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New Observations on Zipf’s Law in Passwords
Zhenduo Hou and Ding Wang

Abstract— As password distribution lays the foundation for
various password research, accurately characterizing it receives
considerable attention. At IEEE TIFS’17, Wang et al. proposed
the CDF-Zipf distribution model with the golden-section-search
(GSS) fitting method to find the optimal parameters. Their
model has been adopted by over 120 password-related stud-
ies. In this paper, we address their remaining, fundamental
goodness-of-fit issue of password distribution in a principled
approach. First, we prove that the confidence level of the state-
of-the-art Monte Carlo approach (MCA, for the goodness-of-
fit test) converges asymptotically to 0. By experimenting on
228.92 million real-world passwords, we confirm Wang et al.’s
conjecture on the effect of sample size that minor deviations
would lead to statistical significance for large-scale datasets. We
propose both absolute and relative deviation metrics, and find
that 1% random deviations in both metrics suffice to reject
CDF-Zipf. Second, we attempt to reduce the non-negligible gap
between the empirical and fitted distributions (with the maxi-
mum deviation of cumulative distribution function (CDF) being
1.91% on average). We explore eight alternative distribution
models in two coordinate systems, and find that three models
are more accurate than CDF-Zipf, but none can pass MCA.
Particularly, we reveal that stretched-exponential, a variant of
CDF-Zipf, can on average reduce the maximum CDF deviation
from 1.91% to 1.25%. Third, to replace MCA, we introduce a
new goodness-of-fit measure based on log-likelihoods. We find
that stretched-exponential constantly has a larger log-likelihood
than its counterparts. In all, stretched-exponential fits passwords
better and further supports Zipf’s law in passwords.

Index Terms— Password distribution, Zipf’s law, goodness-of-
fit measure, Monte Carlo approach, stretched-exponential.

I. INTRODUCTION

TEXTUAL passwords remain to be the mainstream form of
Internet-based authentication [15]. Although the security

pitfalls were revealed four decades ago [34], and various
alternatives have been proposed (e.g., biometric [31], and
multi-factor authentication [45]), passwords are still widely
used in authentication due to the remarkable simplicity and
low deployment cost. Therefore, passwords are likely to persist
in the foreseeable future [15], [49], [53].

Despite their ubiquity, passwords are confronted with a
difficult challenge [38], [58], [59]: Truly random passwords
are hard to memorize, while most human-chosen passwords
are highly predictable. In practice, besides popular passwords
(e.g., 123456 and qwerty [57]), ordinary users are prone
to use personally identifiable information (e.g., name and
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birthday [50], [53], [54]) to construct their passwords, and
58%∼79% of investigated users reuse (or slightly modify)
passwords across sites [21], [38], [52], [56]. Such vulner-
able behaviors make password distribution nonuniform and
highly skewed. However, hundreds of studies (e.g., [2], [18],
[29], [46]) assume that “passwords are uniformly distrib-
uted”. This unrealistic assumption often leads to orders of
magnitude underestimates or overestimates of the security
of password-related studies (e.g., cryptographic protocols
[16], [55], encryption schemes [2], [22], and hash func-
tions [13]). These facts underline the imperative necessity to
characterize the skewed password distribution accurately.

Since human language follows Zipf’s law [60], Malone
and Maher [30] made the first attempt to characterize
human-chosen passwords with the Zipf distribution. After
conducting experiments with the probability density func-
tions (PDFs) of four password datasets (three of them are
with sizes smaller than 0.1 million), they concluded that
these datasets are “unlikely to be Zipf distributed”. In 2012,
Bonneau [14] also attempted to fit PDFs of password datasets
with Zipf’s law, and reached a similar conclusion to Mal-
one and Maher [30]. To figure out what is the distribution
that passwords follow, in 2017, Wang et al. [51] investigated
whether the cumulative distribution function (CDF, which
is the summation of PDFs) of a password dataset follows
Zipf’s law, and proposed the CDF-Zipf distribution model.
They used the golden-section-search (GSS) fitting method
(a numerical optimization method, see Sec. II-C) to find the
optimal parameters characterizing the CDF (rather than PDF)
of a password distribution, and experimented with 14 datasets
of sizes ranging from 30 hundred to 32 million. Extensive
experiments showed that their model not only provides the
smallest Kolmogorov-Smirnov (KS) statistic (which is the
maximum over the CDF deviation between the empirical and
fitted distributions, see Sec. II-B), but also can cover the
entire dataset. So far, their model has been adopted by over
120 password-related studies, such as password encryption,
policy, guessing and cryptographic protocols.1

The KS statistic between the empirical and fitted CDF distri-
butions is attributed to two types of deviations [17], [20], [39].
Type-1 deviation comes from statistical randomness, which is
inherent and cannot be reduced by optimization or using more
accurate models. Type-2 deviation comes from the use of an
inappropriate distribution model, and can be reduced or even
eliminated by using a more accurate model [20], [39]. If the
KS statistic mainly comes from type-1 deviation and the model
is accurate, passwords can be generated from (i.e., follow) the
fitted distribution with high confidence level [17], [20], [39].
Otherwise, it is possible to adopt a more appropriate model to
reduce or even eliminate type-2 deviation.

To evaluate whether passwords follow a chosen distribution,
we need an independent evaluation named the goodness-of-fit
test to distinguish both types of deviations [17], [20], [39].
If type-2 deviation is non-negligible, the chosen distribution
model is likely not optimal, and can be further improved [17],

1The full list of 124 studies can be found at https://bit.ly/3OhODAO.

1556-6021 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 15,2022 at 08:04:23 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7383-8379
https://orcid.org/0000-0002-1667-2237
WangDing
高亮



518 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

[20], [39]. In 2017, Wang et al. [51] used the Monte Carlo
approach (MCA) recommended by Clauset et al. [20] to do
this test for their CDF-Zipf distribution model. The basic idea
of MCA is to first generate a number of (e.g., 104) syn-
thetic datasets by using the same distribution parameters fitted
from the empirical dataset, and then calculate the proportion
(i.e., p-value, see Sec. III-A) of type-1 deviations that are
larger than the KS statistic between the empirical and synthetic
datasets. If this proportion is large (e.g., >90%), type-1 devia-
tion dominates; Otherwise, type-2 deviation is non-negligible,
suggesting the inappropriateness of the examined model.

In their MCA experiment, Wang et al. [51] found the above
proportion very small (i.e., <10−4), but conjectured that this
phenomenon was due to the effect of sample size: “Given a
sufficiently large sample, extremely small and non-notable dif-
ferences can be found to be statistically significant, and statisti-
cal significance says nothing about the practical significance of
a difference [41].” Despite such a claim, Wang et al. [51] left
the proof unfinished as future work. Hence, a natural question
arises: Given the CDF-Zipf distribution model, to what extent
is MCA an inappropriate goodness-of-fit measure for large-
scale datasets? To the best of our knowledge, no prior work
has tackled it. Ignoring this crucial question may result in
incorrect claims of password distribution.

Since the CDF-Zipf distribution model cannot pass MCA,
the second question arises: Are there comparable or even more
accurate distribution models than CDF-Zipf? In particular,
Whether these models can pass MCA? If an alternative model
can achieve this, passwords are better characterized with it
than CDF-Zipf (i.e., its KS statistic will be smaller). Other-
wise, if all of such more accurate alternative models (most
of them are commonly used) still cannot pass MCA, it is
natural to cast doubt on the intrinsic effectiveness of MCA.
Under this doubt, a more appropriate goodness-of-fit measure
is necessary. This raises the third question: Is there a more
appropriate goodness-of-fit measure than MCA for large-scale
password datasets? In particular, given various password dis-
tribution models with comparable accuracy, which distribution
model are passwords more likely (and reasonable) to follow?
In all, this work, for the first time, pays attention to the above
three crucial research questions.

A. Our Contributions

In this paper, we make the following contributions.
• Quantitative analysis of MCA. We provide both rig-

orous mathematical proofs and extensive experiments to
validate Wang et al.’s [51] folklore of the effect of the
sample size. For the first time, we prove that under
the CDF-Zipf distribution model, type-1 deviation con-
verges asymptotically to 0. Experiment results on subsets
of eight large-scale password datasets substantiate the
mathematical proofs: When the size of the subsampled
dataset ≥0.25 million, MCA rejects CDF-Zipf. Second,
we propose the absolute and relative deviation metrics to
simulate real-world password deviation. We prove that
the maximum of the KS statistic increases monotoni-
cally with the deviation. With this theoretical guarantee,
we implement extensive experiments, and find that 1%
random deviations in both metrics is enough for MCA to
reject the CDF-Zipf distribution. This shows that MCA is
too sensitive to be effective as a goodness-of-fit measure.

• Alternative password distributions. We investigate four
distribution models in the rank-frequency coordinate sys-

tem, and four in the frequency-frequency coordinate
system, a total of eight alternative models to find if there
is a more accurate model than CDF-Zipf. We fit these
distribution models with Wang et al.’s [51] GSS fitting
method. We find that lognormal in both systems and
stretched-exponential in the rank-frequency system are
comparably accurate with CDF-Zipf, with the maximum
CDF deviation ranging from 1.25% to 1.48% on average.
We also revisit MCA for these alternative models. MCA
rejects all of them regardless of accuracy when the dataset
size is large (e.g., ≥ 1 million), but accepts multiple
distribution models when the size is small, confirming
the ineffectiveness of MCA.

