
PII-PSM: A New Targeted Password Strength Meter
Using Personally Identifiable Information

Qiying Dong1, Ding Wang1∗, Yaosheng Shen2, and Chunfu Jia1

1 College of Cyber Science, Nankai University, Tianjin 300071, China
2 School of ECE, Peking University Shenzhen Graduate School, Shenzhen 518055, China

wangding@nankai.edu.cn

Abstract. In recent years, unending breaches of users’ personally identifiable
information (PII) have become increasingly severe, making targeted password
guessing using PII a practical threat. However, to our knowledge, most password
strength meters (PSMs) only consider the traditional trawling password guessing
threat, and no PSM has taken into account the more severe targeted guessing
threat using PII (e.g., name, birthday, and phone number). To fill this gap, in
this paper, we mainly focus on targeted password strength evaluation in the
scenario where users’ PII is available to the attacker. First, to capture more fine-
grained password structures, we introduce the high-frequency substring as a new
grammar tag into leading targeted password probabilistic models TarGuess-I and
TarMarkov, and propose TarGuess-I-H and TarMarkov-H. Then, we weight and
combine our two improved models to devise PII-PSM, the first practical targeted
PSM resistant to common PII-accessible attackers. By using the weighted Spear-
man (WSpearman) metric recommended at CCS’18, we evaluate the accuracy
of our PII-PSM and its counterparts (i.e., our TarGuess-I-H and TarMarkov-H,
as well as two benchmarks of Optimal and Min-of-All). We conduct evaluation
experiments on password datasets leaked from eight high-profile English and
Chinese services. Results show that our PII-PSM is more accurate than TarGuess-
I-H and TarMarkov-H, and is closer to Optimal and Min-of-All, with WSpearman
differences of only 0.014∼0.023 and 0.012∼0.031, respectively. This establishes the
accuracy of PII-PSM, facilitating to nudge users to select stronger passwords.

Keywords: Password authentication · Targeted guessing · Password strength
meter · Personally identifiable information · Password probabilistic model.

1 Introduction

Identity authentication is the first line of defense to ensure information system se-
curity, and text passwords are the most widely used method [2]. The most common
threat to password-based authentication is password guessing attacks, which can be
divided into trawling attacks and targeted attacks based on the attacker’s knowledge.
By exploiting users’ vulnerable behaviors (e.g., adopting popular passwords [1, 18] and
keyboard patterns [23]), a trawling attacker performs indiscriminate password guessing
on all user accounts to crack as many accounts as possible. In contrast, to guess a
specific user’s password, a targeted attacker takes advantage of the user’s personal
information to facilitate guessing. This is realistic because users tend to employ a variety
of personal information (e.g., name, birthday, and old/sister passwords) when generating
passwords [4, 9, 15,22,24].
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In recent years, there have been numerous data breaches containing users’ personal
information. For example, the LinkedIn breach [14] leaks 700 million users’ full names,
phone numbers, physical addresses, email addresses, geolocation records, LinkedIn user-
names and profile URLs, personal and professional experiences and backgrounds, genders,
and other social media accounts and usernames; the Facebook breach [5] leaks 533 million
users’ full names, Facebook IDs, phone numbers, locations, birthdays, biographies, and
email addresses; the Nitro PDF breach [7] leaks 77 million users’ email addresses, full
names, bcrypt hashed passwords, titles, company names, IP addresses, and other system-
related information. This provides sufficient material for targeted guessing, making it a
more severe and realistic threat than traditional trawling guessing [24].

To nudge users to select strong passwords, nearly every respectable web service
provider has deployed password strength meters (PSMs). However, as far as we know,
apart from PPSM [15], leading PSMs (e.g., [3, 6, 13, 21, 26]) only consider trawling
guessing scenarios. These trawling PSMs do not include the user’s personal information
in password strength evaluation, and are thus unable to accurately measure password
strength when facing real-world attacks. Besides, the targeted PPSM [15] relies on
sister passwords from different sites in evaluating password strength, which is highly
impractical due to two reasons: 1) The server generally does not hold the user’s old
(sister) passwords; 2) Sister passwords are not easily accessible [4, 24]. For example,
Das et al. [4] analyzed 7.96 million accounts from different sites and found that only
152 (0.00191%) were successfully matched by email more than once; Wang et al. [24]
analyzed 547.56 million accounts and found that less than 1.02% and 1.73% were
successfully matched by email and username more than once. Comparatively, users
often submit personally identifiable information (PII, such as name and phone number)
when registering. Even if they do not submit, PII is easy to obtain (e.g., through social
networks) by attackers. Thus, designing a PII-based PSM is urgent and necessary.

Contributions.

(1) Two improved targeted password probabilistic models. We analyze pass-
words from eight high-profile English and Chinese services, and find that high-
frequency substrings (HFSs) can capture more fine-grained password structures than
popular passwords. Thus, we introduce the HFS as a new grammar tag into leading
targeted probabilistic models TarGuess-I [24] and TarMarkov [22], and propose the
improved models TarGuess-I-H and TarMarkov-H.

(2) A new targeted password strength meter (PSM). We weight and combine our
proposed TarGuess-I-H and TarMarkov-H to devise PII-PSM. It is the first practical
targeted PSM resistant to common targeted attackers with personally identifiable
information (PII), using the stochastic gradient descent approach to optimize the
weights. In this way, the impact of randomly/manually setting the weights on PSM
accuracy can be eliminated.

(3) An extensive evaluation. By using the weighted Spearman correlation coefficient
(WSpearman) metric recommended by Golla et al. [8], we evaluate the accuracy of
our PII-PSM and its counterparts (including our TarGuess-I-H and TarMarkov-H,
as well as two benchmarks of Optimal and Min-of-All). We perform experiments on
eight large-scale password datasets with different user languages and service types.
Results show that our PII-PSM is more accurate than TarGuess-I-H and TarMarkov-
H, and is closer to Optimal and Min-of-All, with WSpearman differences of only
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0.014∼0.023 and 0.012∼0.031, respectively. This indicates the accuracy of PII-PSM,
facilitating to help users set stronger passwords.

2 Preliminaries and related work

In this section, we introduce leading targeted password probabilistic models using per-
sonally identifiable information (PII), and elaborate on the preliminaries of targeted
password strength meters (PSMs).

