L[sidi]. A interacts with
the honest server as the corrupted server.

- RetU(sidi, w): The oracle aborts if (sidi ≥ sidj) ∨
(sidi = sidi∗) ∨ (w ∈ {wi}). Otherwise, it gets
(i, psw.authi,Ku) ← L[sidi]. A interacts with the
honest user and server (oracle) as the corrupted server.
In the IND-CKA experiment, if (sidi∗ = −1) the oracle
additionally computes L← L ∪ (sidi, w).

- RetS(sidi): The oracle aborts if sidi ≥ sidj . Otherwise,
it gets (i, psw.authi,Ku) ← L[sidi]. A interacts with
the honest server as the malicious entities.

Quantum resistance. To mitigate the potential impact of
Shor’s [51] influential quantum attack algorithms, QPASE is
designed based on the learning with errors problem. Shor’s
algorithm can efficiently solve large integer factorization and
discrete logarithm problems on quantum computers. By lever-
aging the computational hardness of DLWE, the QPASE
scheme aims to provide a secure cryptographic solution that
is resistant to quantum attacks. Concretely, we construct
the QPASE scheme based on Decision-LWEn,q,χ,m in Def-
inition 4, i.e., for any PPT A, the advantage holds that
AdvDLWE

QPASE(κ) = |Pr[1← A(Zm×n
q , q, n, χ,A, b)]−Pr[1←

A(Zm×n
q , q, n, χ, r1, r2)]| ≤ ε(κ).

Authentication. In the Login of QPASE, we follow part of
the experiment ExpauthPASE,A(k) outlined by Chen et al. [14],
as depicted in Fig. 4, except that we employ more servers in
our scenario. Notably, A making at most qs online attacks,
the adversary’s advantage Adv is denoted as qs(κ)/|D|+ε(κ)
for all dictionary sizes |D| in the existing uniform-model.
Recent research [74], [75] provided a rigorous analysis to
constrain the adversary’s advantage as C ′ ·qs′send(κ)+ε(κ) for
the Zipf parameters C ′ and s′, with considering the password
distribution follows the Zipf-distribution. We show that the
advantages of the adversary A are underestimated in the
uniform model in Section VI. For any PPT A making at most
qsend online attacks, the advantage of A holds that

AdvAuth
QPASE(κ) = Pr[1← ExpAuth

A (k)] ≤ C ′ · qs
′

s (κ)+ ε(κ).

IND-CKA. In the IND-CKA property of QPASE, we follow
the part of the experiment ExpIND-CKA-b

PASE,A (k) in [14] as shown
in Fig. 4 except that we prefer the CDF-Zipf distribution
[75], [74], and the attacker’s advantage can be formulated as
AdvIND-CKA

QPASE,A (κ) = Pr[b′ = b : b′ ← ExpIND-CKA-b
PASE,A (k)] −

1
2 . A QPASE scheme is called IND-CKA-secure if the prob-
ability AdvIND-CKA

QPASE,A (κ) ≤ C ′ · qs′s (κ) + ε(κ).

IV. QPASE: OUR NEW SCHEME

In this section, we present a detailed description of our
QPASE including five phases: Setup, Register, Login,
Outsource, and Retrieve. Our scheme is secure in a semi-
honest setting with a secure channel. Specifically, Fig. 5 illus-
trates the phases Register and Login, and Fig.6 illustrates
the phases Outsource and Retrieve. Moreover, we provide
a server key update phase to resist perpetual leakage.
Setup. During the setup phase, the execution of the algorithm
pp← Setup(1κ). Specifically, with the security parameter κ,
generate public parameters a ∈ R1×ℓ

q . For the parameter σ > 0
and any c ∈ Rm are defined as Gaussian distributions defined
in Definition 3. Choose parameters params m > cklog(q) and
q ≥ poly(k)(

√
logk). Let µ be an upper limit that a user fails

to pass Si authentication.
We set an upper limit µ as the number of login requests

issued by a user in an era. Enc is a symmetric key encryption
algorithm and Dec denote corresponding decryption algorithm.
Set N ≤ 1

4 log2
L·ℓ·n−σ

√
n

σ
√
n−1

as the a total number of servers
and t is the threshold number. H : {0, 1}∗ → Zn

q is a
collision-resistance hash function. Let Ku and Ks denote the
user and server key spaces, respectively. Each Si generates
the server-side key ki via the DKG algorithm in definition 12.
HKDF : Rq ×W → Ku. PRF : Ku × {0, 1}K → {0, 1}K. We
employ the signature in Definition 13 to prevent adversaries
from tampering with the information. For conciseness, we do
not explicitly show the signature and verification.
Register. The Register phase allows the unregistered user
U to register with a set of servers S = {S1, ..., SN} using the
user’s IDu and a human-memorable password pswu. U need
to convert pswu to binary x = (x1, ..., xL) ∈ {0, 1}L. The
registration phase needs a secure channel.
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sigu

Check checks whether pk′u = pku Ver(pku, (IDU , sid), sigu)

Otherwise, login is successful
If pk′u 6= pku, restart. Otherwise,
sigu ← Sign(sk′u, (IDu, sid))

if output 0, set µc := µc + 1

(pk′u, sk
′
u)← Gen(1κ,Ku)

Select IDu and pswu

(Eval,x, s, e)

User U Server Si

IDu

Check IDu, if no exists, start

[sj ] Genshare(Ze(G), Zq)

Publish pki = A · ki + ei

Binary conversior
pswu → x = (x1, ..., xL) ∈ {0, 1}L
s← Xσ , e← R(Xσ)1×`

Ku = FK(x)

TOPRF
N servers response
Compute FK(x)

e′i R(Xσ)1×`
(Eval, ki, e

′
i)

pku Secure storage IDu, pku, ki
Remember IDu and pswu initiates counters µu
(pku, sku)← Gen(1κ,Ku)

Key generation

ki Genkey(j, i, [sj ]i)
ei (Xσ)1×`

RegisterU(pp, IDu, pswu, Si)

RegisterS(pp, IDu, ki)

Input IDu and pswu

(Eval,x, s, e)

IDu

Check counters µu ≤ µ

e′i ← R(Xσ)1×`
Binary conversior
pswu → x = (x1, ..., xL) ∈ {0, 1}L
s← Xσ , e← R(Xσ)1×`

Ku = FK(x)

(Eval, ki, e
′
i)

After received sigu

LoginS(pp, IDu, ki, pku)

µ is upper limit of counter
Set µu := µu + 1

LoginU(pp, IDu, pswu, Si)

TOPRF
N servers response
Compute FK(x)

Fig. 5: The Register and Login of the QPASE.

- 1. U inputs (IDu,x) and interacts with each Si to execute
algorithm ΠTOPRF in Fig. 1 to get Ku = FK(x). Each
Si checks whether IDu is a duplicate. If yes, Si notifies
U . Otherwise, Si stores IDu.

- 2. U executes (pku, sku) ← Gen(1κ,Ku) in Definition
13 and sends pku to Si, where i ∈ [1, N ].

- 3. Si initiates µu = 0 and securely storage IDu, pku, ki,
µu for a subsequently authenticating.