• A new goodness-of-fit measure. We introduce the
log-likelihood ratio test (LRT) to find which distribu-
tion is more likely for passwords to follow. In par-
ticular, we investigate the CDF-Zipf and three other
comparably accurate alternative models (i.e., lognormal
in two coordinate systems and stretched-exponential in
the rank-frequency coordinate system). We find that the
stretched-exponential model, a variant of CDF-Zipf, has a
significantly and constantly larger (1.26×107∼6.15×108)
log-likelihood ratio than the other three models. Besides,
its maximum CDF deviation is 0.46%∼2.49% (avg.
1.25%), while that of CDF-Zipf is larger and is
0.50%∼4.54% (avg. 1.91%). In particular, on six out
of eight datasets, stretched-exponential is more accu-
rate than CDF-Zipf. Therefore, stretched-exponential can
more accurately characterize password distribution. We
also compare LRT with MCA, and show that LRT out-
performs MCA in terms of minimizing statistical errors.

• Some insights. We obtain a number of insights, some
expected and some surprising, from our theories and
experiments. To our surprise, we find that some dis-
tributions (other than CDF-Zipf) are hard to optimize
with GSS, which may come from unexpected singular-
ities in transcendental functions in the CDF expressions.
As expected, the larger the dataset, the smaller the statis-
tical randomness for passwords.

II. PRELIMINARIES

A. Datasets and Ethics
We use eight large-scale datasets, a total of 228.92 million

real-world passwords in this study. As shown in Table I, all
datasets were hacked or released from 2009 to 2020, and have
been publicly available for some time. The justification for
using these datasets lies in four folds: (1) Recently breached
password datasets can represent the latest trend in password
evolution; (2) Early breached password datasets have been
widely used in other work (e.g., [12], [51], [54]), and can make
results of this work reproducible; (3) Practical cracking stud-
ies suggest that passwords evolve slowly [14], so properties
from early and recently breached datasets should be similar;
(4) These datasets are of various backgrounds (e.g., languages
and service types), and can reflect real-world passwords.

We are also fully aware of the ethics of this study. Although
these datasets have been publicly available and widely used in
previous research (e.g., [12], [51], [54]), they contain private
data (e.g., names and email addresses). In this study, we only
use aggregated statistical information like frequency and keep
others confidential, so using these datasets will not bring extra
risks to users. Finally, our research aims to benefit both the
academic and industrial communities.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 15,2022 at 08:04:23 UTC from IEEE Xplore.  Restrictions apply. 



HOU AND WANG: NEW OBSERVATIONS ON ZIPF’S LAW IN PASSWORDS 519

TABLE I

BASIC INFORMATION OF PASSWORD DATASETS

For any given dataset DS with |DS| passwords in total,
we rank the N unique passwords from the most frequent to
the least, and denote the frequency of the i -th unique pass-
word in the real-world dataset RealSet as f̂i : For passwords
PW1, PW2, . . . PWN , it holds that p̂1 ≥ p̂2 ≥ . . . ≥ p̂N ,
where p̂i = f̂i/|DS| is the probability density function (PDF),
and the cumulative distribution function (CDF) of RealSet is
the summation of PDFs, i.e., P̂r = �r

i=1 p̂i . Similarly, the
CDF of the theoretical dataset TheoSet is Pr = �r

i=1 pi .

B. Kolmogorov-Smirnov Statistic

The Kolmogorov-Smirnov (KS) statistic [20] is the max-
imum of the distance between two cumulative distribution
functions (CDFs), i.e., the maximum over the absolute value
of differences between the two CDFs. Thus, the KS statistic
between TheoSet and RealSet is

DKS = max
1≤r≤N

|Pr − P̂r |, (1)

where DKS ∈ [0, 1]. Since a smaller DKS means a more
accurate characterization, the goal is to minimize DKS by
searching the parameters (e.g., C and s for CDF-Zipf). This
KS statistic measurement is widely used in nonparametric
fittings [20], [37], so our usage is justified.

C. Golden-Section-Search Fitting Method

Wang et al. [51] introduced the golden-section-search
(GSS) fitting method to fit the password dataset. The key
idea is to find a synthetic theoretical dataset TheoSet
characterized by parameters with the minimal KS statistic
with the real-world dataset RealSet. For instance, under
the CDF-Zipf distribution where the CDF is Pr = Crs ,
minimizing the KS statistic is

min
C,s

DKS . (2)

The details of GSS are presented in Alg. 4 in Appendix A.
With this approach, the CDF of passwords depends numeri-
cally on the frequencies of passwords in TheoSet. Thus, it is
recommended to run Alg. 4 multiple times (e.g., 100) and take
an average to minimize random fluctuations.

D. Goodness-of-Fit Test

Since the CDF-Zipf distribution model can characterize
password distribution with relatively high accuracy, a natural
question arises of whether passwords truly follow it. In sta-
tistics, the goodness-of-fit test is conducted to answer this
question by examining whether the distribution model holds
with high statistical confidence [17], [20], [39].

Typically, the goodness-of-fit test is a hypothesis testing
method and goes as follows. The claim that passwords follow
the X distribution (e.g., CDF-Zipf) is treated as the null
hypothesis H0. Similarly, the claim that passwords do not

follow X (or follow some other distributions) is treated as
the alternative hypothesis H1. A straightforward idea to know
whether H0 or H1 holds is to distinguish the source of the KS
statistic. If the KS statistic mainly comes from statistical ran-
domness (i.e., type-1 deviation), the chosen model holds with
a high confidence level and is unlikely to be further optimized;
Otherwise, if the KS statistic mainly comes from the use of a
distribution model (i.e., type-2 deviation), it is likely to adopt
alternative models to reduce the KS statistic. The idea is used
by the Monte Carlo approach (MCA) to determine whether a
distribution model holds with high statistical confidence.

If the above straightforward MCA falls short of justifying
CDF-Zipf, passwords may follow other distributions that are
roughly linear under the log-log scale. Ideally, a good distri-
bution model X (not CDF-Zipf) should both (1) provide the
smaller KS statistic and (2) be supported by the goodness-of-
fit test results. Otherwise, a new method is needed to do the
goodness-of-fit test for password datasets.

Two types of statistical errors exist for hypothesis tests.
Type-1 statistical error is the probability of mistaken rejection
of true H0, which is rejecting X (e.g., CDF-Zipf) when pass-
words truly follow it; Type-2 statistical error is the probability
of mistaken acceptance of false H0, which is accepting X
when passwords do not follow it. In this paper, we will discuss
them when evaluating goodness-of-fit measures MCA (see
Sec. IV-C) and log-likelihood ratio test (LRT, see Sec. IV-D).

III. ANALYSIS OF UNDERLYING ISSUES OF MCA

In this section, we first use rigorous mathematical proofs
and extensive experiments to investigate what dataset size can
make MCA reject CDF-Zipf. Then, we introduce two metrics
to simulate the real-world deviation, and conduct extensive
experiments to find the thresholds rejecting CDF-Zipf.

A. Revisit of MCA Process

As mentioned in Sec. II-B, we use the KS statistic to
measure the CDF deviation. First, we introduce the idea of
MCA goodness-of-fit measure. Since the theoretical dataset
TheoSet is characterized by the distribution parameters
(e.g., C and s for CDF-Zipf), the KS statistic of fitting
TheoSet (denoted as D�

KS) can be seen as type-1 deviation
(i.e., statistical randomness). The CDF deviation (denoted
as DK S) between the real-world dataset RealSet and the
theoretical dataset TheoSet contains both type-1 and type-2
deviations. Thus, if a significant proportion of D�

K S has
D�

K S>DK S , CDF deviations mainly come from type-1 devia-
tion, and passwords should follow the distribution model.

In more detail, we do MCA as follows: (1) Use the golden-
section-search (GSS) to fit RealSet with the CDF-Zipf distri-
bution model to obtain the KS statistic DKS ; (2) Use the same
distribution parameters characterizing RealSet to generate
J0 theoretical datasets, i.e., TheoSet1, · · · , TheoSetJ0; (3)
Use GSS to fit each TheoSet j (1≤ j ≤J0) individually and
independently, and calculate the corresponding D�

KS j for each
TheoSet j ; (4) Calculate the proportion of D�

KS > DKS as
the p-value (the confidence level of the distribution model);
We add one in both denominator and numerator to make the
p-value smooth [23]; (5) We set the p-value threshold to
be 0.01: If the p-value>0.01, the null hypothesis H0 that
passwords follow CDF-Zipf should be accepted; Otherwise,
it should be rejected. The process of MCA with CDF-Zipf is
shown in Alg. 1.

We now explain why we choose the p-value threshold to
be 0.01. First, like the threshold 0.05 [25], this 0.01 has
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TABLE II

PARAMETERS, ORDERS OF MAGNITUDE OF DEVIATIONS, AND p-VALUES CALCULATED USING MONTE CARLO APPROACH (MCA)†

Algorithm 1 Monte Carlo Approach on CDF-Zipf†

Input : The real-world dataset RealSet.
Output: The confidence level p-value.