2.1 Targeted password probabilistic models

A password probabilistic model (e.g., [6,9,13,21,22,24]) can assign password construction
probabilities in the password space. It can be used to construct probability-based PSMs
and password guessing models. A targeted guessing attacker usually utilizes the target
user’s personal information to improve guessing efficiency. There are various types of
personal information, such as PII (e.g., name, user name, and email address), and user
identification information (e.g., users’ old passwords and sister passwords from different
sites) [24]. Targeted password probabilistic models can be categorized according to
the personal information incorporated, e.g., Personal-PCFG [9], TarGuess-I [24], and
TarMarkov [22] including PII; TarGuess-II [24], pass2path and PPSM [15], and Das
et al.’s [4] including sister passwords; TarGuess-III [24] including both PII and sister
passwords. In this paper, we mainly focus on the most basic yet realistic targeted guessing
scenario that exploits users’ PII.

Personal-PCFG. Based on the probabilistic context-free grammar (PCFG) password
model [25], Li et al. [9] proposed a targeted model Personal-PCFG. It divides personal
information into six categories (i.e., User name, Email, Name, Birthday, Phone number,
and ID number) and combines PCFG grammar tags (i.e., Letter string, Digit string, and
Symbol string). Besides, it determines the password structure according to the type and
length of strings and personal information. For example, the password Li123! for a user
named Hua Li is converted to N2D3S1. The rest of the training and password generation
approaches for Personal-PCFG [9] are the same as PCFG [25].

However, Wang et al. [24] have shown that the above length-based PII matching
approach of Personal-PCFG [9] is inaccurate to capture users’ PII usage behaviors. For
example, Personal-PCFG [9] transforms the passwords Hua123 and Liu456 of the users
named Hua Li and Kai Liu into the same base structure N3D3 during the training
phase, and the password wang789 of the user named Lei Wang into N4D3. However, the
user Hua Li uses her given name to build passwords, while users Kai Liu and Lei Wang
use their family names to build passwords. Such inherently different user behaviors are
misleadingly characterized in Personal-PCFG [9].

TarGuess-I. Almost at the same time, Wang et al. [24] proposed TarGuess-I, which
is based on PCFG but uses a novel type-based PII matching method. For instance,
TarGuess-I [24] transforms the password Hua123 of the user named Hua Li into N4D3,
and passwords Liu456 and wang789 (of users named Kai Liu and Lei Wang) into the
same base structure N3D3. That is, TarGuess-I [24] uses the subscript n to represent the
sub-type of a specific PII type (e.g., Name N and Birthday B), not the length of a specific
PII type as in Personal-PCFG [9]. This well eliminates the misleading characterization
of user behaviors in Personal-PCFG [9]. Taking Nn as an example, for a user named Lei

Wang, N1 stands for leiwang, N2 for lw, and N3 for wang. The grammar GTarGuess−I =
(S,V, Σ,R) is described as:



4 Q. Dong et al.

Training

Password structures

… … …

𝐿𝐿3 abc 0.6

𝐿𝐿4 love 0.3

... ... ...

GenerationPII substitution
𝑁𝑁3𝐵𝐵5 0.2

𝑁𝑁1𝐷𝐷3𝐿𝐿3 0.15

𝑁𝑁4𝑆𝑆1𝐿𝐿3 0.01

𝐿𝐿4𝑆𝑆1𝐷𝐷3 0.01

𝐿𝐿4𝐷𝐷3 0.008

... ...

…
huali123abc; [Hua Li; 1999/08/28]
leiwang0102!@#; [Lei Wang; 1998/01/02]
123456789; [Lin Zhang; 2000/02/03]
love@Jesus; [Ava White; 1988/05/20]
Jimmy#abc; [Jimmy Black; 1991/07/12]
...

Password strings

… …

𝑁𝑁1𝐷𝐷3𝐿𝐿3 0.15

𝑁𝑁1𝐵𝐵4 0.12

𝐿𝐿4𝑆𝑆1𝐿𝐿4 0.08

𝑁𝑁4𝑆𝑆1𝐿𝐿3 0.01

... ...

… … …

𝑆𝑆1 @ 0.5

𝑆𝑆1 # 0.5

… … …

…

… …

smith1991 0.2

bobsmith123abc 0.005

bob@123 0.0002

Bob#123 0.00012

... ...

User: [Bob Smith; 1991/06/22] 

Fig. 1. An illustration of TarGuess-I [24].

1) S ∈ V is the start symbol;

2) V = {S;Ln, Dn, Sn;Nn, Bn, Un, En, In, Tn; ε} is the set of grammar tags, where

a) Ln, Dn, Sn are the grammar tags of basic PCFG [25], representing the letter, digit,
and symbol strings of length n, respectively;

b) Nn, Bn, Un, En, In, Tn are the grammar tags of TarGuess-I [24], representing the
different forms of Name, Birthday, User name, Email, ID number, and Phone
number distinguished by the number n;

c) ε is the terminator;

3) Σ is the set of 94 printable ASCII characters;

4) R is a finite set of rules of the form A→ β, with A ∈ V and β ∈ V ∪Σ.

Different from PCFG [25], when guessing the target user userA’s password, TarGuess-
I [24] does not directly generate the final passwords for guessing, but first generates
PII-tags and then replaces them with userA’s PII, as shown in Fig. 1. The experiment
results of Wang et al. [24] showed that within 1,000 guesses, the guessing success rate of
TarGuess-I is 37.11% higher than Personal-PCFG [9].

In 2020, Xie et al. [27,28] modified TarGuess-I by introducing grammar tags of popular
passwords, keyboard patterns, and special strings. However, their experiments showed
that these modifications only marginally improved the guessing success rate of the model
(increased by less than 2.62% within 100 guesses). Moreover, the guessing success rate
decreased on password datasets of certain service types (e.g., the train ticketing service
12306). Besides, they only used passwords leaked from Chinese services in experiments,
without considering the impact of different user languages (e.g., English and Chinese)
on model performance. Therefore, we adopt the original TarGuess-I [24] for evaluation
and comparison in this paper.