- 4. U only needs to secure storage IDu and pswu.

Login. In the Login phase, the user U executes LoginU
to recover Ku with at least t-many servers and achieve
authentication. U inputs IDu and pswu, and computes x =
(x1, ..., xL) ∈ {0, 1}L from pswu.

- L1. For i ∈ [1, t], U uses (IDu,x) to execute algorithm
ΠTOPRF with Si to get Ku = FK(x). Si checks whether
µu < µ. If no, Si aborts. Otherwise, Si set µu := µu+1
and assists U to recover Ku. Then, Si returns pku to U .

- L2. U computes (pk′u, sk
′
u) ← Gen(1κ,Ku) checks

whether pk′u = pku. If pk′u ̸= pku, U re-inputs
the password and executes L1. Otherwise, U executes
sigu ← Sign(sk′u, (IDu, sid)) and sends sigu to Si.

- L3. Si verify sig with Ver(pku,m, sigu). If output 1,
Si allows U to upload outsourcing data or retrieval data.
Otherwise, Si aborts and set µu := µu + 1.

Outsource. In the Outsource phase, the authenticated user
executes OutsourceU to upload the outsourcing data d.

- O1. U selects ρ ← Zq and computes the data search
key dsk ← HKDF(Ku, w), v ← PRF (dsk, ρ), C ←
Enc(Ku, d) sigC ← Sign(sku, (ρ, v, C)), and Ct ←
Enc(dsk, (ρ, v, sigC)), sigCt ← Sign(sku, (Ct,C, i)).
U sends (Ct,C, i) and sigCt to arbitrary Si.

- O2. Si executes Ver(pku, (Ct,C, i), sigCt). If output
1, Si stores (Ct,C, i) in its database. Notably, each Si

provides M storage space for users.

Retrieve. In the Retrieve phase, the authenticated user
executes RetrieveU to retrieve and recover d.

- R1. After Login, U has Ku = FK(x) and (pku, sku).
U computes dsk ← HKDF(Ku, w), sigdsk ←
Sign(sku, dsk) and sends them to Si, where i ∈ [1, N ].

- R2. Si executes Ver(pku, dsk, sigdsk). If outputs 1, Si

computes (ρ, v, sigC) ← Dec(dsk, Ct). Si initializes a
set Li ← ∅. If 1 ← V er(pku, (ρ, v, C), sigC) and v =
PRF (dsk, ρ), Si adds (Ct,C, i) to Li. When Retrieve
is complete, Si sends Li to U .

- R3. U receives all Li and executes (ρ, v, sigC) ←
Dec(dsk, Ct). If 1 ← V er(pku, (ρ, v, C), sigC) and
v = PRF (dsk, ρ), U decrypts the corresponding C, i.e.,
d← Dec(Ku, C), to obtain data.

Server key update. It is necessary to update the server key to
resist perpetual leakage [71]. The server key update phase is
performed internally by the server without user participation,
and the update does not affect the server’s authentication and
searchable encryption. Specifically, each server Si updates
the server-sid key ki within a fixed period called an epoch.
According to the Definition 12 and the server key update
scheme of Jiang et al. [68], the specific operations during the
server key update phase are as follows:

- 1. Let q = e(S), Sj randomly chooses a polynomial
[F ] =

∑t−1
k=1 αkX

k, where [F ]0 = 0.
- 2. At least t-many Sj computes h = {Hj(αk)}, F i

j =
[F ]ij mod q, where k ∈ [1, t− 1], i ∈ [1, N ], j ∈ [1, t].

- 3. Sj broadcast the message F
(ω)
v = {j, ω, h, E(i, F i

j )}
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and sigj ← Sign(skj , (id, F
(ω)
v )). Sj sends F i

j and sigj

to Si, where i ∈ [1, N ], j ∈ [1, t].
- 4. Si decrypts the shares intended {F i

j}j∈[1,t] for Si

and verifies the correctness of the share by checking
the equivalent H(F i

j ) =
∑t−1

k=1 H(αk)
ik and execut-

ing Ver(pki, (id, [F ]ij), sigj). If Ver output 1 and the
equation holds, each Si computes a new k′i = ki +∑t

j=1 λi,j [F ]ij mod q. After receiving [F ]ij mod q

from Sj , each Si executes Ver(pki, (id, [F ]ij), sigj). If
Ver output 1, each Si computes a new k′i = ki +∑t

j=1 λi,j [U ]ij mod q.
- 5. Si recalculates pk′i = A · k′i + ei, where A ∈ R1×ℓ

q is
a public matrix and ei ∈ R1×ℓ

q , and resets µu to begin
(ω + 1)-th epoch.

Lemma 2. Let IX denote all data under the keyword w and
C ∈ IX. pp ← Setup(1κ). The probability Pr[C ∈ IX] = 1
iff the quantum-secure HKDF, the EUF-CMA signature, and
the symmetric encryption Enc is correctness.

Proof: In OutsourceU, there are dsk ←
HKDF(Ku, w), v ← HKDF(dsk, ρ), sigC ←
Sign(sku, (ρ, v, C)), and Ct ← Enc(dsk, (ρ, v, sigC)).
In Retrieve, iff the symmetric encryption Enc is
correctness, there is (ρ, v, sigC) ← Dec(dsk, Ct). Similarly,
iff the EUF-CMA signature is correctness, there are
1← V er(pku, (ρ, v, C), sigC). Each Si adds (Ct,C, i) to Li

and Pr[C ∈ IX] = 1. Vice versa.

Lemma 3. Let [F ] and [G] denote the master key polynomial
and the update polynomial, respectively. At the end of the era,
each Si executes the server key update protocol to renew its
secret key ki without changing the master secret key K.

Proof: According to definition 12, we know that K =∑n
i=1[F ]0i =

∑n
i=1 fi(0). Suppose that K ′ =

∑n
i=1 f

′
i(0).

Since f ′
i(x) = fi(x) +Gi(x), we have

K ′ =
n∑

i=1

f ′
i(0) =

n∑

i=1

fi(0) + Ui(0) =
n∑

i=1

[S]0i + [U ]0i

=
n∑

i=1

[s]0i + 0 =
n∑

i=1

[s]0i = K.

Multiple keywords. Notice that the QPASE construction we
gave uses only one keyword in the Outsource and Retrieve
phases. Our scheme can be extended to multiple keywords to
construct associative data. Let w = (w1, ..., wk) be a set of
keywords for a series of C. In the Outsource phase, O1.
U selects ρ ← Zq and computes dskj ← HKDF(Ku, wj),
vj ← (dskj , ρ), sigx ← Sign(sku, (ρ,v, C)), and Ct ←
Enc(dsk, (ρ,v, sigC), where v = (v1, ..., vk). U sends
(Ct,C, i) to Si. Inspired by Chen et al. [14], we use a similar
method to construct the query. Let w′ = (w′

1, ..., w
′
p), p ≤ k.