1 begin
2 (C, s, DKS) = GSS(RealSet);
3 for j = 1 to J0 do
4 TheoSetj = THEOGEN(C,s, |DS|); /* Generate

J0 theoretical datasets, |DS| is the dataset size. */
5 (C �

j , s�
j , D�

KS j ) = GSS(TheoSetj); /* Fit J0 theoretical datasets
with the same fitting method of the real-world dataset. */

6 p-value = (#{D�
KS j |D�

KS j > DKS, 1 ≤ j ≤ J0} + 1)/(J0 + 1); /*
Smooth the p-value. */

7 if p-value > 0.01 then
8 Accept the CDF-Zipf distribution model;

9 else
10 Reject the CDF-Zipf distribution model;

11 Output: p-value.

† GSS is the golden-section-search fitting method (see Alg. 4 in Appendix A) used

by Wang et al. [51]. THEOGEN characterizes the theoretical dataset TheoSet

with the conversion method in [20] (see Alg. 3 in Appendix A).

also been widely used in various research fields (e.g., epi-
demiology [26], psychology [48], and cyber security [19]).
Second, the above way of defining p-value indicates that
the smaller the threshold, the harder for MCA to reject
CDF-Zipf. Hence, using 0.01 can make our analysis more
rigorous with a smaller type-1 statistical error: When p-value<
0.382 and H0 and H1 hold with approximately equal prior
probability (i.e., P(H0)≈P(H1), usually true suggested by
Berger et al. [9]), type-1 statistical error e1 (which is a
function of p-value) is

e1 = (1 + (2
�

p-value)−1)−1 (3)

based on [43]. Thus, type-1 statistical error can be reduced
from 30.90% to 16.67% by setting the p-value threshold to
be 0.01 rather than 0.05, making our results more reliable.
Further, to ensure the accuracy of the p-value, we take
J0=10,000 (the number of generated TheoSets), so the ran-
dom fluctuation �p of the p-value is <0.005 (�p= 1√

4J0
[20]).

This also indicates that the smallest p-value is 1
10,001<10−4

(with smoothing, see Line 6 of Alg. 1), when all type-1
deviations (statistical randomness) is smaller than the KS
statistic (i.e., D�

K S<DK S). Third, we also do not mean to
exclude the possibility of other thresholds. As with prior
research (e.g., [32], [36], [44], [47]), we provide details
including p-value, type-1 deviation, and KS statistic data
calculated using MCA (see Tables II and VIII), so practitioners
can set their own p-value thresholds (e.g., 0.005 [7], [27],
0.05 [25], and 0.1 [20]). Our theories will also reveal that
for sufficiently large datasets (e.g., with sizes ≥1 million,

see Sec. III-B), the exact p-value threshold is irrelevant to
the overall conclusion.

Table II shows the p-value and parameter results of fit-
ting the eight large-scale password datasets with the CDF-
Zipf distribution. We can see that: (1) D�

KS is at least one
order of magnitude smaller than DKS , so type-2 deviation
invariably dominates the KS statistic; Hence, the null hypoth-
esis H0 that passwords follow the CDF-Zipf distribution is
rejected; (2) The p-value is invariably <10−4, and MCA
will not accept CDF-Zipf regardless of p-value thresholds
(e.g., 0.01, 0.05, and 0.1); (3) C and C �, as well as s� and s
values are very close, with differences �C = |C −C �| ranging
from 10−7 to 10−4 and �s = |s − s�| ranging from 10−6 to
10−3; In such a case, it is justified to treat C � ≈ C and s� ≈ s
in MCA.

B. Relation Between p-Value and Dataset Size

We show how the p-value changes with the password
dataset size |DS| using both rigorous mathematical proofs and
extensive experiments. Since the p-value is the proportion of
D�

K S>DK S , we focus on how the maximum of type-1 deviation
max D�

KS changes with the dataset size |DS|.
1) Theories: In the process of generating TheoSet, each

password PWi can be seen as a random Bernoulli vari-
able with mean pm

i and standard deviation
�

pm
i (1 − pm

i ),
where pm

i is the true probability of PWi determined by
the distribution model (e.g., CDF-Zipf) [14], [51]. Hence,
the frequency fi of PWi after |DS| sampling follows the
binomial distribution with the mean μi = pm

i |DS| and
standard deviation σi = �

pm
i (1 − pm

i )|DS|. Since 1−pm
i < 1,

there is σi <
�

pm
i |DS| = √

μi . For popular passwords with
fi ≥ fb (e.g., fb = 10), using fi to approximate μi is accurate
because σi/μi <

√
1/μi . For unpopular passwords with fi <

fb, exploratory experiments show σi → 0. Based on these
observations, we have the following theorem.

Theorem 1: Suppose C and s of RealSet and C � and s� of
TheoSet satisfy C ≈ C � and s� ≈ s; For each password of
fi ≥ fb , the estimation error �i = fi − μi follows the normal
distribution N(0, σ 2

i ), and for passwords of fi < fb , σi = 0.
In this case, the maximum of type-1 deviation (i.e., statistical
randomness) max D�

K S decreases as |DS| increases, and there
is lim|DS|→∞ D�

K S = 0. As a consequence, p-value decreases
as |DS| increases, and there is limJ0→∞ p-value = 0 (see the
proof in Appendix B).

2) Discussion: To begin with, we show that conditions in
Theorem 1 are realistic. First, as shown in Table II, C � ≈ C
and s� ≈ s hold for all our eight large-scale password datasets,
so we can treat C � and C , as well as s� and s statistically
equivalent. This means that Theorem 1 holds regardless of
the exact C and s values. Second, the normality assumption,
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TABLE III

p-VALUES OF SUBSETS OF PASSWORD DATASETS CALCULATED USING MONTE CARLO APPROACH (MCA)†

i.e., �i∼N(0, σ 2
i ) is not only guaranteed by the central limit

theorem, but also recommended by the NIST standard of
statistical methods [1]. Third, preliminary results show that the
actual σi is smaller than the theoretical maximum

√
μi, and

becomes very small (e.g., <10−5) after the first 3, 000 unique
passwords. Hence, it is reasonable to assume that σi = 0 for
unpopular passwords with fi < fb .

We also discuss the implications of Theorem 1. It reveals
that once the dataset size |DS| is large (e.g., ≥ 1 million),
type-1 deviation (i.e., statistical randomness) D�

K S will be
close to 0. As a result, the KS statistic mainly comes from
type-2 deviation, i.e., using the CDF-Zipf distribution model,
and the p-value is invariably < 10−4 when J0=10,000. This
means that for a sufficiently large dataset, whatever the exact
p-value threshold is, MCA will reject CDF-Zipf, and type-
2 statistical error (rejecting CDF-Zipf when passwords truly
follow it) is improbable. In addition, since lim|DS|→∞ D�

K S =
0 (and thus D�

K S�DK S) holds for each generated TheoSet,
a straightforward deduction is that lim J0→∞ p-value = 0. This
reveals that using more TheoSets in MCA (i.e., doing a
larger-scale MCA experiment) does not change the essence
that D�

K S�DK S , and CDF-Zipf will still be rejected as long
as the dataset is sufficiently large.

3) Empirical Results: We experiment on subsets of our
eight large-scale datasets to see how the p-value changes as
the dataset size |DS| varies, and find the threshold making the
p-value<0.01. By randomly sub-sampling datasets (without
replacement) of sizes 0.05M , 0.1M , 0.25M , 0.5M , and 1M
(1M = 106, i.e., one million), we calculate the p-values and
parameters of these subsets, and show the results in Table III.

Table III shows that: (1) For all subsets, the difference
�C between C and C �, as well as �s between s and s�,
are about 10−7∼10−3 (with only two exceptions in Yahoo),
so Theorem 1 is also practical for subsets; (2) Both the
maximum and minimum of D�

KS decrease as the subset size
increases, and the p-value decreases monotonically: When the
subset size is ≥0.25M , the p-value is <0.01; When the size
is ≥1M , the p-value is <10−4 and D�

K S<DK S ; In addition,
even if the p-value threshold is < 0.01 (e.g., 0.005) and
its convergence rates are different across datasets, MCA will
always reject CDF-Zipf when the dataset size exceeds 1M;
These findings are consistent with Theorem 1; (3) When the
datasets size is <0.1M , the p-value is >0.01 (except Tianya),
consistent with Wang et al.’s observation [51] that p-values
of small datasets (with size about 104∼105 e.g., Myspace of
0.04M passwords [54]) can pass MCA. All this substantiates

the correctness of Theorem 1, and reveals the threshold of
0.25M above which MCA rejects CDF-Zipf.

We now explain Table III in the view of statisti-
cal errors. Since p-values<0.01 for subsets ≥0.25M , and
p-values<10−4 for subsets ≥1M , the chance of accept-
ing CDF-Zipf is low in MCA. Thus, for large-scale
datasets ≥0.25M , we only need to consider type-1 statisti-
cal error, which is 16.67% when p-value<0.01 and 1.96%
when p-value<10−4. Similarly, when the dataset size is
small (e.g., ≤0.1M), we only consider type-2 statistical error.
We will discuss these errors of MCA in Sec. IV-C in detail.

C. Stimulation of Real-World Frequency Deviations

The above findings raise a natural question: What degree
of deviation can make MCA reject CDF-Zipf for a large-scale
password dataset? To answer this question, we first measure
the frequency difference of a password (e.g., with rank i )
in the real-world dataset RealSet and the theoretical dataset
TheoSet; We then propose two metrics (i.e., absolute and
relative deviation metrics) to simulate the real-world deviation.

1) Point-Wise Deviation: We define the point-wise deviation
to measure the difference in frequency between the i -th
password in the real-world and theoretical datasets.

Definition 1: For the i -th unique password, the point-wise
deviation ˆpdv i of the i -th unique password in RealSet is

ˆpdv i = ( f̂i − fi )/ fi , (4)

where f̂i and fi are the i -th unique password of RealSet and
TheoSet. The sign of ˆpdv i is denoted as δ̂i and δ̂i ∈ {−1, 1}.

Here we explain Definition 1. First, if the sign δ̂i is positive,
then f̂i > fi , and vice versa. Second, the absolute value | ˆpdvi |
measures the degree of point-wise deviation, namely, the
relative error between frequencies of passwords with the same
rank in RealSet and TheoSet. We use the term point-wise
deviation to emphasize that this deviation is defined on an
individual password, which can be extended point by point
to an interval of passwords. Hence, by treating the sign
and degree separately, we extend the domain of point-wise
deviation from an individual password with rank i to an
interval of passwords with ranks in [i1, i2] as follows.