TarMarkov. Unlike Personal-PCFG [9] and TarGuess-I [24], TarMarkov [22] is a se-
quence model that infers the next string state based on the current string state. Its
grammar GTarMarkov = (S,V,R) is described as below:

1) S ∈ V is the start symbol;

2) V = {S;Nn, Bn, Un, En, In, Tn;Σ; ε} is the state set, where
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a) Nn, Bn, Un, En, In, Tn have the same meaning as the corresponding grammar tags
in TarGuess-I [24], except that they represent different states here;

b) Σ is the set of 94 printable ASCII characters;
c) ε is the terminator;

3) R is a finite set of markov state transition rules of the form s1 → s2, with s1, s2 ∈ V∗.
2.2 Targeted password strength meters

The above targeted password probabilistic models enable us to design targeted PSMs.
Though academia has proposed a series of well-performed PSMs (e.g., [3, 6, 13, 21, 26]),
the main focus is still trawling guessing scenarios, while paying little attention to the
more threatening targeted guessing scenarios (especially when users’ PII is available).
Thus, we mainly focus on targeted PSMs using common PII.

Users’ vulnerable behaviors. Users’ password security/strength is intrinsically im-
pacted by their vulnerable behaviors, mainly including [24]: (1) using popular passwords
[1, 10], (2) password reuse [11, 12], and (3) using personal information [23]. Existing
PSMs can prevent issue-1 and issue-2 well. For example, fuzzyPSM [21] can accurately
capture users’ password reuse behaviors and has a built-in base dictionary containing
popular passwords. However, to the best of our knowledge, issue-3 has not been well
addressed. This is because current practice using third-party corpora (e.g., common
names and places) during training will result in PSM accuracy largely dependent on
the corpus selection [23]. Besides, in a targeted guessing scenario where the attacker
can obtain users’ PII, the same password containing PII constructed by different users
should be rated with different strengths. For instance, Hua Li and Lei Wang both select
the password Li123#. The string Li is likely to be constructed by Hua Li using her family
name, while for Lei Wang it may just be a random letter string. Thus, it is essential to
propose a PSM that can accurately evaluate the strength of different users’ passwords
in targeted guessing.

Ideal targeted password strength meter. For the ideal PSM under trawling guessing
scenarios, the formal definition given by Wang et al. [21] is as follows. For the function
M(·) and password distribution D, if

PD(pwi) ≥ PD(pwj), (1)

there is

∀pwi, pwj ∈ D; M(pwi) ≥M(pwj). (2)

Then, M(·) is called an ideal trawling PSM.
Analogously, targeted PSMs are adopted to evaluate the strength of the password pw

in the password space under the given users’ PII, so we give the formal definition of the
ideal targeted PSM as follows. Suppose userA uses her own PII to construct passwords;
for the function M(·) and password distribution DuserA , if

PDuserA
(pwi) ≥ PDuserA

(pwj), (3)

there is

∀pwi, pwj ∈ DuserA ; M(pwi) ≥M(pwj). (4)

Then, M(·) is called an ideal targeted PSM.
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Table 1. Basic info about our eight password datasets (PII=personally identifiable information).

Dataset Web service Language When leaked Total passwords With PII

Rootkit Hacker forum English Feb. 2011 69,418 X
12306 Train ticketing Chinese Dec. 2014 129,303 X

Yahoo Web portal English July 2012 453,491

000webhost Web hosting English Oct. 2015 15,299,907

CSDN Programmer Chinese Dec. 2011 6,428,632

Dodonew E-commerce Chinese Dec. 2011 16,283,140

Rockyou Forum English Dec. 2009 32,603,387 —†

Tianya Forum Chinese Dec. 2011 29,513,716 —†

† We choose Rockyou and Tianya as base dictionaries of high-frequency substrings, so the users’ PII
contained in them is not considered.

Table 2. Basic info about our PII datasets (PII=personally identifiable information).

Dataset Items num Types of PII

PII-Rootkit 69,330 Email, User name, Name, Birthday

PII-12306 129,303 Email, User name, Name, Birthday, Phone number

PII-Yahoo 214 Email, User name, Name, Birthday

PII-000webhost 79,580 Email, User name, Name, Birthday

PII-CSDN 77,216 Email, User name, Name, Birthday, Phone number

PII-Dodonew 161,517 Email, User name, Name, Birthday, Phone number

3 Analysis of real password data

In this section, we analyze the characteristics of real-world leaked password data, and
provide the basis for our improved targeted probabilistic models TarGuess-I-H and
TarMarkov-H and our proposed targeted PII-PSM.

3.1 Our datasets and ethical considerations

Datasets. We analyze eight large-scale leaked password datasets and show basic in-
formation in Table 1. These datasets have different password strengths, languages, and
service types, and have been widely used in password research (e.g., [8,13,16,21,23–26]).
Referring to Wang et al.’s password data cleaning method [23], we first remove the junk
information in the dataset, such as unnecessary headers, descriptions, footnotes, hash
values, and strings containing symbols other than 94 printable ASCII characters and the
space character. Besides, we remove those passwords longer than 30 for they are unlikely
to be chosen by users but by password managers, while our concerned PSMs are designed
to evaluate user-constructed passwords.

Two of our datasets, 12306 and Rootkit, contain certain types of users’ PII (e.g., Email,
User name, Name, Birthday, and Phone number). To make our targeted probabilistic
models more extensible, we match the above two datasets containing users’ PII with the
remaining four datasets (i.e., Yahoo, 000webhost, CSDN, and Dodonew) through email,
resulting in four datasets associated with PII (e.g., PII-Yahoo). The types of PII in each
dataset and the number of passwords associated with PII are shown in Table 2.

Ethical considerations. Despite the fact that these password datasets are publicly
available and widely used, passwords are highly private and sensitive. Thus, we still
process them with caution. We only show aggregated statistics (like total passwords,
top-10 HFSs%, and given name%) and treat each account as confidential, so that our
use will not make attackers gain extra advantages in password guessing. Besides, we
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Table 3. Top-10 popular passwords (left) and high-frequency substrings (right).†