In Retrieve, R1. U sends dskj ← HKDF(Ku, w
′
j) to Si,

where i ∈ [1, N ], j ∈ [1, p]. R2. Si computes (ρ,v, sigC) ←
Dec(Ct). Initialize a set Li ← ∅. If V er(pku, (ρ,v, C), sigC)
and v = PRF (dskj , ρ), Si adds (Ct,C, i) from the database
to Li. The search query includes three cases:

- Conjunctive queries w′
1 ∧ ... ∧ w′

p if v = v′.

- Disjunctive queries w′
1 ∨ ... ∨ w′

p if |v ∩ v′| > 0.
- Subset queries (w′

1, ..., w
′
p) ⊆ w if v′ ⊆ v.

V. SECURITY ANALYSIS

In the following, we prove the security of our scheme
within the formal model defined in Section III, assuming the
Decision-LWEn,q,χ,m problem is intractable.

A. Formal Security Analysis of QPASE

We prove the security of our lattice-based PASE scheme based
on subsection III-B with the standard game-based proof.

Theorem 2 (Authentication). In QPASE, let A get pp and
access qs times query. The frequency distribution of password
dictionary D follows Zipf’s law [74], [75]. For any PPT A,
the advantage of disrupting authentication that

AdvAuth
QPASE,A(κ) ≤2C ′ · qs

′
s (κ) +AdvDLWE

A (κ)

+Adv1D−SIS
A +AdvSig

A (κ) + ε(κ).

We employ the Zipf model of the Taobao password distribution
in Fig. 7, where |D| = 15, 072, 667, C ′ = 0.0166957, and
s′ = 0.194179.

Proof: Game GAuth
0 . This game simulates the real en-

vironment between the protocol challenger and the passive
adversary A. A obtains A,x∗,x∗

ki
,pku, S(pki). The sim-

ulator initializes Authi, sidj , L, and pp as defined in the
real security game GAuth

QPASE,A(κ). A access oracle including
Reg(i), LoginU(i), and LoginS(sidi), which is defined in
Section III-B. Specifically, the simulator S initializes Li

sidj
←

∅ and plays U and Si. A interacts with the honest user
and server (oracle) as the corrupted server. After access, S
records L[sidj ]← (i, psw.authi), delivers sidj to A and set
j ← j + 1. We have

AdvAuth
QPASE,A(κ) = Pr[succAuth

0 ].

Game GAuth
1 . This game is similar to GAuth

0 except that S
executes the oracles Login(i) and LoginS(sidi) and s is
fresh in every session. Thus, we have

Pr[succAuth
1 ] = Pr[succAuth

0 ].

Game GAuth
2 . This game is similar to GAuth

1 except that A
access Reg(i), Login(i), LoginS(sidi). A sets b = ⌊a ·r+
aFx+2e⌉p and bki = ⌊b ·ki+2e′i⌉p. According to Lemma 4,
the advantage of A is AdvDLWE

A (κ). Thus, the views in GAuth
0

and GAuth
1 are computationally indistinguishable for any PPT

A, and there is

Pr[succAuth
2 ]− Pr[succAuth

1 ] = AdvDLWE
A (κ).

Game GAuth
3 . This game is identical to GAuth

2 except that
A sets bki

= ⌊b · ki + 2e′i⌉p and Ku = ⌊(
∑t

i=1 λi · bki
−∑t

i=1 λi ·pki ·r⌉p. In the setup phase, A plays malicious server
S∗. S∗ computes pk∗ from k∗ and publishes it, where ki ≤
σ ·
√
n. In the query phase, the simulator randomly selected

r
R← R1×ℓ

q and send to S∗. Waiting for a response of x∗
ki

from S∗. Finally, the honest user U send FK(x) to A. In real
protocol, x∗ generated by the honest user U . The secret value
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sigu

Check checks whether pk′u = pku Ver(pku, (IDU , sid), sigu)

Otherwise, login is successful
If pk′u 6= pku, restart. Otherwise,
sigu ← Sign(sk′u, (IDu, sid))

if output 0, set µc := µc + 1

(pk′u, sk
′
u)← Gen(1κ,Ku)

Replace the server storage

Li

Select IDu and pswu

(Eval,x, s, e)

User U Server Si

IDu

Check IDu, if no exists, start

[sj ]← Genshare(Ze(G), Zq)

Publish pki = A · ki + ei

Binary conversior
pswu → x = (x1, ..., xL) ∈ {0, 1}L
s← Xσ , e← R(Xσ)1×`

Ku = FK(x)

TOPRF
N servers response
Compute FK(x)

e′i ← R(Xσ)1×`
(Eval, ki, e

′
i)

pku Secure storage IDu, pku, ki
Remember IDu and pswu initiates counters µu
(pku, sku)← Gen(1κ,Ku)

Key generation

ki ← Genkey(i, j, [si]j)
ei ← (Xσ)1×`

RegisterU(pp, IDu, pswu, Si)

RegisterS(pp, IDu, ki)

Input IDu and pswu

(Eval,x, s, e)

User U Server Si

IDu

Check counters µu ≤ µ

e′i ← R(Xσ)1×`

Binary conversior
pswu → x = (x1, ..., xL) ∈ {0, 1}L
s← Xσ , e← R(Xσ)1×`

Ku = FK(x)

TOPRF
N servers response
Compute FK(x)

(Eval, ki, e
′
i)

After received sigu

LoginS(pp, IDu, ki, pku)

µ is upper limit of counter
Set µu := µu + 1

LoginU(pp, IDu, pswu, Si)

(Ct,C, i),sigct

(dsk, sigdsk)

sigct ← Sign(sku, (Ct,C, i))
Ct← Enc(dsk, (ρ, v, sigC))

After successful login

User U Server Si

OutsourceS(pp, pku, ki)

If the space is full,

ρ← Zq , dsk← HKDF(Ku, w)
v ← PRF(dsk, ρ), C ← Enc(Ku, d)
sigC ← Sign(sku, (ρ, v, C))

Otherwise, abort.

After received (Ct,C, i),sigct

Ver(pku, (Ct,C, i), sigct)
If output 1, Si stores (Ct,C, i)

OutsourceU(pp,Ku, sku, w, d, Si)

After successful login

sigdsk ← Sign(sku, dsk)

RetrieveU(pp,Ku, sku, pku, w, Si)
dsk← HKDF(Ku, w)

After received Li
(ρ, v, sigC)← Dec(dsk, Ct)

Output d← Dec(Ku, C)

If v = PRF(dsk, ρ) and
1← Ver(pku, (ρ, v, C), sigC)

(ρ, v, sigC)← Dec(dsk, Ct)

RetrieveS(pp, pku, Ct, C)

Otherwise,

If v = PRF(dsk, ρ)

After received (dsk, sigdsk)

Ver(pku, dsk, sigdsk)

If output 0, abort

2

Fig. 6: The Outsource and Retrieve of the QPASE.

x is hidden by the encryption algorithm based on Decision-
LWEn,q,χ,m. Therefore, A cannot distinguish a real x∗ from
r. Let x R← R(χσ) and e

R← R(χσ)
1×ℓ are sampled by U . For

U executes ΠTOPRF, and computes

FK(x) = ⌊
t∑

i=1

λi · bki
−

t∑

i=1

λi · pki · r mod q⌉p

=⌊a · r ·
t∑

i=1

λi · ki + ax ·
t∑

i=1

λi · ki + 2e
t∑

i=1

λi · ki

+ 2

t∑

i=1

λi · e′i − a · r ·
t∑

i=1

λi · ki

− 2r
t∑

i=1

λi · ei mod q⌉p

= ⌊ax ·K + 2e′′ mod q⌉p

where e′′ = e · K +
∑t

i=1 λi · e′i − r
∑t

i=1 λi · ei. Ac-
cording to Definition 1, set σ′ ≫ max

{
L · ℓ · σn3/2, σ2n2

}
.