Definition 2: If all passwords within ranks [i1, i2] have the
same sign. The point-wise deviation on interval [i1, i2] is

ˆpdv[i1,i2] = δ̂[i1,i2] min
i∈[i1 ,i2] | ˆpdv i |, (5)
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TABLE IV

POINT-WISE DEVIATIONS OF THE TOP-10 UNIQUE PASSWORDS†

where δ̂[i1,i2] satisfies

δ̂[i1,i2] =
�

1 If ˆpdv i ≥ 0 for all i ∈ [i1, i2]
−1 If ˆpdv i < 0 for all i ∈ [i1, i2]. (6)

The top-10 unique passwords, and their point-wise devia-
tions of our eight datasets, are shown in Table IV. For each
dataset, passwords are summarized in the first column, and
their point-wise deviations are shown in the second column.

We demonstrate the implications of point-wise deviation
results in Table IV. Firstly, the sign of the first (i.e., top-1)
password is negative, i.e., δ̂1<0 and f̂1< f1, indicating the
frequency of the top-1 unique password in RealSet is smaller
than that in TheoSet given by the CDF-Zipf distribution
model. One possible reason is that the password 123456 is
the most popular password in most of our datasets (except for
000webhost and Chegg due to their password policies [52]),
and is widely regarded as weak and users consciously avoid
choosing it. Secondly, passwords with the same sign are often
connected, so the definition of the point-wise deviation on an
interval (i.e., Definition 2) is practical. Since both f̂i and fi
decrease gradually with i , ˆpdv can be seen as a continuous
function with i as the variable. Based on the sign-preserving
property, if pdvi0 >0 (resp. <0) for some i0, there exists a
neighbourhood [i0, i0 + Len] that pdvi >0 (resp. <0) for all
i ∈ [i0, i0 + Len]. Further, since CDF-Zipf is accurate, the
slopes of RealSet and TheoSet are close enough, so Len is
often large (e.g., δ̂[2,136]=1 and Len=135 for Dodonew).

Fig. 1 takes a grasp of the frequencies of the top-100 unique
passwords in RealSet and TheoSet under the log-log scale.
The signs of passwords with a rank in [2, 100] can be both
negative and positive, which relates to users’ languages and
service types. For instance, the signs of the 2nd to 10th unique
passwords in two Chinese datasets (Dodonew and Tianya) are
all positive, i.e., f̂i > fi , which may be because that Chinese
passwords are more concentrated (see Table IV) than their
English counterparts [53].

Based on the above observations, we generate the simu-
lated dataset SmuSet by adjusting the point-wise deviation
(denoted as pdvs ) in the following two metrics to simulate
the real-world password deviations.

2) Absolute Deviation Metric: We suppose the first
N0 unique passwords are deviated, i.e., the deviation range
is [1, N0]. First, we determine the sign. For RealSet, since
passwords with the same signs are usually connected, there
exist intervals in which each unique password has the same

Fig. 1. A grasp of the frequencies of the top-100 unique passwords in
Yahoo, Dodonew and Wishbone datasets. It is observed that RealSet is below
TheoSet in Yahoo and Wishbone, while RealSet is above TheoSet in
Dodonew after the top-2 passwords. Therefore, according to Definition 1,

ˆpdvi <0 for i ∈ [1, 100] in Yahoo and Wishbone, and ˆpdvi >0 for i ∈
[2, 100] in Dodonew. This shows that passwords with the same sign are often
connected, so Definition 2 is well-defined.

sign (e.g., [2, 10] in Dodonew). Thus, we divide [1, N0] into
disjoint unions of intervals [i1, i2]:

[1, N0] =
�

[i1, i2] δ̂i = δ̂i1 for all i ∈ [i1, i2]
[i1, i2]

�
[i �

1, i �
2] = φ for any two different intervals. (7)

On each interval [i1, i2], we set the point-wise deviation pdvs

of the simulated dataset SmuSet based on two rules:
1) The simulated point-wise deviation has the same sign as

the real-world one, i.e., δs[i1,i2] = δ̂[i1,i2] on [i1, i2].
2) The absolute value of the simulated point-wise deviation

is no more than that of the real-world one, i.e., 0 < kA =
|pdvs[i1,i2]| ≤ | ˆpdv[i1,i2]| on [i1, i2].

Hence, the i -th deviated password in SmuSet has

f s
i = fi (1 + pdvs[i1,i2]) = fi (1 + δ̂[i1,i2]kA). (8)

As shown in Table IV, the point-wise deviation ˆpdv1 of the
first password is often different in sign and with a much larger
degree. Therefore, we treat the first password separately.

Based on these rules, we calculate the p-value in the
absolute deviation metric. Similar to Alg. 1, first, we generate
J0=10, 000 TheoSets, deviate them in the absolute deviation
metric and obtain SmuSets. Second, we fit each SmuSet
with the GSS fitting method proposed by Wang et al. [51],
and get (Cs, ss , Ds

KS) as the KS statistic and characterization
parameters. Third, we calculate the p-value for each SmuSet,
and take an average (denoted as p-values ) to mitigate statistical
fluctuations. The process is shown in Alg. 2.
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Algorithm 2 Calculate the p-Value in Absolute Deviation
Metric (ABSDEV)

Input : The parameters C and s, real-world dataset RealSet,
point-wise deviation degree kA and range [1, N0].

Output: p-values of the simulated dataset SmuSet.

1 begin
2 for j = 1 to J0 do
3 TheoSetj = THEOGEN(C,s, |DS|); /* Generate

J0 theoretical datasets. */
4 (C �

j , s�
j , D�

KS j ) = GSS(TheoSetj); /* Fit J0 theoretical
datasets with the same method fitting the real-world dataset. */

5 for j = 1 to J0 do
6 Divide [1, N0] = �[i1, i2] with [i1, i2]�[1�

1, i �2] = φ and
δ[i1,i2] is fixed for each [i1, i2]; /* Divide the deviation ranges
into disjoint unions of intervals. */

7 for i = 1 to N0 do
8 f s

1 = f1(1 + δ1k1); /* Deviate the first password. */
9 f s

i = fi (1 + δ̂[i1,i2]kA); /* Deviate passwords ranking from
i1 to i2 in each theoretical dataset. */

10 Rank f s
1 , f s

2 . . . in descending order;
11 SmuSetj = { f �

1, f �
2 . . .}; (Cs

j , ss
j , Ds

KS j ) = GSS(SmuSetj); /*
Fit J0 simulated datasets with the GSS fitting method. */

12 p-values
j

= (#{D�
KS j |D�

KS j > Ds
KS j , 1 ≤ j ≤ J0} + 1)/(J0 + 1); /*

Calculate the p-value for each simulated dataset and smooth the
p-values . */

13 p-values = (p-values
1 + p-values

2.. + p-values
J0

)/J0; /* Take the
average as the p-values . */

14 Output: p-values of the simulated dataset.

3) Relative Deviation Metric: We also explore the relative
deviation metric, where the point-wise deviation pdvs

i of the
i -th unique password in SmuSet is proportional to that in
RealSet, i.e., pdvs

i = ˆpdv i kR with the deviation parameter
0 < kR ≤ 1. In this case, the frequency f s

i in SmuSet has

f s
i = fi (1 + ˆpdv i · kR) = fi (1 − kR) + f̂i kR . (9)

Since each deviated password has δs
i = δ̂i , there is no need

to divide [1, N0] into disjoint unions of intervals. The process
is similar to Alg. 2 except Lines 8 and 9 are replaced with
Eq. 9, so we omit its presentation here.

4) Theories of Deviation Metrics: We now prove that
the maximum of Ds

K S (the KS statistic of fitting SmuSet)
increases with the deviation degrees kA and kR . As a result,
we only need to try a limited number of kA and kR values to
find the thresholds that make MCA reject CDF-Zipf.

Before entering the proofs, we state our assumptions. Firstly,
similar to Sec. III-B, we assume Cs ≈ C � and ss ≈ s�
for SmuSet. Secondly, the rank of a password does not
change significantly after deviation, that is, the i -th password
in TheoSet also ranks approximately i in SmuSet. Suppose
two passwords PWi and PW j have fi > f j in TheoSet; (1) If
both PWi and PW j are deviated, there is f s

i > f s
j in SmuSet

according to Eqs. 8 and 9, so their ranks in the deviation range
are unchanged; (2) If PWi is deviated but PW j is not, the
deviation degree can be tuned to minimize changes in rank.
Thirdly, the direct maximum CDF deviation between TheoSet
and its derived SmuSet is used as the maximum max Ds

KS ,
i.e., max Ds

KS = |CDF(SmuSet) − CDF(TheoSet)|. This is
justified because Ds

K S resulting from GSS cannot exceed the
direct maximum CDF deviation. Based on these assumptions,
we state the two theorems on password deviations as follows.

Theorem 2: In the absolute deviation metric, if passwords
in SmuSet are deviated as pdvs

i = δ̂[i1,i2] · kA for i ∈ [i1, i2],
and the deviation degree kA satisfies 0 ≤ kA ≤ | ˆpdv[i1,i2]|,
then the maximum max Ds

KS increases as kA increases.

Theorem 3: In the relative deviation metric, if passwords
are deviated as pdvs

i = δ̂i · | ˆpdv i |kR for i ∈ [1, N0] and
0 < kR ≤ 1, then the maximum max Ds

KS increases as kR
increases (see proofs of Theorems 2 and 3 in Appendix B).