Rank
English

Rootkit Yahoo 000webhost Rockyou

1 123456 123456 123456 123456 abc123 abc123 123456 123456

2 password password password 101 123456a 123456a 12345 12345

3 rootkit rootkit welcome ana 12qw23we 12qw23we 123456789 123456789

4 111111 111111 ninja 100 123abc 123abc password password

5 12345678 12345678 abc123 cat a123456 a123456 iloveyou iloveyou

6 qwerty qwerty 123456789 red 123qwe 123qwe princess princess

7 123456789 123456789 12345678 star secret666 secret 1234567 1234567

8 123123 123123 sunshine dog YfDbUfNjH10305070asd rockyou rockyou

9 qwertyui 12345 princess 102 asd123 qwerty 12345678 12345678

10 12345 1234 qwerty ard qwerty123 YfDbUfNjH10305070‡ abc123 abc123

% 3.94 5.38 1.01 1.93 0.79 1.35 2.05 2.05

Rank
Chinese

12306 CSDN Dodonew Tianya

1 123456 123456 123456789 123456789 123456 123456 123456 123456

2 a123456 a123456 12345678 12345678 a123456 a123456 111111 123

3 5201314 5201314 11111111 11111111 123456789 123456789 000000 111

4 123456a 123456a dearbook dearbook 111111 111111 123456789 12345678

5 111111 111111 00000000 00000000 5201314 520 123123 520

6 woaini1314123123 123123123 123123123 123123 123 123321 321

7 123123 000000 12345678901234567890 a321654 a321654 5201314 123123

8 000000 woaini 88888888 88888888 12345 123123 12345678 666666

9 qq123456 qq123456 111111111 111111111 000000 000000 666666 111

10 1qaz2wsx 1qaz 147258369 147258369 123456a 1234 111222tianyatianya

% 3.28 3.78 10.44 10.44 0.79 1.75 7.43 16.33

† A high-frequency substring in blue indicates that it is different from the popular password of the same
rank in the same password dataset. In Chinese, the homophonic meaning of 5201314 is “I love you (520)
forever (1314)”. The Chinese pinyin woaini means “I love you”.
‡ The letter segment YfDbUfNjH can be mapped to a Russian word that means “navigator”, and why it is
so popular is beyond our comprehension.

process all our password-related data on computers not connected to the Internet, and
delete sensitive info after finishing experiments. Furthermore, our use of these datasets is
not only beneficial for research on targeted guessing and password strength evaluation,
but also for security admins to protect user account security.

3.2 High-frequency substrings (HFSs) and popular passwords

When constructing passwords, users may adopt more common and fine-grained HFSs
as password components than popular passwords [20]. To investigate this issue, we
count top-10 HFSs (see Secs. 4.1 and 5.1 for detailed identification approaches and
parameter settings) and popular passwords in our eight password datasets, and calculate
the proportion of passwords containing them in the dataset. The results are shown in
Table 3. It can be seen that 1.35%∼16.33% of the passwords contain top-10 HFSs, while
only 0.79%∼7.43% contain top-10 popular passwords. That is, HFSs are more common
in users’ passwords than popular passwords, indicating that users may prefer to utilize
HFSs to construct passwords. In addition, when constructing passwords, Chinese users
prefer to use simple digit strings (e.g., 123456, 00000000, and 123123) and some strings
with semantics (e.g., 5201314 and woaini related to “love”). In contrast, English users
tend to use a combination of letter and digit strings (e.g., abc123 and qwerty123) and
common English words/phrases (e.g., password, iloveyou, and cat).
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Table 4. Percentages (%) of users constructing passwords with (left) and only with (right) their
heterogeneous personal information, popular passwords, and high-frequency substrings (HFSs).†

Typical usages of PII (examples)

English Chinese

PII-RootkitPII-YahooPII-000webhost PII-12306 PII-CSDN PII-Dodonew

(69,330) (214) (2,950) (129,303) (77,439) (161,510)

Top-10 popular passwords (123456) 2.45 2.14 0.06 0.02 0.79 0.47 1.56 1.01 9.32 8.42 4.61 2.18

Top-100 popular passwords 2.76 2.31 0.09 0.04 0.87 0.53 1.78 1.14 26.3124.54 4.91 2.43

Top-10 HFSs (123, abc) 2.98 2.02 0.19 0.00 3.01 0.45 1.78 1.08 12.59 8.42 5.33 2.18

Top-100 HFSs 6.32 2.25 0.59 0.04 6.38 0.49 3.45 1.12 29.3227.73 7.57 2.39

Full name (hua li) 1.38 0.75 2.34 1.87 2.44 1.32 5.02 1.13 4.85 1.81 4.68 0.82

Family name (li) 2.28 0.78 4.67 1.87 3.73 1.46 11.23 0.00 9.75 0.00 11.15 0.01

Given name (hua) 0.49 0.07 0.93 0.00 0.75 0.20 6.61 0.07 6.26 0.08 6.49 0.07

Abbr. full name (lh, hl, hli) 0.15 0.01 0.00 0.00 0.20 0.00 13.13 0.00 9.42 0.00 13.64 0.02

Full Birthday (19980102, 01021998) 0.08 0.06 0.47 0.00 0.10 0.07 4.33 1.77 6.29 5.16 3.12 1.00

Year of birthday (1982) 0.75 0.01 1.40 0.00 1.12 0.00 10.78 0.00 11.37 0.00 8.92 0.00

Date of birthday (0102, 0201) 0.44 0.01 0.47 0.00 0.58 0.00 10.03 0.00 11.84 0.00 8.32 0.00

Abbr. birthday (199812, 980102) 0.10 0.05 0.00 0.00 0.20 0.14 3.31 1.12 2.89 1.45 2.37 0.59

User name strings (neko 10, neko) 2.91 0.86 4.01 1.40 2.20 1.32 3.57 1.22 0.91 0.67 2.61 1.71

Email strings (loveu@exa, loveu) 0.77 0.49 4.38 1.87 1.32 0.78 3.23 1.95 4.65 2.48 5.37 3.08

Phone strings (123-4567-8900) — — — — — — 0.07 0.01 0.50 0.45 0.11 0.11

† All decimals in the table are in “%”. For instance, 2.45 in the upper left corner means that 2.45% of the
69,330 PII-Rootkit users employ top-10 popular passwords to build passwords; 2.14 means that 2.14% of
these 69,330 PII-Rootkit users’ passwords are just top-10 popular passwords.

Further, we extract top-10 and top-100 HFSs and popular passwords, respectively,
and use them together with some PII-tags (e.g., name and email) to mark and analyze
passwords. The results are shown in Table 4. The left column corresponding to each
dataset in Table 4 is the proportion of passwords containing the tag, and the right column
is the proportion of passwords that are exactly the tag. For example, if the tag content
is 123456, the counted passwords in the left column include 1234567 and a123456, and
that in the right column only include 123456. It can be seen that passwords with a
specific PII-tag account for a considerable portion, the highest being 13.64%, showing
that users’ vulnerable behaviors of using PII to construct passwords are common.