The coefficient of p
q · (a

F (x) · K + 2e′′) is further than
T away from Z + 1

2 . According to Definition 1, set T =
p
q

(
σ′ ·
√
n+ L · ℓ · σn3/2

)
≪ 1 such that T ≤ p

q · |e
′′|∞.

Therefore, GAuth
2 and GAuth

1 are computationally indistin-
guishable. According to Definition 7, we have

Pr[succAuth
2 ]− Pr[succAuth

1 ] = Adv1D−SIS
A .

Game GAuth
4 . This game is similar to GAuth

3 except that
A sets b = ⌊a · r + aFx + 2e⌉p. Concretely, in the setup
phase, A and uniform pkA ← Z1×ℓ

q are generated. Send
pki to A. Initialize an empty list Q. During the query
stage, for each message pki, A extracts xA, eA, and queries
x. If returns FK(x) ∈ R1×ℓ

p and FK(x) /∈ Q, sample

F q ← R1×ℓ
q ∩

(
q
py +R1×ℓ

≤ q
2p

)
and add (x,F q) into Q. Return

F q to A. If returns FK(x) ∈ R1×ℓ
p and FK(x) ∈ Q,

set F q = FK(x) ∈ R1×ℓ
p . Choose e∗i

R← χσ′ and send
x∗
ki

= pku · ki + e∗i + F q to A. Each round of queries uses
different errors sampled from R(χ1×ℓ

σ′ ). In a real protocol, if

the adversary A can calculate the correct F q , it can perform
the same operation on the message received from the simula-
tor. F q is sampled by the simulator and the corresponding
value x∗

ki
. Let e⌊⌉ := yq − (q/p) · y ∈ R1×ℓ

≤ q
2p

, we have

FK(x) = ⌊pq (a
F (x)·K+e⌊⌉+e′′)⌉, where e′′ ≤ L·ℓ·σ ·n3/2.

Let T = L · ℓ · σ · n3/2, there is ∥e⌊⌉∥ < q/(2p) − T . Thus,
∥K · e +

∑N
i=1 λie

′
i −

∑N
i=1 ei∥ ≤

1
2 . GAuth

3 and GAuth
2 are

computationally indistinguishable except guessing the x (i.e.
the password pswu). Hence, there is

Pr[succAuth
3 ]− Pr[succAuth

2 ] = C ′ · qs
′

s (κ).

Game GAuth
5 . This game is similar to GAuth

4 except that
A gets (pku, sigu) and accesses the oracle LoginS(sidi),
OutS(sidi), and RetS(sidi). According to Section II-E, A
cannot forge a signature sig∗ with (pku, sigu) since EUF-
CMA signature is secure. Therefore, we have

Pr[succAuth
3 ]− Pr[succAuth

2 ] = AdvSig
A (κ).

Game GAuth
6 . This game is similar to GAuth

5 except that
A queries qs times and guesses pswu. According to Section
III-B, the advantage of A is C ′ · qs′s (κ). Thus, we have

Pr[succAuth
5 ]− Pr[succAuth

4 ] = C ′ · qs
′

s (κ).

In summary, the advantage of disrupting authentication
is that: AdvAuth

QPASE,A(κ) ≤ 2C ′ · qs′s (κ) +AdvDLWE
A (κ)

+Adv1D−SIS
A +AdvSig

A (κ) + ε(κ).

Theorem 3 (IND-CKA). QPASE construction provides au-
thentication based on the hardness of the decision Decision-
LWEn,q,χ,m and 1D-SIS problem and security of HKDF and
EUF-MCA. For any PPT A, the advantage of disrupting IND-
CKA security that

AdvIND
QPASE,A(κ) ≤2C ′ · qs

′
s (κ) +AdvDLWE

A (κ) +Adv1D−SIS
A

+AdvSig
A (κ) +AdvHKDF

A (κ) + ε(κ).

We employ the Zipf model of the Taobao password distribution
in Fig. 7, where |D| = 15, 072, 667, C ′ = 0.0166957, and
s′ = 0.194179.
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Proof: Game GIND
0 . The game initializes sid∗i , sidj ,

L, and pp as defined in the real security experiment
GIND-CKA

QPASE,A (κ). A accesses oracle Challenge(b, sidi, wi),
OutU(sidi, w, C), and RetU(sidi, w), which are defined
in subsection III-B. Specifically, the simulator S initializes
Li
sidj
← ∅ and plays U and Si. A interacts with the honest

user and server (oracle) as the corrupted server. After access,
S records L[sidj ] ← (i,Ku), delivers sidj to A and sets
j ← j + 1. We have AdvIND-CKA

QPASE,A (κ) = Pr[succIND
0 ]− 1

2 .

Game GIND
1 . This game is similar to GIND

0 except that A
executes Login to pass the authentication and obtain Ku with
the pswA. By Theorem 2, we have

Pr[succIND
1 ]− Pr[succIND

0 ] = AdvAuth
QPASE,A(κ).

Game GIND
2 . This game is similar to GIND

1 except that in
each session sidi of the oracle OutU(sidi, w, C) and oracle
RetU(sidi, w), A cannot distinguish the search key dsk ←
HKDF(Ku,W ) and dsk′, which is a uniform-random value.
By the uniform distribution of Ku and the security of HKDF
in Definition 10. We have

Pr[succIND
2 ]− Pr[succIND

1 ] ≤ AdvHKDF
A (κ).

Game GIND
3 . This game is similar to GIND

2 except
that A can forge EUF-CMA signature to be verified by
OutU(sidi, w, C), RetU(sidi, w) and RetS(sidi). Accord-
ing to Section II-E and CRYSTALS-Dilithium [86], we have

Pr[succIND
3 ]− Pr[succIND

2 ] ≤ AdvSig
A (κ).

Game GIND
4 . This game is similar to GIND

3 except that
A cannot distinguish the key v ← PRF (dsk, ρ) and v′ ←
PRF (r1, r2) where r1 and r2 are random picked. According
to GAuth

3 and Fig 2, the coefficient of p
q ·a

F (x) ·K is further
than e′′ away from Z + 1

2 . Therefore, we have

Pr[succIND
4 ]− Pr[succIND

3 ] ≤ AdvDLWE
A (κ) +

1

2
.

In summary, for any PPT A, the advantage of disrupting
IND-CKA security that: AdvIND

QPASE,A(κ) ≤ 2C ′ · qs′s (κ) +

AdvDLWE
A (κ) +AdvSig

A (κ) +AdvHKDF
A (κ) + ε(κ).