5) Discussion: We now make a few justifications. Firstly,
we only explore the case where only one interval [i1, i2] is
involved in the absolute deviation case. For multiple intervals
with signs fixed on each interval, we can apply Theorem 2
inductively to obtain the global solution. Secondly, we clarify
why not consider the relationship between the KS statistic
Ds

K S and the deviation range N0. In the absolute deviation
case, δ̂i on multiple is complicated; In the relative deviation
case, there is also no simple monotonicity. Hence, we mainly
focus on how max Ds

K S changes with kA and kR .
Theorems 2 and 3 reveal that in both deviation met-

rics, max Ds
KS increases as the deviation degrees kA and

kR increase, so the p-values calculating the proportion of
type-1 deviation larger than the KS statistic of SmuSet
(i.e., D�

K S>Ds
K S) should decrease as kA and kR increase. As a

result, for a given interval of passwords with a rank in [i1, i2]
(resp. [1, N0]), if a specific kA (resp. kR) value can make
p-values<0.01, so a larger value can also achieve this goal.
With this monotonicity guarantee, we only need to try a limited
number of kA and kR values to find the thresholds.

D. Numerical Experiments of Simulations
In this section, we describe the experiment setups and results

of deviation threshold investigations, in both absolute and
relative deviation metrics for MCA to reject CDF-Zipf.

1) Experiment Setups: We first consider the absolute
deviation metric. We set the deviation range parameter
N0 ∈ {1, 10, 100}, divide [1, N0] into disjoint unions of inter-
vals, and treat the first unique password separately, as shown in
Alg. 2. We also set |pdv[i1,i2]|>|pdv[i3,i4]| for other consecu-
tive intervals to smooth deviations. The reason not to consider
other passwords (e.g., the first 100∼10, 000 unique passwords)
lies in two folds: (1) These passwords often have much
smaller frequencies compared with the top-100 passwords,
so their deviation effects are less significant; (2) Point-wise
deviations of these passwords are often sharply different,
which complicates the simulation. For instance, in Yahoo,

ˆpdv115 = 0.68% but ˆpdv1,000 = 35%, so considering them
will unnecessarily complicate the simulation.

Second, we consider the deviation degree. We investigate
the real-world deviation degree ˆpdv[i1,i2] on each disjoint
interval [i1, i2] and set it as the maximum of the simulated
deviation degree, i.e., kA = |pdvs[i1,i2]| = 1%, 5%, 10%,

25%, . . . , | ˆpdv[i1,i2]|, (where | ˆpdv[i1,i2]| = min
i∈[i1,i2] | ˆpdv i |, see

Definition 2). We also consider two levels of p-value thresh-
olds as in Sec. III-B: (1) p-values<0.01 (the standard thresh-
old) and (2) p-values<10−4, i.e., Ds

KS>max D�
KS , where type-2

deviation >0 for all generated simulated datasets SmuSets.
In the relative deviation metric, apart from deviation ranges

in the absolute metric, we also set N0 = N , i.e., all passwords
are deviated. As mentioned in Sec. III-C, we deviate passwords
directly based on Eq. 9, and set the deviation parameter kR =
1%, 5%, 10%, 25%, 50%, and 100%.

2) Experiment Results: Table V shows the KS statistics
and p-valuess of fitting SmuSets of Yahoo, Dodonew and
Wishbone (others are similar). The left-hand columns record
the results of absolute deviations, and the right-hand columns
record the results of relative deviations.

Table V demonstrates that: (1) In both deviation metrics,
the KS statistic Ds

KS increases monotonically as deviation
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TABLE V

KS STATISTICS AND p-VALUES OF SIMULATED DATASETS†

Fig. 2. Relative deviations of Yahoo, Dodonew and Wishbone datasets. Each curve represents a different deviation range. The shadow area corresponds to
the maximum and minimum of KS statistic D�

K S of fitting TheoSet (used to measure statistical randomness). Only within the shadow area, the Monte Carlo
approach (MCA) p-values can possibly be >0.01. However, all Ds

K S of fitting SmuSet surpasses the shadow area with kR ≥ 50%.

degree pdvs
i with only a few exceptions (e.g., pdvs

1 = −5%
in Dodonew), which agrees well with Theorems 2 and 3;
(2) In both cases, pdvs

i only need to be 1%∼25% to make
p-values<0.01, and 1%∼50% to make p-values<10−4; Par-
ticularly, when all passwords are deviated (i.e., N0=N in the
relative case), deviation as small as 1% is enough to make
p-values<10−4. This means even if the p-value threshold is <
0.01 (e.g., 0.005), MCA will always reject CDF-Zipf with real-
world deviations for large-scale datasets. All this substantiates
Wang et al.’s [51] conjecture on the effect of sample size for
CDF-Zipf, so small and non-notable deviations would indeed
lead to statistical significance for large-scale datasets. We also
show how the KS statistic Ds

KS changes with the relative
deviation degree kR in Fig. 2.

3) Summary: We use both theories and experiments to
investigate the extents to which MCA rejects CDF-Zipf. For
the first time, we prove that under the CDF-Zipf distrib-
ution model and the GSS fitting method, type-1 deviation
(i.e., statistical randomness) converges to 0 asymptotically as
the dataset size increases. As a result, the KS statistic of a
large password dataset (e.g., ≥ 1 million) mainly comes from
type-2 deviation (using CDF-Zipf distribution model), and
the p-value is <10−4. Experiment results on eight large-scale
datasets reveal that the dataset size only needs to be ≥0.25M
to make p-value<0.01 to reject CDF-Zipf, and ≥1M to make
p-value<10−4. Next, we propose both the absolute and relative
deviation metrics to simulate real-world deviations, and reveal

that 1% random deviations in both metrics suffice to make
MCA reject CDF-Zipf. These rigorous mathematical proofs
and extensive experiments substantiate Wang et al.’s [51]
conjecture on the effect of sample size on CDF-Zipf.

IV. NEW MODELS FOR PASSWORD DISTRIBUTION

Since MCA always rejects CDF-Zipf for large-scale
datasets, A natural question arises: Whether there are better
distribution models that can provide higher accuracy and pass
MCA? We compare the fitting accuracy of CDF-Zipf with
other possible distributions, and use MCA to calculate their
p-values to answer this question.

A. Necessity of Considering Alternative Distributions

We show the necessity to explore alternative distributions.
If passwords follow CDF-Zipf (i.e., Pr = Crs ), the CDF curve
should be a straight line under the log-log scale. However, due
to point-wise deviations revealed in Sec. III-C (particularly
Table IV and Fig. 1), a distorted but not a straight line is more
realistic in practice. Hence, there are likely to be more accurate
distribution models with roughly linear curves under the log-
log scale. However, to the best of our knowledge, no prior
work has explored these alternative distribution models.

We present an example of five distributions in Fig. 3. All
CDFs (see Table VI for details) are roughly linear under the
log-log scale, but only the blue curve is actually drawn from
CDF-Zipf. In addition, when using linear regression to fit these
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TABLE VI

ALTERNATIVE DISTRIBUTION MODELS TO CDF-ZIPF†

Fig. 3. An exhibition of alternative distribution models. Besides CDF-Zipf,
the other four distribution models (stretched-exp represents the stretched-
exponential, see details in Table VI) are also roughly linear under the log-log
scale, so passwords may also follow one of them.

CDFs, we find coefficients of determination 0.850<R2<0.999
(where R2 ∈ [0, 1] and the larger the R2, the closer the data to
a line). There is potential that, among these four (and possibly
other) alternative models, someone(s) will be more accurate
than CDF-Zipf. We confirm this in what follows.

1) Two Coordinate Systems: We present two different coor-
dinate systems used to analyze the password frequency, and
investigate the relation between these two systems.

First, we discuss the rank-frequency coordinate system
(abbreviated as the RF system) used in Sec. III. In this system,
the X-axis records the rank r of a password, and the Y -axis
records the frequency fr . Though in practice, the Y -coordinate
is converted to record the CDF Pr = �r

i=1 fi/|DS|, (where
|DS| is the dataset size) [51], CDF is equivalent to frequency
essentially, so the rank-frequency essence is still maintained
when the CDF is on the Y -axis.

Besides rank-frequency, another way to see the data is to
count the number (i.e., frequency) of unique passwords nk that
are each used by exactly k users. In this system, the X-axis
records the password frequency fr , which is the same as the
Y -axis of the RF system. Accordingly, the Y -axis records
the frequency n fr of unique passwords occurring fr times.
We denote this coordinate system as the frequency-frequency
system (abbreviated as FF system) with x as the variable.
In practice, the FF system is widely used in research areas
like physics [20], complex networks [5], and marketing [24],
so our consideration is reasonable.

We now show the relationship between the RF and FF
systems. If a password PW has the rank r and frequency fr in
a dataset, its coordinate in the RF system is (r, fr ). Besides,
if there are n fr unique passwords with frequency fr in the
dataset, the coordinate of PW in the FF system is ( fr , n fr ).

Hence, the complementary CDF in the FF system has

P(X ≥ x) = r/N, (10)

where N is the number of unique passwords. Based on this
property, we can use the same techniques of Adamic’s work [3]
to convert any distribution in the FF to the RF system.

B. Alternative Distribution Models

In 2009, Clauset et al. [20] compared four alternative dis-
tribution models with power-law (equivalent to CDF-Zipf [3])
in the FF system. Inspired by this idea, we consider these four
models in both RF and FF systems, a total of eight alternative
models. The PDF and CDF expressions in the RF system are
shown in the first two columns of Table VI.