Here we focus on HFS and popular password tags, and find that: 1) For the same
dataset, the proportion of passwords containing top-10/top-100 HFSs (on the left col-
umn) is greater than that of top-10/top-100 popular passwords (in two columns), in-
dicating that HFSs can capture more fine-grained password characteristics than popular
passwords; 2) The proportion of passwords that are exactly the top-10/top-100 HFS-tags
(on the right column) is close to the proportion of top-10/top-100 popular passwords (in
two columns), indicating that some HFSs are directly used by users as passwords and play
the role of popular passwords; 3) A larger scale of HFS-tags (e.g., from top-10 to top-100)
can significantly cover more passwords and capture more password characteristics.

3.3 Password structure

To investigate how HFS-tags and popular password-tags characterize password structure,
we convert the two types of tags into grammar tags of GTarGuess−I and GTarMarkov. More
specifically, we count the top-100 popular passwords and HFSs, labeled “Pn” meaning a
popular password of length n and “Hi

n” meaning an HFS ranked i in those substrings
of length n. Following the longest-prefix matching rule, we first match PII segments in a
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Table 5. Top-10 password structures marked with popular password tags (Pn; on the left) and
high-frequency substring tags (Hi

n; on the right) of each dataset, and proportions of password
structures containing the two tags (Pn% and Hi

n%) in each dataset. (Pn=a popular password
of length n, and Hi

n=a high-frequency substring ranked i in those substrings of length n)

Rank
English Chinese

Rootkit Yahoo 000webhost 12306 CSDN Dodonew

1 P6 H1
6 P6 H1

6 P6 H1
6 P6 H1

6 P8 D8 E1 E1

2 P8 H1
8 P8 H1

8 P8 H1
8 D6 H2

6 D8 H1
8 D7 H3

7

3 D8 H2
6 D6 H2

6 P7 H2
6 D7 D6 E1 E1 P6 H1

6

4 L8 H2
8 L6 H2

8 D6 H1
7 N2D6 D7 B1 B1 D6 H2

6

5 P7 H1
7 L8 L8 D8 H2

8 U1 H1
7 D9 D9 D8 D6

6 N2D6 H3
6 D9 D9 L6 N1D6 D8 U1 N2D6 N2D6 N2D6 N2D6

7 D5 N2H
1
6 P9 P9 N3D1 U1D1 E1 D8 U1 U1 U1D7 U1D7

8 U1D1 N2D6 N1D1 H1
9 N4D1 N1D1 N2D7 E1 D11 D11 N2D7 N2D7

9 N3D1 U1D1 U1D1 N1D1 E1D3 N3D1 U3 N2D7 N2D7 N2D7 U1 U1

10 N4D1 D5 N3D1 H3
8 D10 N1 U2D6 N2H

1
7 D10 H101 U2D6 U2H

1
6

Pn% 14.12 16.78 10.14 6.31 10.11 4.25

Hi
n% 30.13 34.28 26.13 17.22 16.12 6.39

password, then use the remaining segments to match Pn and Hi
n, and obtain password

structures. We show the top-10 password structures and the proportions containing Pn
and Hi

n in Table 5. We find that the top-10 password structures of these password
datasets include a number of simple structures independent of PII-tags, such as single
Pn, Hi

n, Ln, and Dn. Therefore, adding Pn and Hi
n tags to GTarGuess−I and GTarMarkov

are likely to facilitate password probabilistic models to identify simple yet common strings
in passwords more effectively, thereby helping to build more accurate PSMs.

What’s more, Hi
n can characterize more fine-grained password structures than Pn. For

example, after introducing Hi
n tags, the top-2 password structures of Rootkit are further

refined into P6→H1
6 , H

2
6 and P8→H1

8 , H
2
8 . Similarly, there are P9→H1

9 ; L8→H1
8 , H

2
8 ; and

U2D6→U2H
1
6 . This can help TarGuess-I [24] construct more HFSs rather than redundant

segments when generating passwords. For TarMarkov [22], more refined and diverse
password structures are helpful to well solve the long-standing issue of data sparsity.
To sum up, we take Hi

n as a new grammar tag to improve the leading targeted password
probabilistic models TarGuess-I [24] and TarMarkov [22].

4 Methodology

In this section, we first propose two new targeted password probabilistic models,
TarGuess-I-H and TarMarkov-H, which can identify HFSs in users’ passwords. Based
on these two models, we devise a new targeted PSM called PII-PSM.

4.1 Improved password probabilistic models

To help construct accurate and practical targeted PSMs, we first need to devise well-
performed password probabilistic models. Thus, we propose the improved TarGuess-I-H
and TarMarkov-H as follows.
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Our TarGuess-I-H. We introduce HFS as a new grammar tag into TarGuess-I [24],
and propose a novel targeted password probabilistic model TarGuess-I-H. Its grammar
GTarGuess−I−H = (S,V, Σ,R) is described as below:

1) S ∈ V is the start symbol;

2) V = {S;Ln, Dn, Sn;Nn, Bn, Un, En, In, Tn;Hi
n; ε} is the set of grammar tags, where

a) Ln, Dn, Sn are the grammar tags of basic PCFG [25], representing the letter, digit,
and symbol strings of length n, respectively;

b) Nn, Bn, Un, En, In, Tn are the grammar tags of TarGuess-I [24], representing the
different forms of Name, Birthday, User name, Email, ID number, and Phone
number distinguished by the number n;

c) Hi
n is proposed in this paper for the first time, representing the set of strings

ranked i among those substrings of length n in descending order of frequency;

d) ε is the terminator;

3) Σ is the set of 94 printable ASCII characters;

4) R is a finite set of rules of the form A→ β, with A ∈ V and β ∈ V ∪Σ.

Our TarMarkov-H. TarMarkov [22] is a sequence model that infers the next string state
based on the current string state. We introduce HFS as a new state into TarMarkov [22],
and propose a novel targeted password probabilistic model TarMarkov-H. Its grammar
GTarMarkov−H = (S,V,R) is described as below:

1) S ∈ V is the start symbol;

2) V = {S;Nn, Bn, Un, En, In, Tn;Hi
n;Σ; ε} is the state set, where

a) Nn, Bn, Un, En, In, Tn and Hi
n have the same meaning as the corresponding

grammar tags in TarGuess-I-H, except that they represent different states in
TarMarkov-H;

b) Σ is the set of 94 printable ASCII characters;

c) ε is the terminator;

3) R is a finite set of markov state transition rules of the form s1 → s2, with s1, s2 ∈ V∗.