B. Further Security Discussion

The main goal of the Login phase of QPASE is to allow a
user to recover high entropy keys with a correct password.
Login calls include a lattice-based TOPRF (see Section II-B)
and a EUF-CMA signature scheme (see Section II-E). The
construction of lattice-based TOPRF starts from the lattice-
based OPRF of Albrecht et al. [79], which is reduced to
DLWEn,q,χ,m and 1D-SISq/p,nℓ,max{nℓB,T}. On this basis,
Jiang et al. [68] extend the lattice-based OPRF to the lattice-
based TOPRF and provide a threshold constraint.

In this work, we employ the robust extractor [69] to achieve
a deterministic user-specific key generation for QPASE. The
use of a robust extractor does not undermine the security of
underlying intractable problem [69] (e.g. DLWEn,q,χ,m and
1D-SISq/p,nℓ,max{nℓB,T}). Moreover, robust extractors only
reveal the range of noise without affecting the output of
TOPRF since the noises are eliminated by rounding operations.

TABLE II: Security level of our scheme.

Parameter Description PARAM I PARAM II

n dimension 512 595
q original modulus 228 − 57 228 − 57
β the BKZ block 342 478
δ0 Hermite factot 1.0044 1.0035

Classical cost 20.292×β 100-bit 140-bit
Quantum cost 20.268×β 92-bit 128-bit

TABLE III: Running times of related operations (in ms).

Operations TG Tou TS TE TP

Time 0.354 0.641 0.241 15 0.554

Operations TH Tos TV TD Texe

Time 0.02 0.049 0.133 15 3.8

We follow the security parameter settings of Albrecht et
al. [79] to ensure the quantum security of our lattice-based
TOPRF, and also carefully consider parameter settings for
other components. For the instantiation of QPASE, we em-
ploy CRYSTALS-Dilithium [86] to achieve authentication and
thwart adversaries from tampering with the information. In
phases of both Outsource and Retrieve, we employ an
HKDF [81] and PRF [80] for deriving the search key.

Let the lattice dimension of DLWE n = κc, where c > 2
is a constant, and the lattice dimension of 1D-SIS n′ = κ.
Set the bit-length of x L = κ, the secret and error distribution
σ = poly(n), and σ′ = σ2n2 ·κω(1). let q = p ·

∏n′

i=1 pi, where
pi = σ′ · ω

(√
nn′ log q log n′

)
. There is q = p · σ′ · κω(1)

[79]. According to CRYSTALS-Dilithium [86], there is q =
56(n
√
nκ/log n)2/n

√
κn/log n = 56(nκ/log n)3/2 ≥ 223.

We employ the ”lwe-estimator”1 with the quantum cost
model [91] to achieve the security estimates of QPASE. To
obtain more conservative parameters, we adopt the core-SVP
methodology using the classical cost 20.292×β and quantum
cost 20.268×β . Specifically, we set q = 228 − 57, n = 512
following [86]. Our QPASE can provide 100-bit classical
security and 92-bit quantum security with the BKZ block
β = 342. To provide 128-bit quantum security for QPASE, we
adjust the parameters to q = 228−57, n = 595 with β = 478.
Table II shows more details on two sets of parameters.

Next, we consider the impact of A executing corruption
attacks on servers. The form of the user-specific key Ku =
⌊pqa

F (x) ·K⌉ shows that the key is only related to the user’s
password psw (x is the binary form of the password) and
K. Even if A has corrupted t′ (t′ < t) servers can not
launch disclose attacks and impersonation attacks since the
lattice-based TOPRF has observability and unpredictability
[68]. If A can corrupt more than t servers, A can generate
the user-specific key by collecting data from the first phase of
the TOPRF interaction. Therefore, we assume that A cannot
corrupt more than t servers in the same epoch again (which
is consistent with the idea of the (t,N) threshold scheme).

Lemma 4. Let [F ] and [G] denote the master key polynomial
and the update polynomial, respectively. λi,j is the Lagrangian

1https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
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coefficient. A cannot obtain the master private key K of the
servers, if A cannot corrupt more than t′ servers in an era.

Proof: Suppose that A has corrupted t servers and
obtained more than t private keys in two consecutive eras,
which is denoted by k1, ..., kt′ , k

∗
t′+1, ..., k

∗
t , (a < t′ <

t < n). At this point, the adversary calculates: K∗ =∑t′

i=1 λi,j · ki +
∑t

i=t′+1 λi,j · k∗i =
∑t′

i=1 λi,j

∑n
j=1[S]

i
j +∑t

i=1 λi,j

∑n
j=1[F ]ij = K +

∑t
i=t′+1 λi,j

∑n
j=1[G]ij .

Since the update key generated by 0-sharing still satisfied
the threshold security requirements. That is, the adversary
can obtain at most t′ < t update keys. In other words,
there are t − t′ update keys here that the adversary cannot
obtain. Therefore, the adversary can not compute: K =∑t′

i=1 λijski +
∑t

i=t′+1 λijsk
∗
i −

∑t
i=t′+1 λij

∑n
j=1[G]ij .

VI. EXPERIMENTS

In this section, we evaluate the overheads and functions of our
QPASE and compare our work with related works.
Overheads. We calculate the computation cost in terms of
basic cryptographic operations. Specifically, TG, TH , and Tp

denote the key generation, HKDF, and PRF, respectively. Tou

and Tos denote the execution of the TOPRF algorithm by
the user and the server, respectively. Ts and Tv denote the
signature and verification, respectively. TE and TD denote
the symmetric encryption and decryption of 100KB files,
respectively. In addition, we use Texe to denote the exponential
operation, which is the main overhead of the PASE scheme of
Chen et al. [14]. Our implementation is in C++ language and
complies with the NTL version 11.5.1, and the measurement
is obtained on a LAPTOP with an AMD Ryzen 7 5800H with
Radeon Graphics running at 3.20 GHz. The computation cost
of basic cryptographic operations is shown in Table III.

Let the dimension m = n, an odd prime q ≈ nc,
where c is constant, and the noise rate α ≈ n1/2−c, we
can get an LWE instance by n, q, α,m. To ensure a 128-
bit quantum security level, we employ the PARAM II in
Table II as the parameter set. Specifically, set n = 595 and
q = 228 − 57 = 268, 435, 399. The practical parameters for
implementing our QPASE can be found in the scripts of LWE-
Frodo2 and Dilithium3. To facilitate comparison with Chen et
al.’s scheme [14], we set N = t = 2 and employ the same
evaluation setup in [92]. The test object of the outsourcing and
recovery operation is a 100 KB file, just like PASE [14].

In Table IV, we compare each phase of QPASE with its
foremost counterpart i.e., Chen et al.’s PASE [14]. Set security
parameters κ = 128 for both schemes. Table IV illustrates
that our QPASE incurs lower computational costs than PASE
[14]. On the one hand, our lattice-based scheme eliminates
the need for exponentiation operations and only uses relatively
lightweight operations like matrix multiplication and addition,
which reduces computational overhead. On the other hand,
we employ TOPRF to re-randomize passwords, which allows
the user to achieve authentication simultaneously with the
reconstruction of user-specific keys. This avoids the additional

2https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
3https://github.com/GMUCERG/Dilithium
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Fig. 7: Online guessing advantages of the real attacker and
attackers modeled by the CDF-Zipf, PDF-Zipf, uniform and
min-entropy distributions, respectively (using the 15,072,667
passwords leaked from Taobao). The overlap of the CDF-Zipf
attacker with the real one indicates well prediction.

computational cost of commitments and further improves the
computational efficiency of our QPASE.