We justify investigating models in Table VI in both coor-
dinate systems. First, regardless of coordinate systems, these
distributions are roughly linear under the log-log scale as
shown in Fig. 3, so it is necessary to consider them in both
systems. Second, these distribution models are also meaning-
ful. For instance, the lognormal distribution often characterizes
the random multiplicative process [33] of variables. Another
example is the stretched-exponential, which is generated sim-
ilar to CDF-Zipf but with more stringent constraints [28].
Third, though there may be other distribution models for
passwords to follow, they are either less common, or similar
to our considered models (e.g., inverse gamma distribution).
Therefore, our consideration of alternative distribution models
is as comprehensive as possible.

We use Eq. 10 as the key to convert distributions in the FF
system to the RF system (see Appendix C for more details).
The converted PDF kernel and CDF expressions are shown
in the last two columns of Table VI. Justification of this
conversion lies in the fact that the GSS fitting method in
the RF system performs the best for CDF-Zipf [51]: GSS not
only leads to the smallest KS statistic, but also can cover the
entire dataset. Thus, GSS can optimize other models in the RF
system as well. As a result, even if the converted PDFs and
CDFs in the RF system are complicated and are not commonly
used, we still fit passwords with them as their equivalences are
common in the FF system.

We name alternative distribution models based on their
origins: For the four models original in the RF system,
we name them exponentialRF, lognormalRF, Zipf-cutoffRF and
stretched-exponentialRF. Accordingly, we replace RF with FF
in the subscript for models that are original in the FF system
and then converted to the RF system. The fitted parameters
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TABLE VII

GSS FITTING RESULTS OF ALTERNATIVE DISTRIBUTION MODELS†

Fig. 4. CDFs and CDF deviations (whose maximum absolute value are the KS statistics) of the real-world, CDF-Zipf, and the eight alternative distribution
models. The RF in the subscript means the distribution model is original in the rank-frequency (RF) system, and the FF means the distribution model is
originally in the frequency-frequency (FF) system and converted to the RF system.

(denoted as θ1 and θ2) and KS statistics of these models with
eight large-scale datasets are shown in Table VII. We also
present the CDF and KS statistic plots of Yahoo, Dodonew,
and Wishbone datasets in Fig. 4.

Table VII shows that there are three other distributions,
i.e., lognormalRF, lognormalFF and stretched-exponentialRF,
providing comparable accuracy to the CDF-Zipf distribution.
In particular, lognormalRF or lognormalFF is the most accurate

on three datasets (i.e., Yahoo, Rockyou, Chegg), and so is
stretched-exponentialRF (i.e., Tianya, Mathway, Wishbone).
Now, whether these comparably accurate distribution models
can pass the MCA goodness-of-fit test is crucial: If there is
one model that can pass MCA, passwords are more likely to
follow it than the state-of-the-art CDF-Zipf distribution model.
Accordingly, we need to conduct a goodness-of-fit test on
alternative distributions.
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TABLE VIII

p-VALUES OF PASSWORD SUBSETS AND ENTIRE DATASETS OF THE STRETCHED-EXPONENTIAL DISTRIBUTION MODEL IN RF SYSTEM†

C. Revisit MCA in Alternative Distributions

We do MCA with all eight alternative models and the results
show that MCA rejects all of them (see the p-value columns
in Table VII). This brings out the question of whether MCA
is suitable for large datasets.

Without loss of generality, we use MCA results of
the stretched-exponential distribution in the RF system
(i.e., stretched-exponentialRF) as an example, and the cases
are similar for the other seven models. The fitting results
(including the parameters λ and α, and the KS statistic DK S)
of subsets and the entire datasets are shown in Table VIII.
It shows that: (1) The differences �λ (between λ and λ�) and
�α (between α and α�) are comparatively small (between
10−6∼10−3 with only one exception in Chegg), so there
can reach a similar conclusion to Theorem 1 (which holds
under CDF-Zipf) under the stretched-exponentialRF distribu-
tion; (2) For subsets and entire datasets whose sizes are larger
than 0.5M (i.e., 0.5 million), while some KS statistic DKS
values are smaller (e.g., on Yahoo, Rockyou and Chegg) than
those of CDF-Zipf, they are still constantly larger than the
corresponding type-1 deviations (i.e., statistical randomness)
D�

K S , so p-values are <10−4. It seems that, regardless of
distribution models, MCA will invariably reject as long as the
dataset size is large (e.g., ≥0.5M).

After evaluating eight alternative models, three problems
can be identified within MCA. First, like the case of CDF-Zipf
in Sec. III-B, type-1 statistical error of MCA (rejecting the
hypothesized X when passwords truly follow it) is theoret-
ically to be as low as 1.96% when the p-value is <10−4,
(see Eq. 3) but it is actually large because MCA rejects all
candidates. One possible reason is that the condition that
P(H0)≈P(H1) of Eq. 3 for MCA (see Sec. III-B) does not
hold in practice. This is likely when H1 is the negation of H0,
so H1 can comprise multiple distributions (e.g., lognormalRF
and stretched-exponentialRF) and P(H1)>P(H0). Second,
MCA generates non-negligible p-values (e.g.,>10−4) only
when dataset sizes are small (e.g., ≤0.25M). That is, MCA
will accept a distribution when the dataset is small, but
reject it when the size is large, suggesting this method is
incomplete. Third, for small datasets, MCA accepts multiple
distributions. For instance, when the Yahoo subset is 0.05M ,

p-values are >0.01 for CDF-Zipf, lognormalRF, lognormalFF,
stretched-exponentialRF, that is, MCA will accept all these
three distributions. Because passwords are unlikely to follow
multiple distributions simultaneously, type-2 statistical error
(accepting a distribution when passwords do not truly follow
it) is non-negligible for a small dataset.

Accordingly, we can analyze deviation metrics of the
alternative distribution models, and obtain results similar to
Theorems 2 and 3 (which are for CDF-Zipf, see Sec. III-C).
Due to these defects, a new goodness-of-fit measure aimed to
evaluate these distribution models is necessary.

D. Log-Likelihood Ratio Test

We introduce a new goodness-of-fit measure based on the
likelihood to replace the ineffective MCA. In statistics, the
log-likelihood ratio test (LRT) captures the intuition that the
event with the largest joint probability (i.e., likelihood) is most
likely to be observed from the empirical data [17], [20], [39].
In practice, the log form of likelihood (i.e., log-likelihood) is
often used to facilitate computation. When both the distribu-
tion models X and Y can possibly characterize a password
distribution, the model with a larger log-likelihood is more
likely to happen and thus be observed. LRT is not only widely
used in various fields (e.g., physics and biology [4], [20], [40]),
but also recommended by the NIST standard of statistical
methods [1].

Typically, LRT deals with the same distribution model
with different parameters. For instance, in CDF-Zipf, the null
hypothesis H0 is: C = C0 and s = s0, and the alternative
hypothesis H1 is: C = C1 and s = s1 (or C �= C0 and s �= s0).
Thus, the log-likelihood ratio is

L R =
N	

i=1

(ln(pH1i ) − ln(pH0i )), (11)

where N is the number of unique passwords, and pH0i and
pH1i are the probability density functions (PDFs) of models
supposed by H0 and H1 hypothesises. If L R > 0, H1 is more
likely than H0, and vice versa.

Inspired by this idea, we set H0 as passwords following
CDF-Zipf, and H1 as passwords following X (one alternative
distribution model). Since all models are characterized by the
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TABLE IX

LOG-LIKELIHOOD RATIOS OF ALTERNATIVE MODELS AGAINST CDF-ZIPF FOR SMALL PASSWORD SUBSETS†

parameters resulting from the GSS fitting method, we can
figure out which best-fitted model is most likely. It should
be noted that LRT is only needed when a model is accurate
(e.g., DK S<0.1), because inaccurate models (e.g., two Zipf-
cutoff models, see Table VII) will be ruled out in the first
place. Thus, we focus on the lognormalRF, lognormalFF, and
stretched-exponentialRF models.

LRT results of the subsets and entire datasets of alterna-
tive models against CDF-Zipf (using CDF-Zipf as H0) are
shown in Table IX. The results of entire datasets demonstrate
that: (1) Only stretched-exponentialRF can constantly and
significantly outperform CDF-Zipf in log-likelihood; Although
the other two lognormal distribution models are promising,
they have significantly lower log-likelihoods than CDF-Zipf,
let alone stretched-exponentialRF, so they are less likely;
(2) The KS statistic of stretched-exponentialRF is as small as
0.004638∼0.024906 (avg. 0.012459), while that of CDF-Zipf
is larger and is 0.004979∼0.045357 (avg. 0.019142); (3) On
six out of eight datasets, stretched-exponentialRF is more
accurate than CDF-Zipf. In all, passwords are more likely to
follow the stretched-exponentialRF distribution.

1) Comparison Between LRT and MCA: We compare LRT
with MCA, and reveal how LRT addresses the three problems
identified within MCA (see Sec. IV-C). First, for Problem-
1, in LRT, for each alternative model, H1 is comprised of
one specific distribution model rather than the negation of H0,
so the condition P(H0)≈P(H1) in [9] is likely to hold and
Eq. 3 is applicable. Further, since all calculated p-values are
close to 0 regardless of dataset sizes, type-1 statistical error
is also constantly close to 0. Second, for Problem-2, LRT
results reveal that stretched-exponentialRF outperforms others
regardless of dataset sizes. This addresses the incompleteness
problem that a distribution model will be accepted for small
datasets but rejected for large ones. Third, for Problem-3, even
if the dataset size is as small as 0.05M∼0.5M , stretched-
exponentialRF has the largest log-likelihood across datasets.
This means that LRT will not accept multiple distributions for
small datasets, and type-2 statistical error is relatively low.