High-frequency substrings (HFSs). In a password dataset, HFSs are password
substrings with the frequency exceeding a certain threshold, and they can be identified
by taking the following steps:

1) Record the count C(ps) of each password substring ps with the length n≥3;

2) Set the threshold T1 and delete the substrings with a count less than T1;

3) Modify the substring count record as

C(ps)
new = C(ps)

old −
∑
c∈Σ

[C(c+ ps)
old + C(ps + c)old], (5)

where C(ps)
old is the original count record of ps, and c + ps and ps + c respectively

mean that the character c is concatenated to the beginning and end of ps;

4) Set the threshold T2 and identify ps as a HFS if C(ps)
new ≥ T2;

5) Store HFSs with the same length n into the set Hn (n≥3), arrange them in descending
order of count, and denote the set of substrings ranked i in Hn as Hi

n. The parsing
process is shown in Fig. 2. Parameter setups of T1, T2, and n are detailed in Sec. 5.1.
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abc123
123456
123456789
love123
Jimmy#abc
...

Item #3 Freq

abc 267

123 267

345 141
... ...

Item #4 Freq
1234 292
abcd 211
love 67
... ...

...extract

storage

abc
123
234
Abc

𝐻𝐻31

345
789
pig
cat

𝐻𝐻32

123456
123abc
abcdef
iloveu

𝐻𝐻61

345678
Loveyo
123123
111111

𝐻𝐻62

...
11111111
22222222
Qwertyui
12341234

𝐻𝐻82

...

jimmy9801#345 
[Jimmy Brown; 1998 01 02]

PII 
parse

𝑁𝑁4𝐵𝐵4#345 
[Jimmy Brown; 1998 01 02]

𝐻𝐻𝑛𝑛𝑖𝑖
parse

𝑁𝑁4𝐵𝐵4# 𝐻𝐻32
[Jimmy Brown; 1998 01 02]

Fig. 2. An illustration of Hi
n-tag processing. Hi

n denotes the high-frequency substring ranked i
in those substrings of length n.

4.2 Our targeted PII-PSM

Our proposed password probabilistic models TarGuess-I-H and TarMarkov-H introduced
above can be individually transformed into two targeted PSMs. Still, we combine these
two models to construct a new targeted PSM called PII-PSM, because Dong et al. [6]
found that: In online guessing (often guess number<104), PCFG-based password models
usually outperform markov-based ones; on the contrary, in offline guessing (often guess
number>104), markov-based ones usually outperform PCFG-based ones. Thus, taking
into account PSM performance under both online and offline guessing, we construct
our PII-PSM by weighing the strength scores of the PCFG-based TarGuess-I-H and
markov-based TarMarkov-H. For a password pw, we denote the probabilities calculated
by TarGuess-I-H and TarMarkov-H as p1 and p2, and the corresponding weights are α
(α ∈ [0, 1]) and 1-α (detailed α setups are in Sec. 5.2). Then the strength score of pw
evaluated by PII-PSM under targeted guessing scenarios can be denoted as

Final scorepw = α× (− log2 p1) + (1− α)× (− log2 p2). (6)

Justification for PII-PSM. Under targeted guessing scenarios, to evaluate the
strength of the password pw in the password space, it is ideal to obtain all of userA’s
personal data (e.g., all PII and all existing passwords), and compute userA’s password
distribution space as P (pw|all userA′s personal data, public data). However, this is
intrinsically/virtually impossible to obtain all of userA’s personal data. Fortunately,
userA’s password distribution space can be approximated more accurately when
userA’s more personal data (e.g., common PII) is available. Accordingly, the password
strength evaluation models under targeted guessing using PII hold that

∀pw, userA, userB ;

∀P (pw|PIIuserA , public data) 6= P (pw|PIIuserB , public data). (7)

That is, the probabilities of pw in userA’s password space and userB ’s are different.
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Table 6. Training and test settings for targeted password guessing and strength evaluation.

Exp# Language Training set Test set Auxiliary dataset

1

English

1/2 PII-Rootkit 1/2 PII-Rootkit

Rockyou2 1/2 PII-Yahoo 1/2 PII-Yahoo (1/2 Yahoo†)

3 1/2 PII-000webhost 1/2 PII-000webhost

4

Chinese

1/2 PII-12306 1/2 PII-12306

Tianya5 1/2 PII-CSDN 1/2 PII-CSDN

6 1/2 PII-Dodonew 1/2 PII-Dodonew

† Since PII-Yahoo size is small (only 214) and thus unable to evaluate targeted PSMs accurately, in targeted
password strength evaluation, we randomly sample half of the passwords from Yahoo (226,731) as the test
set. When an account in the test set lacks PII, PCFG-based and markov-based models degenerate into
basic PCFG [25] and Markov [11].

It is worth noting that, when evaluating password strength, our PII-PSM first replaces
the PII-related segments in pw with corresponding PII-tags, and obtains a new password
form pwPII−tag. For example, if a user’s name, birthday, and password are Li Wang,
1998/08/18, and wang980818abc, respectively, the converted pwPII−tag is N3B8abc.
Since PII-PSM uses the same grammar rules for all users when calculating pwPII−tag,
there is

∀pwPII−tag, userA, userB ;

P (pwPII−tag|PIIuserA , public data) = P (pwPII−tag|PIIuserB , public data). (8)

When given users’ PII, pw is determined by pwPII−tag, satisfying Eq. 7 under targeted
guessing scenarios.

5 Experiments

In this section, we first experimentally quantify the improvement of our proposed
TarGuess-I-H and TarMarkov-H over the basic TarGuess-I [24] and TarMarkov [22].
Then, we evaluate the accuracy of our PII-PSM and its counterparts (including our
TarGuess-I-H and TarMarkov-H, as well as two benchmarks of Optimal and
Min-of-All) using the weighted Spearman metric recommended in CCS’18 [8].

5.1 Validation of the improvements

Many studies (e.g., [3, 6, 13, 15]) have shown that password probabilistic models with
good guessing ability can be used to construct accurate and practical PSMs. Therefore,
we first perform password guessing experiments to demonstrate that our TarGuess-I-H
and TarMarkov-H are indeed significantly improved over the original TarGuess-I [24] and
TarMarkov [22], and thus are likely to be used to build more accurate targeted PSMs.