We note that our QPASE has more communication costs
than PASE [14], and this is a limitation of our scheme. There-
fore, it may be not suitable for scenarios with low network
bandwidth. We emphasize that the communication cost during
the login phase is fixed. Thus, The communication cost gap
between our scheme and PASE [14] decreases as the size of
outsourced files increases. Specifically, the instance of LWE in
ΠTOPRF takes about 0.5 MB [79]. The communication cost
increases linearly as the number of servers grows. Besides, the
public key transmitted during the registration phase imposes
a communication overhead of at least 2.2 MB [86].

Still, compared to PASE [14], our scheme offers more
robust security attributes and higher threshold settings. On the
one hand, to the best of our knowledge, our scheme is the
first password-authenticated symmetric searchable encryption
with quantum-resistance. On the other hand, in our scheme,
the server-side stores users’ outsourced data in a distributed
manner. In the Retrieve phase, multiple servers can retrieve
data in parallel to further improve efficiency. In summary, our
QPASE outperforms its foremost counterparts (i.e., Chen et
al.’s scheme [14]) in security and computation overhead.
Function. Although the password-authenticated secret sharing
(PASS) scheme and QPASE scheme have different design
ideas and components, both schemes share the same goal
of enabling users to recover high-entropy encryption keys
through passwords. Therefore, we have compared the func-
tionality and computational overhead of the QPASE scheme
with various PASS schemes [60], [93], [62], [61], [72], [94],
[73], [7] and PASE schemes [14] in the phase of recovering
the high entropy encryption key, as shown in Table V. We
measure the computation overhead of schemes in terms of the
number of exponential power operations. Randomization of
the password through the lattice-based TOPRF [68] can avoid
the high computational overhead of the power exponential
operation. Moreover, users do not need to perform complex
encryption and secret sharing at the registration phase.
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TABLE IV: Comparison of the performance evaluation between Chen et al. [14] and our work at each phase.

Scheme User Server Communication
cost Rounds

Computation cost Total Time Computation cost Total Time

Register Chen et al. [14] 6Texe ≈ 22.81ms 0 0 ≈ 1280 bit 1
Our QPASE Tou + TG ≈ 0.99 ms Tos ≈ 0.05 ms ≈ 4,404,019 bit 1

Recover K u Chen et al. [14] 3Texe ≈ 11.41ms 8Texe ≈ 30.41ms ≈ 1792 bit 1
Our QPASE Tou ≈ 0.64 ms Tos ≈ 0.05 ms ≈ 2,097,152 bit 1

Outsource Chen et al. [14] 3Texe+TE ≈ 26.41 ms 8Texe ≈ 30.41 ms ≈ 102,656 bit 2
Our QPASE TH + TP + TE + 2TS ≈ 16.05 ms TV ≈ 0.13 ms ≈ 111,332 bit 1

Retrieve Chen et al. [14] 3Texe+2TD ≈ 41.41 ms 8Texe+TD ≈ 45.52 ms ≈ 102,912 bit 2
Our QPASE TH + TS + TP + TV + 2TD ≈ 30.95 ms TP + TV + TD ≈ 15.69 ms ≈ 119,050 bit 1

TABLE V: Comparison among recent PASS [60], [93], [62], [61], [72], [94], [7], [73], [4] and PASE [14] with our work.

Threshold Password
distribution

Security
model Technology Quantum

security
Data

retrieval Round Computation overhead

Server User

Bagherzandi et al. (CCS’11) [60] (t,N ) UR ROM HE × × 2 16Texe 33Texe

Camenisch et al. (CCS’12) [93] (2,2) - UC HE × × 1 26Texe 19Texe

Jarecki et al. (ASIACRYPT’14) [61] (t,N ) UR ROM OPRF × × 1 4Texe 11Texe

Yi et al. (ESORICS’15) [94] (t,N ) UR UC HE × × 1 12Texe 7Texe

Jarecki et al. (EuroS&P’16) [62] (t,N ) UR UC OPRF × × 1 1Texe 4Texe

Jarecki et al. (ACNS’17) [72] (t,N ) UR UC OPRF × × 1 1Texe 2Texe

Das et al. (ASIACCS’20)[7] (N,N ) UR UC OPRF × × 2 4Texe 10Texe

Chen et al.(IJIS’21)[14] (2, 2) UR ROM HE × ✓ 1 8Texe 3Texe

Roy et al. (ACNS’21) [73] (t,N ) UR ROM FHE ✓ × 1 0 0
Jiang et al. (TSC’23) [4] (t,N ) Zipf ROM FHE ✓ × 1 0 0
Our work (t,N ) Zipf ROM OPRF ✓ ✓ 1 0 0

† UR=Uniform random; - means not to consider; Zipf=Zipf distribution; HE=Homomorphic encryption; OPRF=Oblivious pseudorandom function;
FHE=Fully homomorphic encryption; For efficiency. we count the most expensive operations, i.e., exponentiations (denoted by Texe).

It can be seen that Roy et al.[73], Jiang et al. [4], and our
QPASE has a more obvious advantage in terms of efficiency,
which is based on DLWEn,q,χ,m. It does not require exponen-
tial power operations to hide secrets. In terms of security, the
universally composable (UC) model is widely used [94], [62],
[72] and can ignore the distribution of passwords. However, it
is difficult to measure resistance to quantum attacks within the
UC model [95]. Thus, we employ the ROM model to char-
acterize security. Notably, the impact of password distribution
on security analysis is crucial in the ROM model.

Fig. 7 shows that in the ROM model, assuming that the
password follows a uniform random distribution leads to a
“relaxation” of the security reduction. More specifically, the
adversary’s advantages are drastically underestimated in the
uniform random password distribution model. The CDF-Zipf
based formulation C ′ · qs′send(κ) + ε(κ) well approximates the
real attacker’s Adv : qsend ∈ [1, |D|] (Here we use the Zipf
model of Taobao, where |D| = 15, 072, 667, C ′ = 0.0166957
and s′ = 0.194179, the maximum deviation is less than
0.491%). This CDF-Zipf-based formulation is more accurate
than previously used formulations such as the Min-entropy
model [96]. Thus, we use the CDF-Zipf based formulation for
our QPASE to achieve tighter security than other PASS [62],
[61], [72] and PASE schemes [14].

VII. CONCLUSION

The major goal of this paper is to construct a quantum-
resistant password-authenticated symmetric searchable encryp-
tion scheme based on the lattice to satisfy that only a user
who knows the correct password can outsource, search, and

retrieve data. To achieve this goal, we employ a lattice-based
TOPRF to re-randomize the password that enables the user to
generate a user-specific key via a human-memorable password
and can resist offline guessing attacks. Then, we propose
the first quantum-resistant password-authenticated symmetric
searchable encryption for cloud storage, called QPASE.