2) Discussion: We discuss CDF-Zipf, Zipf-cutoff, and
stretched-exponential models. As shown in Table VI, in each
system, the PDF kernels of these distributions are similar.
We use stretched-exponential (denoted the variable as x) as
an example, and expand the Taylor series of the exponential

term exp(−λxα) in the PDF kernel as follows

exp(−λxα) = 1 − λxα + λ2

2
x2α + O(x3). (12)

If we only take the constant term 1 in the expansion, stretched-
exponential is reduced to CDF-Zipf. If we take α = 1, the
exponent exp(−λx) of stretched-exponential is equal to that
of Zipf-cutoff, so CDF-Zipf and Zipf-cutoff can be seen as
variants of stretched-exponential.

This also partially explains why stretched-exponential is
considerably more accurate than Zipf-cutoff in both coordinate
systems. With an extra α, exp(−λxα) (resp. exp(−λrα)) will
not be too small when x (resp. r ) is large, so it can adjust the
Zipf term x−α (resp. r s−1) more flexibly. Numerical evidence
also confirms this point: (1) For Zipf-cutoffFF, there is α ≈ 1,
which is a direct result of the very small exp (−λx); (2) The
Zipf-cutoffRF performs even worse with α � 0. Thus, Zipf-
cutoff models in both systems are not accurate.

Besides, the stretched-exponentialRF model is also efficient
as it only takes about 25% more time than CDF-Zipf. For
instance, when fitting the 32 million Rockyou passwords on an
Intel E5-2680 v4 2.4GHz CPU, the running time is 2.33 hours
for stretched-exponentialRF and 1.86 hours for CDF-Zipf.

We finally discuss the LRT method. Though it can effec-
tively distinguish distributions, there is always potential room
for improvements. On the one hand, other methods like
Mann–Whitney U test may also be effective, but they are
often complicated and computationally costly, so they are less
widely used in practice. On the other hand, as innovative
statistical tests (e.g., [7], [8], [27], [35]) are developed, more
suitable methods may emerge to address the goodness-of-fit
issue on large-scale password datasets in the future.

3) Summary: We first investigate eight alternative distrib-
ution models in two coordinate systems, and find that three
models are comparable to the state-of-the-art CDF-Zipf [51].
Second, we revisit MCA on alternative models, and find that
MCA rejects all of them. Third, we introduce a new goodness-
of-fit measure based on the log-likelihoods, and find that
stretched-exponential in the rank-frequency coordinate system
always has the largest log-likelihood. We also consider the
fitting efficiency of the above stretched-exponential, and find
it only costs about 25% (e.g., half an hour for a 30 million
sized dataset) more time than CDF-Zipf, which is acceptable
in practice. Forth, we reveal that LRT outperforms MCA in
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terms of minimizing statistical errors, so it is more suitable
for goodness-of-fit usage on password distribution.

V. CONCLUSION

In this paper, we have studied the goodness-of-fit issue of
password distribution in a principled approach. Particularly,
we used both theories and experiments to validate the folklore
of the effect of sample size, and quantitatively revealed that
the Monte Carlo approach (MCA) is undesirable when the
real-world password dataset is large (e.g., ≥0.25 million).
We also studied the real-world password deviation, used
simulation, and found that a 1% random deviation is enough
to make MCA reject CDF-Zipf. This reveals that MCA is
ineffective for testing whether large-scale password datasets
follow the CDF-Zipf distribution.

We further investigated eight alternative distribution mod-
els that passwords may follow. We explored these models
in two different coordinate systems, and found that three
models are comparably accurate. In particular, the maxi-
mum CDF deviation of the stretched-exponential model is
0.004638∼0.024906 (avg. 0.012459), while that of CDF-Zipf
is 0.004979∼0.045357 (avg. 0.019142). Besides, on six out
of eight datasets, stretched-exponential is more accurate than
CDF-Zipf. We also revisited MCA on all alternative distribu-
tion models, and further demonstrated its ineffectiveness. As
a replacement, we introduced likelihood ratio test (LRT) as a
better goodness-of-fit measure, which reveals that passwords
are more likely to follow stretched-exponential. We believe
that this work provides a better understanding of password
distribution, and facilitates the evaluation of applications that
involve password distribution.

APPENDIX

A. Random Numbers and Golden-Section-Search (GSS)
Fitting Method

We introduce the conversion method [20], [39] used to
generate random numbers following a given distribution. Sup-
pose pr is the probability density function (PDF) of the given
distribution, and u ∈ (0, 1] is a uniformly distributed random
number (e.g., a standard pseudo-random number [6]).

pr = p(u)
du

dr
= du

dr
, (13)

Integrating both sides with respect to r , we have

Pr =

 ∞

r
pr dr =


 1

u
du = 1 − u, (14)

so r = P−1(1 − u)�, where P−1 is the inverse function of the
cumulative distribution function (CDF). The process is shown
in Alg. 3. Hence, we can generate random numbers following
each distribution based on the CDF expressions in Table VI.
What’s more, this algorithm also enables us to do the golden-
section-search (GSS) fitting method used by Wang et al. [51],
and the process is shown in Alg. 4.

B. Proof of Theorems 1, 2 and 3

Before entering Theorem 1, we first state the concepts of
uniform convergence (i.e., converge uniformly) and Dirichlet’s
test used in examining whether a sequence of functions
converges uniformly in mathematical analysis.

Algorithm 3 Generating Random Data Following Given
Distribution (THEOGEN)

Input : Parameters θ1 and θ2 of the given distribution X , the dataset
size |DS|.

Output: The theoretical dataset TheoSet.

1 begin
2 for i = 1 to |DS| do
3 u = U(0, 1]; /* U(0, 1] denotes uniformly distributed random

numbers u ∈ (0, 1]. */
4 r = P−1(u)�; /* P−1(u) is the inverse function of Pr of the

distribution X . */
5 Temp[r] = Temp[r] + 1;
6 Count frequency of r as fr ;

7 for �r, f � ∈ Temp do
8 TheoSet.append( f );

9 Rank TheoSet in descending order;

10 Output: TheoSet.

Algorithm 4 Golden-Section-Search (GSS)
Input : The real-world dataset RealSet, the dataset size |DS|, and

the distribution X .
Output: KS statistic DKS , the corresponding parameters θ1, θ2 under

the given distribution X .

1 begin
2 N is the number of unique passwords;
3 for i = 1 to MaxIteration do
4 for j = 1 to MaxIteration do
5 TheoSet = THEOGENX (θ1, θ2, |DS|); /* Generate a

dataset with |DS| passwords following X (characterized
by θ1, θ2). */

6 DKS = max
1≤r≤N

|CDF(TheoSet) − CDF(RealSet)|; /* CDF

is the cumulative distribution of a dataset. */
7 (θ1, θ2) = (GSS1d (θ1), GSS1d (θ2)); /* The GSS1d is the

ordinary one-dimensional golden-section-search. */

8 Output: (θ1, θ2, DKS);

Definition 3: A sequence of functions gi(x) (i ∈ N) con-
verges uniformly on domain D, if for every � > 0 there is an
N(�) ∈ N, such that for all i ≥ N(�) and all x ∈ D, one has
|gi(x) − g(x)| < �, and is denoted as gi(x) ⇒ g(x).

Lemma 1: (Dirichlet’s test [42]). For the function sequences�∞
i=0 ai (x)bi(x) where x ∈ D, if the following two conditions

are satisfied, then
�∞

i=0 ai(x)bi (x) converges uniformly on D.
1) For each given x ∈ D, {ai (x)}∞i=0 is monotonic in respect

to i , and ai (x) ⇒ 0.
2) The partial sum | �n

i=0 bi (x)| ≤ M for some M for any
x ∈ D and n ∈ N.

Lemma 2: The error function erf(y) = 2π−1/2
� y

0 e−t2
dt

has erf(x) = 2�(
√

2x) − 1, and its inverse erf−1(x) function
that can be expanded as follows when x → 1

erf−2(x) ∼
∞	

i=0

η−i Qi (ln η)

= η − 1

2
ln η + η−1(

1

4
ln η − 1

2
)

+ η−2(
1

16
ln2 η − 3

8
ln η + 7

8
)

+ η−3(
1

48
ln3 η− 7

32
ln2 η+ 17

16
ln η− 107

48
) + . . . ,

(15)

where η = − ln(π1/2(1 − x)), Qi (ln η) is a polynomial of
degree i with ln(η) as the variable, and erf−2(x) is the square
of erf−1(x). The details can be seen in [10].
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Now, we prove Theorems 1, 2 and 3.
Theorem 1: Suppose C and s of RealSet and C � and s� of

TheoSet satisfy C ≈ C � and s� ≈ s; For each password of
fi ≥ fb, the estimation error �i = fi − μi follows the normal
distribution N(0, σ 2

i ), and for passwords of fi < fb , σi = 0.
In this case, the maximum of type-1 deviation (i.e., statistical
randomness) max D�

K S decreases as |DS| increases, and there
is lim|DS|→∞ D�

K S = 0. As a consequence, p-value decreases
as |DS| increases, and there is limJ0→∞ p-value = 0.