Experiment setups. The user language, service type, and password policy are the three
most influential factors on password security and strength in turn [23]. The closer the
training set is to the passwords of the target site, the better [23]. Therefore, we sample the
training and test sets from the same dataset, and show the experiment settings in Table
6. Taking Exp #1 as an example, we randomly divide PII-Rootkit into two equal-sized
parts used for training and testing, respectively.

Since our TarGuess-I-H and TarMarkov-H have considered the impact of HFSs and
introduced Hi

n tags, we need to select third-party auxiliary datasets to build the HFS
dictionary. We use Rockyou and Tianya as auxiliary datasets for English and Chinese
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Table 7. Settings of targeted password probabilistic models.

Model L/D/S-tags PII-tags Hi
n-tag Model order Probability threshold

TarGuess-I [24] X X — 10−6

TarMarkov [22] X 3 10−6

Our TarGuess-I-H X X X — 10−6

Our TarMarkov-H X X 3 10−6
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(c) PII-000webhost 1/2→1/2
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(e) PII-CSDN 1/2→1/2
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(f) PII-Dodonew 1/2→1/2

Fig. 3. Experiment results of targeted guessing scenarios on six different datasets. Sub-figures
(a) to (c) are on datasets from English sites, and (d) to (f) are on datasets from Chinese sites.

training sets, respectively, because the two low-strength datasets contain a large number
of weak passwords [6,16], and have been widely used in leading password research (e.g.,
[6,11,13,15,16,24,25]) in recent years. Besides, to make our TarGuess-I-H and TarMarkov-
H perform well, we have implemented multiple experiments with different HFS parameter
configurations, and finally set the HFS thresholds T1=500 and T2=50, the HFS length
3≤n≤8, and the HFS dictionary composed of top-100 HFSs. The settings of targeted
password probabilistic models are shown in Table 7.

Experiment results. We show the experiment results in Fig. 3 and find that:
1) In Figs. 3(a)∼3(d), the performances are ordered as our TarMarkov-H, our

TarGuess-I-H, TarMarkov [22], and TarGuess-I [24]. In Figs. 3(e) and 3(f), it is our
TarMarkov-H, TarMarkov [22], our TarGuess-I-H, and TarGuess-I [24]. On average, our
added Hi

n-tags make the performances of our TarMarkov-H and TarGuess-I-H higher
than the basic TarMarkov [22] and TarGuess-I [24] by 1.72% and 3.11%, respectively.
The reasons are as follows: (a) According to Sec. 3.2, users tend to use HFSs when
constructing passwords. Thus, password models with Hi

n-tags can well identify HFSs in
passwords during training, and can better learn users’ password construction habits
when generating passwords, thereby improving model performance. (b) According to
Sec. 3.3, password models with Hi

n-tags can more accurately capture password
structures, such as L8→H1

8 , H
2
8 , and thus reduce redundant segments when generating

passwords. (c) Introducing Hi
n-tags can increase the variety of password structures. For

example, in Exp #1 of Table 6, the extracted password structures increase from 53,168
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to 76,133 (a 43.19% increase). In this way, our TarMarkov-H can mitigate the inherent
data sparseness issue of markov-based password models.

2) Our TarGuess-I-H outperforms TarGuess-I [24] by 2.02%∼3.43% (relative increases
are 8.33%∼15.22%) and our TarMarkov-H outperforms TarMarkov [22] by 1.45%∼2.63%
(relative increases are 9.73%∼15.22%). This is because markov-based TarMarkov-H and
TarMarkov [22] can generate more novel passwords than PCFG-based TarGuess-I-H and
TarGuess-I [24]. In contrast, the performance of PCFG-based models is largely limited
by password structures in the training set, especially when the training size is small.

3) In Figs. 3(e) (on PII-CSDN) and 3(f) (on PII-Dodonew), TarGuess-I-H and
TarGuess-I [24] perform worse than TarMarkov [22]. A possible explanation is that,
PCFG-based TarGuess-I-H and TarGuess-I [24] parse passwords from the segment
level, and many passwords in PII-CSDN and PII-Dodonew contain digit strings [6]
(marked as Dn). This causes the model to generate a large number of redundant
password candidates when filling Dn in the password generation stage, thus reducing
the performance. In contrast, markov-based TarMarkov [22] parses passwords from the
character level, reducing generating redundant digit strings.

Summary. By adding HFS tags, our TarGuess-I-H and TarMarkov-H significantly out-
perform the basic TarGuess-I [24] and TarMarkov [22] in most cases, suggesting that our
two models can be employed to build accurate targeted PSMs.

5.2 PSM accuracy evaluation

PSM accuracy evaluation metric. Accuracy is the most essential property of a PSM.
Only PSMs with accurate strength feedback can indeed nudge users to choose stronger
passwords [17,18]. In recent years, researchers have used various metrics (e.g., Spearman
and Kendall correlation coefficients) to measure PSM accuracy [13, 21, 26]. At CCS’18,
Golla et al. [8] tested 19 candidate metrics for evaluating PSM accuracy and selected
the weighted Spearman correlation coefficient (WSpearman), because it is robust to
monotonic transformations, disturbances, and quantization. Thus, inspired by Golla et
al.’s work [8], we use WSpearman to evaluate PSM accuracy, calculated as

WSpearman(X,Y) =

∑n
i=1 [wi(xi − x̄)(yi − ȳ)]√∑n

i=1[wi(xi − x̄)2]
∑n
i=1[wi(yi − ȳ)2]

, (9)

where X and Y are the weighted rank vectors of the ideal PSM and the tested PSM, xi
and yi are the members of X and Y ranked i (1≤i≤n) in descending order of frequency,
x̄ and ȳ are the weighted means of X and Y, and wi is the password frequency ranked i
in the test set. The higher the WSpearman value (in [-1,1]), the more accurate the PSM.