QPASE offers users a solution to circumvent costly and
error-prone key management practices when utilizing cloud
storage services. Passwords not only serve as an authentication
mechanism but also grant legitimate users access to powerful
cloud server keys, enabling the derivation of user-specific keys.
This liberates users from device constraints, significantly en-
hancing data outsourcing flexibility. Our scheme is extendable
to support multi-keyword search and enables cloud servers
to update keys without disrupting user data retrieval. We
show that authentication and searchable encryption are not
orthogonal, i.e., authentication security can prevent imperson-
ation attacks and protect searchable encryption. Searchable
encryption can also extend the functions and security of
password-based authentication schemes. The security analysis
confirms that QPASE achieves authentication security and
IND-CKA security. Comparative evaluations against related
schemes highlight the practicality of our QPASE.
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“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in Proc. CRYPTO 2013, pp. 353–373.

[24] S. Kamara and T. Moataz, “Boolean searchable symmetric encryption
with worst-case sub-linear complexity,” in Proc. EUROCRYPT 2017, pp.
94–124.

[25] X. Meng, S. Kamara, K. Nissim, and G. Kollios, “Grecs: Graph
encryption for approximate shortest distance queries,” in Proc. ACM
CCS 2015, pp. 504–517.

[26] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data,” in Proc. ACNS 2005, pp. 442–455.

[27] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable
encryption via blind storage,” in Proc. IEEE S&P 2014, pp. 639–654.

[28] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in Proc. FC 2013, pp. 258–274.

[29] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. ACM CCS 2012, pp. 965–976.

[30] F. Hahn and F. Kerschbaum, “Searchable encryption with secure and
efficient updates,” in Proc. ACM CCS 2014, pp. 310–320.

[31] P. Xu, W. Susilo, W. Wang, T. Chen, Q. Wu, K. Liang, and H. Jin, “Rose:
Robust searchable encryption with forward and backward security,”
IEEE transactions on information forensics and security, vol. 17, pp.
1115–1130, 2022.

[32] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proc. ACM CCS 2015, pp. 668–679.

[33] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: the power of file-injection attacks on searchable encryption,” in
Proc. USENIX Sec. 2016, pp. 707–720.

[34] S. Hohenberger, V. Koppula, and B. Waters, “Adaptively secure punc-
turable pseudorandom functions in the standard model,” in Proc. ICICS
2015, pp. 79–102.

[35] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim, “Forward
secure dynamic searchable symmetric encryption with efficient updates,”
in Proc. ACM CCS 2017, pp. 1449–1463.

[36] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in Proc. ACM CCS 2006, pp. 79–88.

[37] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. EUROCRYPT 2004, pp.
506–522.

[38] X. Zhang, C. Xu, H. Wang, Y. Zhang, and S. Wang, “Fs-peks: Lattice-
based forward secure public-key encryption with keyword search for
cloud-assisted industrial internet of things,” IEEE Transactions on
Dependable and Secure Computing, vol. 18, no. 3, pp. 1019–1032, 2019.

[39] T. Suzuki, K. Emura, and T. Ohigashi, “A generic construction of
integrated secure-channel free peks and pke and its application to emrs
in cloud storage,” Journal of medical systems, vol. 43, pp. 1–15, 2019.

[40] J. Baek, R. Safavi-Naini, and W. Susilo, “Public key encryption with
keyword search revisited,” in Proc. ICCSA 2008, pp. 1249–1259.

[41] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search
over encrypted data,” in Proc. ACNS 2004, pp. 31–45.

[42] J. Chen, K. He, L. Deng, Q. Yuan, R. Du, Y. Xiang, and J. Wu, “Elimfs:
achieving efficient, leakage-resilient, and multi-keyword fuzzy search
on encrypted cloud data,” IEEE Transactions on Services Computing,
vol. 13, no. 6, pp. 1072–1085, 2017.

[43] H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. S. Shen, “Enabling
fine-grained multi-keyword search supporting classified sub-dictionaries
over encrypted cloud data,” IEEE Transactions on Dependable and
Secure Computing, vol. 13, no. 3, pp. 312–325, 2015.

[44] H. Cui, Z. Wan, R. H. Deng, G. Wang, and Y. Li, “Efficient and expres-
sive keyword search over encrypted data in cloud,” IEEE Transactions
on Dependable and Secure Computing, vol. 15, no. 3, pp. 409–422,
2016.

[45] R. Chen, Y. Mu, G. Yang, F. Guo, X. Huang, X. Wang, and Y. Wang,
“Server-aided public key encryption with keyword search,” IEEE Trans-
actions on Information Forensics and Security, vol. 11, no. 12, pp. 2833–
2842, 2016.

[46] Q. Huang and H. Li, “An efficient public-key searchable encryption
scheme secure against inside keyword guessing attacks,” Information
Sciences, vol. 403, pp. 1–14, 2017.

[47] D. He, M. Ma, S. Zeadally, N. Kumar, and K. Liang, “Certificateless
public key authenticated encryption with keyword search for industrial
internet of things,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 8, pp. 3618–3627, 2017.

[48] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently
searchable encryption,” in Proc. CRYPTO 2007, pp. 535–552.

[49] S. Canard, G. Fuchsbauer, A. Gouget, and F. Laguillaumie, “Plaintext-
checkable encryption,” in Proc. CT-RSA 2012, pp. 332–348.

[50] K. Huang, M. Manulis, and L. Chen, “Password authenticated keyword
search,” in Proc. PAC 2017, pp. 129–140.

[51] P. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring,” in Proc. FOCS, 1994, pp. 124–134.

[52] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, Y. Liu,
C. Miller, D. Moody, et al., “Status report on the first round of the
NIST post-quantum cryptography standardization process.” 2019, https:
//nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf.

[53] ——, “Status report on the second round of the NIST post-quantum
cryptography standardization process.” 2020, https://nvlpubs.nist.gov/
nistpubs/ir/2020/NIST.IR.8309.pdf.

Page 18 of 36

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16

[54] J. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum key
exchange for the tls protocol from the ring learning with errors problem,”
in Proc. IEEE S&P 2015, pp. 553–570.

[55] Z. Li and D. Wang, “Two-round pake protocol over lattices without
nizk.” in Proc. INSCRYPT 2018, pp. 138–159.

[56] J. Zhang and Y. Yu, “Two-round pake from approximate sph and
instantiations from lattices,” in Proc. ASIACRYPT 2017, pp. 37–67.

[57] J. Zhang, Z. Zhang, J. Ding, M. Snook, and O. Dagdelen, “Authenticated
key exchange from ideal lattices,” in Proc. EUROCRYPT 2015, pp. 719–
751.

[58] J. Ding, S. Alsayigh, J. Lancrenon, R. Saraswathy, and M. Snook,
“Provably secure password authenticated key exchange based on rlwe
for the post-quantum world,” in Proc. CT-RSA 2017, pp. 183–204.