Proof: First, we determine the number of unique pass-
words Nb whose fi ≥ fb. Since fb is the boundary, we have
|DS|pNb = fb with pNb = C · s · Nb

s−1, so

Nb = (
fb

|DS|C · s
)−

1
1−s (16)

Second, because �i∼N(0, σ 2
i ), there is ξr = Pr −

Pm
r = �r

i=1 �i/|DS| follows N(0,
�r

i=1 σ 2
i

|DS|2 ) based on the
property of the normal distribution. Moreover, considering the
fact that σi <

√
μi when fi ≥ fb and σi = 0 when fi < fb,

we have��r
i=1 σ 2

i

|DS|2 <

��r
i=1 μi

|DS|2 =
��r

i=1 μi

|DS| · 1

|DS| =
�

Pm
r

|DS| ,
(17)

where Pm
r is the true CDF up to rank r . Therefore the

corresponding probability is,

P


D�
KS ≤ 2a0

�
Pm

Nb
/|DS|

�
> 2(1 − �(a0)) (18)

holds. Thus, for the largest order statistic max
r

|ξr |, we have

P


max
r

|ξr | ≤ a0
�

Pm
r /|DS|

�
= 1 − P(∃r : |ξr | > a0

�
Pm

r /|DS|)

≥ 1 −
Nb	

r=1


1 − P(|ξr | ≤ a0

�
Pm

r /|DS|)
�

≥ 2Nb(�(a0) − 1) + 1. (19)

Based on this result, we study type-1 deviation D�
KS

(i.e., statistical randomness) resulting from fitting TheoSet.
As C � ≈ C , s� ≈ s, D�

KS is the maximum CDF deviation
between two randomly generated TheoSets with CDFs P(1)

r

and P(2)
r . Thus, D�

KS = max
r

|P(1)
r − P(2)

r | ≤ 2 max
r

|ξr | and

P


D�
KS ≤ 2a0

�
Pm

r /|DS|
�

> P


max
r

|ξr | ≤ a0
�

Pm
r /|DS|

�
> 2Nb(�(a0) − 1) + 1. (20)

Set α = 2Nb(�(a0) − 1) + 1, max D�
K S has

max D�
K S = 2

�
Pm

Nb
/|DS| · �−1(1 − 1 − α

2Nb
)

= 2
�

2Pm
Nb

/|DS|·erf−1
�

1−(1−α)(
fb

|DS|Cs
)

1
1−s

�
,

(21)

where �−1(x) = erf−1(2x − 1) based on their definitions.
With this, we will prove that lim|DS|→∞ max D�

K S = 0.

First, as given in Lemma 2, we take x = (1 − (1 −
α)( fb

|DS|Cs )
1

1−s ) and η = − ln(π1/2(1 − x)), so when |DS| →
∞, there have x → 1 and η → ∞. Second, we let ai (η) =
η−(i−1) and bi (η) = η−1 Qi (ln η) for i ≥ 1. We now prove
that limη→∞ lni η

η = 0 to show that limη→∞ bi (η) = 0 for

any i ≥ 1. When k = 1, limη→∞ ln η
η = limη→∞ 1

η = 0
(L’Hôpital’s rule). By the mathematical induction, we suppose
limη→∞ lni η

η = 0, and when k = i + 1 there is

lim
η→∞

lnk+1 η

η
= lim

η→∞
(lni+1 η)�

η� = (i + 1) lim
η→∞

lni η

η
= 0.

(22)

Hence, limη→∞ lni η
η = 0 for any i ≥ 1. Since bi (η) =�i

k=0 ck
lnk (η)

η (c0, c1, . . . ci are coefficients), limη→∞ bi (η) =
0 and limη→∞ | �n

i=0 bi (η)| = 0 for any given n ≥ 1.
This means there exists η0 and M , for any η > η0 and
n ≥ 1, | �n

i=0 bi (η)| < M . Besides, since ai (η) = η−(i−1) ⇒
0 when η → ∞ and {ai (η)}∞ı=0 decreases monotonically,�∞

i=1 η−i Qi (ln η) = �∞
i=1 ai (η)bi(η) converges uniformly

(see Lemma 1). Therefore, the limit operation and the infinite
summation operation are commutative, i.e.,

lim
η→∞

∞	
i=1

η−i Qi (ln η) =
∞	

i=1

lim
η→∞ η−i Qi (ln η) =

∞	
i=1

0 = 0,

(23)

so max D�
K S depends on the first two terms of Eq. 15 i.e.,

lim
|DS|→∞

�
(η − 1

2
ln η)/|DS|. (24)

Since η = − ln(π1/2((1 − α))( fb
Cs|DS| )

1
1−s ), Eq. 24 is

proved to converges to 0 according to L’Hôpital’s rule. As a
result, there is lim|DS|→∞ max D�

K S = 0 and consequently
lim|DS|→∞ D�

K S = 0 based on the squeeze theorem. As
a consequence, p-value= (#{D�

KS j |D�
KS j > DKS, 1 ≤ j ≤

J0} + 1)/(J0 + 1) (see Line 6 in Alg. 1) decreases as |DS|
increases, and becomes 1/(J0 + 1) when J0 → ∞.

Theorem 2: In the absolute deviation metric, if passwords
in SmuSet are deviated as pdvs

i = δ̂[i1,i2] · kA for i ∈ [i1, i2],
and the deviation degree kA satisfies 0 ≤ kA ≤ | ˆpdv[i1,i2]|,
then the maximum max Ds

KS increases as kA increases.
Proof: As noted in Sec. III-C, the supereum of D�

K S has
max Ds

KS = |CDF(SmuSet) − CDF(TheoSet)|, that is,

max Ds
KS =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
1≤r<r1

kA Pr P[i1,i2]
1 + δ̂ · kA P[i1,i2]

1 ≤ r < r1

max
r1≤r<r2

kA Pr (1 − P[i1,i2])
1 + δ̂ · kA P[i1,i2]

r1 ≤ r < r2

max
r2≤r≤N

kA P[i1,i2](1 − Pr )

1 + δ̂ · kA P[i1,i2]
r2 ≤ r ≤ N .

(25)

where Pr = �r
i=1 fi , P[i1,i2] = �i2

i1
pi and δ̂ = δ̂[i1,i2]. We can

see that: (1) Ds
KS increases as r increases when 1 ≤ r < r2,

(2) and decreases as r increases when r2 ≤ r ≤ N , so Ds
KS

gets its maximum at r = r2 and has

max Ds
KS = kA P[i1,i2](1 − P[i1,i2])

1 + δ̂kA P[i1,i2]
. (26)
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Suppose i1 is fixed, we study the monotonicity of max Ds
KS

against i2 and kA, we have the partial derivatives as follows.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ max Ds
KS

∂i2
= kA(−δ̂kA · P2[i1,i2] − 2kA · P[i1,i2] + 1)

(1 + δ̂kA P[i1,i2])2

∂ max Ds
KS

∂kA
= P[i1,i2](1 − P[i1,i2])

(1 + δ̂kA P[i1,i2])2
.

(27)

On the one hand,
∂ max Ds

KS
∂kA

> 0 always holds. On the other

hand, to make
∂ max Ds

KS
∂i2

> 0, i.e., there needs

−δ̂kA · P2[i1,i2] − 2P[i1,i2] + 1 > 0. (28)

If δ̂ = 1, for any kA there is

−1 − √
1 + kA

kA
< P[i1,i2] <

−1 + √
1 + kA

kA
. (29)

To make Eq. 28 hold, P[i1,i2]<inf −1+√
1+kA

kA
≈ 0.41, which is

satisfied for our considered passwords (e.g., the top-100 unique
passwords). In this case, max DKS increases with i2 increases.
Otherwise, if the sign is negative, i.e., δ̂ = −1, there needs
P[i1,i2]<inf 1−√

1−kA
kA

< 1
2 or P[i1,i2]>sup 1+√

1−kA
kA

→ ∞ to make
Eq. 28 hold, which is also satisfied. In summary, max Ds

KS
increases as i2 increases whenever δ̂ = 1 or −1.

Theorem 3: In the relative deviation metric, if passwords
are deviated as pdvs

i = δ̂i · | ˆpdv i |kR for i ∈ [1, N0] and
0 < kR ≤ 1, then the maximum max Ds

KS increases as kR
increases.

Proof: Similar to the proof of the absolute point-wise
deviation, the maximum max Ds

KS can be expressed as,

max Ds
KS

=

⎧⎪⎪⎨
⎪⎪⎩

max
1≤r<N0

| (1 − Pr )Wr + Pr W[r+1,N0 ]
1 + WN0

|kR 1 ≤ r < N0

max
N0≤r≤N

|Wr |(1 − Pr )

1 + WN0

kR N0 ≤ r ≤ N ,

(30)

where Pr = �r
i=1 pi is the CDF in TheoSet, Wr = �r

i=1 pi ·
pdvi and W[r+1,N0] = �N0

i=r+1 pi · pdvi . Thus, Ds
KS increases

as kR increases. However, since the sign of ˆpdv i is not fixed,
we cannot know where max Ds

KS gets its maximum.

C. Conversion of Distributions

In this section, we use the conversion of power-law
(i.e., Zipf) in Adamic’s work [3] to show how to convert
distribution models from the frequency-frequency (denoted as
FF) to rank-frequency (denoted as RF) coordinate systems.

Proposition 1: The power-law distribution with PDF
p(x) = (α − 1)x−α in the FF system can be converted to
the RF system with PDF pr ∝ r s−1, where s = 2−α

1−α .
Proof: On the one hand, in the FF system, the comple-

mentary CDF records the probability that a random variable
X is larger than a given number x can be expressed as,

P(X ≥ x) =

 ∞

x
p(x)dx = x−α+1. (31)

On the other hand, in the RF system, if the password PW
occurring x times is with the rank r , the event X ≥ x can
be interpreted as the proportion of unique passwords whose

ranks are no more than the rank r . Hence, there is P(X ≥
x) = r/N (N is the number of unique passwords). Since
x = |DS|pr , (|DS| is the dataset size and pr is the PDF of
the r -th password), we have

P(X ≥ |DS|pr ) = x−α+1 = r/N. (32)

In this way, pr ∝ r
1

1−α , and the CDF Pr ∝ r
2−α
1−α . Therefore,

power-law in the FF system can be converted into CDF-Zipf
in the RF system, and they are equivalent.
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