Experiment setups. TarGuess-I-H and TarMarkov-H in this section refer to targeted
PSMs based on these two models. We show the experiment setups of targeted password
strength evaluation in Table 6, and config the targeted PSMs and benchmarks for
comparison and evaluation as follows:
• Our TarGuess-I-H and TarMarkov-H. The parameter settings of these two PSMs
are shown in Table 7. The strength of the password pw is evaluated as − log2 p, where p
is the construction probability of pw under the corresponding model.
• Our PII-PSM. The password strength evaluated by our PII-PSM is obtained by
weighting the strengths output by TarGuess-I-H and TarMarkov-H with α and 1-α; see
Eq. 6. α is initialized to a random value in [0,1], optimized by the stochastic gradient
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(a) PII-Rootkit 1/2→1/2
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(b) 1/2 PII-Yahoo→1/2 Yahoo
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(c) PII-000webhost 1/2→1/2
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Fig. 4. Weighted Spearman correlation coefficient of our targeted PSMs. Sub-figures (a) to (c)
are on datasets from English sites, and (d) to (f) are on datasets from Chinese sites.

descent (SGD) approach with batchsize=n (i.e., every n passwords in the training/testing
set are split into a batch). In this way, the impact of randomly/manually setting the α
value on PSM accuracy can be eliminated. We calculate WSpearman for each batch
in the test set and the corresponding batch in the training set, and use it as a loss to
penalize α until α reaches convergence. The convergent α and SGD parameter setups
are shown in Table 8. What’s more, since the training set is known to our PII-PSM, the
optimization for α is feasible, which contributes to the practicality of PII-PSM.

Table 8. Convergent α and SGD setups.

Exp# α
SGD

Batchsize Step length ∆†

1 0.623 50 [0.2,0.8]

10−5

2 0.629 100 [0.5,1.0]
3 0.642 50 [0.2,0.8]
4 0.612 50 [0.2,0.8]
5 0.601 50 [0.2,0.8]
6 0.617 50 [0.2,0.8]

† When |αnew−αold|≤∆, SGD stops opti-
mizing and chooses α as the optimal value.

• Min-of-All. Min-of-All is a PSM strength
benchmark indicating a conservative approxima-
tion of password strength. It is proposed by Ur
et al. [19] and is widely used in leading PSM
research (e.g., [13, 26]). Regarding a password,
Min-of-All takes the minimum value of the results
of all evaluated PSMs as the password strength.
In this paper, we also adopt Min-of-All as a PSM
strength benchmark, which is calculated as the
minimum evaluation results of our TarGuess-I-H, TarMarkov-H, and PII-PSM.

• Our Optimal. To indicate the optimal evaluation capability that practical PSMs can
achieve, we propose a new PSM strength benchmark, Optimal. Regarding a password,
Optimal takes the one closest to the real frequency rank among the results of all evaluated
PSMs (e.g., our TarGuess-I-H, TarMarkov-H, and PII-PSM in this paper) as the password
strength. Note that an Optimal PSM is unlikely to be deployed in real-world scenarios,
because it can hardly know the real password rank. Nevertheless, since the password
rank is known in our experiments, Optimal is effective as a PSM strength benchmark.

Experiment results. We show WSpearman of targeted PSMs in Fig. 4 and find that:
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1) The Wspearman value of PII-PSM is higher than TarGuess-I-H and TarMarkov-
H, and fluctuates more slightly within top-102 passwords. This is because our adopted
SGD effectively optimizes the weights α and 1-α of TarGuess-I-H and TarMarkov-H
that constitute PII-PSM, thus improving PII-PSM accuracy. Note that the convergence
value of α in Table 8 is 0.601∼0.642 instead of around 0.5, indicating that TarGuess-I-H
and TarMarkov-H have different effects/contributions to PII-PSM accuracy. A possible
explanation is that, according to Fig. 4, TarMarkov-H generally fluctuates more strongly
than TarGuess-I-H (especially within top-102 passwords), indicating that the former is
less accurate than the latter in evaluating weak passwords. Thus, SGD will give the more
accurate TarGuess-I-H a higher weight.

2) In Figs. 4(e) (on PII-CSDN) and 4(f) (on PII-Dodonew), the WSpearman value
of all PSMs decreases rapidly in top-3∼top-10 (i.e., top-100.5∼top-101.0) passwords, and
increases slowly from top-30 (i.e., top-101.5) until stable. The possible reason is that,
in PII-CSDN and PII-Dodonew, the top-10 passwords account for a large proportion
(8.33% and 7.91%), resulting in a more concentrated password probability distribution
that can be accurately evaluated by PSMs. Thus, the WSpearman value is stable at 1
in top-10. While the followed passwords have a more uniform probability distribution
and thus PSMs cannot accurately evaluate some of the passwords. As a result, the
WSpearman value decreases significantly. With more passwords being evaluated, PSMs
can more accurately capture password distribution characteristics, so the WSpearman
value gradually stabilizes.

3) Compared to individual TarGuess-I-H and TarMarkov-H, PII-PSM is closer to the
Optimal benchmark, and the WSpearman differences are only 0.014∼0.023. This suggests
that PII-PSM has almost the optimal evaluation ability that the compared practical
PSMs can achieve, and thus is more accurate. In addition, PII-PSM is also closer to
the Min-of-All benchmark, and the WSpearman differences are only 0.012∼0.031. This
indicates that PII-PSM evaluates password strength more strictly and conservatively,
which may help nudge users to select stronger passwords.

Summary. Our PII-PSM obtained by combining and weighting TarGuess-I-H and
TarMarkov-H is more accurate than both individual PSMs, and is closer to the PSM
accuracy benchmarks Min-of-All and our Optimal. This suggests that a rational
combination of multiple PSMs that perform well in different guessing scenarios (e.g.,
online and offline guessing) is helpful for designing accurate targeted PSMs.

6 Conclusion

We have introduced the high-frequency substring (HFS) as a new grammar tag into
leading targeted password probabilistic models TarGuess-I [24] and TarMarkov [22], and
proposed our improved models TarGuess-I-H and TarMarkov-H. Then, we weighted and
combined our two models and, for the first time, devised a practical targeted password
strength meter (PSM) called PII-PSM that exploits common personally identifiable
information (PII; e.g., name and birthday). Extensive evaluation experiments show that
our PII-PSM is more accurate than individual TarGuess-I-H and TarMarkov-H, and
is closer to two benchmarks of Optimal and Min-of-All. What’s more, eight large-
scale password datasets across different user languages and service types indicate the
practicality of our PII-PSM. We believe that our targeted probabilistic models and PII-
PSM can shed light on both existing password practice and future password research.
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