[59] Q. Wang, D. Wang, C. Cheng, and D. He, “Quantum2fa: efficient
quantum-resistant two-factor authentication scheme for mobile devices,”
IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 1,
pp. 193–208, 2021.

[60] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu, “Password-protected
secret sharing,” in Proc. ACM CCS 2011, pp. 433–444.

[61] S. Jarecki, A. Kiayias, and H. Krawczyk, “Round-optimal password-
protected secret sharing and t-pake in the password-only model,” in
Proc. ASIACRYPT 2014, pp. 233–253.

[62] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “Highly-efficient and
composable password-protected secret sharing (or: How to protect your
bitcoin wallet online),” in Proc. EuroS&P 2016, pp. 276–291.

[63] J. Bonneau, C. Herley, P. Oorschot, and F. Stajano, “The quest to
replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proc. IEEE S&P 2012, pp. 553–567.

[64] X. Gao, Y. Yang, C. Liu, C. Mitropoulos, J. Lindqvist, and A. Oulasvirta,
“Forgetting of passwords: Ecological theory and data,” in Proc. USENIX
Sec. 2018, pp. 221–238.

[65] J. Bonneau, C. Herley, P. van Oorschot, and F. Stajano, “Passwords
and the evolution of imperfect authentication,” ACM Communication,
vol. 58, no. 7, pp. 78–87, 2015.

[66] D. Wang, Y. Zou, Q. Dong, Y. Song, and X. Huang, “How to attack and
generate honeywords,” in Porc. IEEE S&P 2022, pp. 489–506.

[67] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Proc. CRYPTO 2013, pp. 75–92.

[68] J. Jiang, D. Wang, G. Zhang, and Z. Chen, “Quantum-resistant password-
based threshold single-sign-on authentication with updatable server
private key,” in Proc. ESORICS 2022, pp. 295–316.

[69] J. Ding, X. Xie, and X. Lin, “A simple provably secure key exchange
scheme based on the learning with errors problem,” 2012, https://eprint.
iacr.org/2012/688.

[70] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key ex-
change secure against dictionary attacks,” in Proc. EUROCRYPT 2000,
pp. 139–155.

[71] H. A., J. S., K. H., and M. Yung, “Proactive secret sharing or: how to
cope with perpetual leakage.” in Proc. CRYPTO 1995, pp. 339–352.

[72] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “Toppss: cost-minimal
password-protected secret sharing based on threshold oprf,” in Proc.
ACNS 2017, pp. 39–58.

[73] P. Roy, S. Dutta, W. Susilo, and R. Safavi-Naini, “Password protected
secret sharing from lattices,” in Proc. ACNS 2021, pp. 442–459.

[74] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s law in
passwords,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 11, pp. 2776–2791, 2017.

[75] D. Wang and P. Wang, “Two birds with one stone: Two-factor authenti-
cation with security beyond conventional bound,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 4, pp. 708–722, 2018.

[76] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of ACM, vol. 56, no. 6, pp. 1–40, 2009.

[77] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proc. ACM STOC 2008,
pp. 197–206.

[78] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs, “Learning with rounding,
revisited: New reduction, properties and applications,” in Proc. CRYPTO
2013, pp. 57–74.

[79] M. Albrecht, A. Davidson, A. Deo, and N. P. Smart, “Round-optimal
verifiable oblivious pseudorandom functions from ideal lattices,” in Proc.
PKC 2021, pp. 261–289.

[80] A. Banerjee and C. Peikert, “New and improved key-homomorphic
pseudorandom functions,” in Proc. CRYPTO 2014, pp. 353–370.

[81] H. Krawczyk, “Cryptographic extraction and key derivation: The hkdf
scheme,” in Proc. CRYPTO 2010, pp. 631–648.

[82] A. Shamir, “How to share a secret,” ACM Communication, vol. 22,
no. 11, pp. 612–613, 1979.

[83] R. Bendlin, S. Krehbiel, and C. Peikert, “How to share a lattice trapdoor:
threshold protocols for signatures and (H)IBE,” in Proc. ACNS 2013, pp.
218–236.

[84] T. Pornin and J. P. Stern, “Digital signatures do not guarantee exclusive
ownership,” in Proc. ACNS 2005, pp. 138–150.

[85] D. Jackson, C. Cremers, K. Cohn-Gordon, and R. Sasse, “Seems legit:
Automated analysis of subtle attacks on protocols that use signatures,”
in Proc. ACM CCS 2019, pp. 2165–2180.

[86] S. Bai, L. Ducas, E. Kiltz, et al., “Crystals-dilithium: Algorithm spec-
ifications and supporting documentation (version 3.1).” 2021, https:
//pq-crystals.org/dilithium/index.shtml.

[87] P.-A. Fouque, J. Hoffstein, P. Kirchner, et al., “Falcon: Fast-fourier
lattice-based compact signatures over NTRU specifications v1.2.” 2020,
https://falcon-sign.info/.

[88] J. Ding, M.-S. Chen, M. Kannwischer, et al., “Rainbow: Algorithm
specification and documentation the 3rd round proposal.” 2020, https:
//www.pqcrainbow.org/.
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[95] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and
M. Zhandry, “Random oracles in a quantum world,” in Proc. ASI-
ACRYPT 2011, pp. 41–69.

[96] F. Benhamouda and D. Pointcheval, “Verifier-based password-
authenticated key exchange: New models and constructions,” 2022,
https://eprint.iacr.org/2013/833.

Jingwei Jiang is working toward a PhD degree from the
College of Computer Science and Technology, Harbin
Engineering University, China. As the first author, he
has published papers at ESORICS 2022, TSC 2023, the
Chinese Journal of Computers, etc. His research interests
include lattice-based cryptography and authentication.

Ding Wang received his Ph.D. degree in Information
Security at Peking University in 2017, and was sup-
ported by the “Boya Postdoctoral Fellowship” in Peking
University from 2017 to 2019. Currently, he is a Full
Professor at Nankai University. As the first author (or
corresponding author), he has published more than 90
papers at venues like IEEE S&P, ACM CCS, NDSS,
Usenix Security, IEEE TDSC and IEEE TIFS. His re-
search has been reported by over 200 media like Daily

Mail, Forbes, IEEE Spectrum, and Communications of the ACM, appeared in
the Elsevier 2017“Article Selection Celebrating Computer Science Research
in Chin”, and resulted in the revision of the authentication guideline NIST
SP800-63-2. He has been involved in the community as a PC Chair/TPC
member for over 60 international conferences such as NDSS 2024/2023, ACM
CCS 2022, PETS 2022-2024, ACSAC 2020-2024, RAID 2024/2023, ACM
AsiaCCS 2022/2021, IFIP SEC 2018-2021, ICICS 2018-2024, SPNCE 2020-
2022. He has received the “ACM China Outstanding Doctoral Dissertation
Award”, the Best Paper Award at INSCRYPT 2018, the Outstanding Youth
Award of the China Association for Cryptologic Research, the Young Scientist
Nomination Award for Powerful Nation, and the First Prize of Natural
Science Award of Ministry of Education. His main research interests focus
on passwords, authentication, and provable security.

Page 19 of 36

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60




