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Abstract—Despite three decades of intensive research, textual passwords are still enveloped in mysterious veils. It remains an open
question as to what is the underlying distribution of user-generated passwords. In this work, we make a substantial step forward towards
understanding this question. By introducing a number of computational statistical techniques and based on fourteen large-scale datasets,
which consist of 127.7 million real-world passwords, we for the first time show that Zipf’s law natively exists in the popular (and thus
vulnerable) part of human-generated password datasets. Further, we provide compelling evidence that this law is also highly likely to hold
in the remaining part of human-generated passwords. With the concrete knowledge of password distributions, we suggest a new metric for
measuring the strength of password datasets. Both theoretical and experimental results show the effectiveness of the proposed metric.
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I. INTRODUCTION

Password-based authentication is being used for access
control by almost every Internet service today. Despite its
ubiquity, this kind of authentication is accompanied by
the dilemma of generating passwords which are challeng-
ing for powerful attackers to crack but easy for common
users to remember. It is well known that truly random
passwords are difficult for users to memorize, while user-
chosen passwords may be highly predictable [1], [2]. In
practice, common users tend to gravitate towards weak
passwords that are related to their daily lives (e.g., names,
birthdays, lovers, friends and hobbies [3], [4]), which
means these passwords are drawn from a rather small
space and thus are prone to guessing attacks.

To mitigate this notorious security-usability dilemma,
various password creation policies have been proposed,
e.g., random generation [5], rule-based [6], entropy-based
[7] and cracking-based [8]. They force newly created
passwords to adhere to some composition rules and to
achieve an acceptable strength. The diversity of password
rules and strength meters brings about an enormous
variety of requirements among different web services,
resulting in highly conflicting strength scores for the same
password [4]. For example, the password password$1
is deemed “Very Weak” by Dropbox, “Weak” by Apple,
“Fair” by Google and “Very Strong” by Yahoo.

The above contradictory outcomes of password
strength (for more concrete examples, see [4], [9]) are a
direct result of the inconsistent password strength
meters employed among different web services, which
may in part be further explained by the un-soundness
of current password meters and the diverse interests of
each web service. It is a rare piece of good news for the
password research community that password policies
do impact user password choices and if well-designed,
password policies can significantly improve password
security while maintaining usability [10]. Accordingly,
much attention (e.g., [4], [11], [12]) has been paid to the
design and analysis of password policies. While stricter
policies might make passwords harder to crack, but the
side effect is that users may feel harder to create and to
remember passwords and thus usability is reduced [13].
Results in [14] show that, improper password policies in

• D. Wang, G. Jian and P. Wang are with the School of Electronics
Engineering and Computer Science, Peking University, Beijing 100871,
China. Email: {wangdingg, gpjian, pwang}@pku.edu.cn

• X.Y. Huang is with the School of Mathematics and Computer Science,
Fujian Normal University, China. Email: xyhuang81@gmail.com

a specific context of use can increase both mental and
cognitive workload on users and impact negatively on
user productivity, and ultimately users will try every
means to circumvent such un-friendly policies.

As a result, different types of web services typical-
ly have quite different favors. For portals like Yahoo!
and order accepting sites like Kaspersky, usability is a
critical property because anything that undermines user
experience may result in loss of users to competitors
and impair the success of business. So they tend to
have lenient policies [4], [15]. On the other hand, it is
of great importance to prevent attackers from illicitly
accessing valuable resources on security-critical sites, e.g.,
cloud storage sites that maintain sensitive documents
and university sites that manage course grades. So they
may require that user-selected passwords are subject to
more complex constraints (e.g., inclusion of symbols and
rejection of popular passwords like pa$$word123).

As different services favor varied password policies, a
number of critical issues arise: how can the policy design-
ers evaluate their policies? How can the administrators
select the right policy for their systems? In addition,
usually the users of a web service may dynamically
change as time goes on, which highly leads to large
variations in the password dataset after some period of
time (e.g., one year) even though the password policy
stays the same. This is especially true for Internet-scale
service providers. In this situation, the security admin-
istrators shall quantify the strength of passwords and
may need to adjust the password policy. Either failing to
notice the changes in the password dataset or conducting
improper countermeasures may give rise to great (but
subtle) security and usability problems as shown above.

Hence, a proper assessment of the strength of password
dataset is essential, without which the security admin-
istrator is unable to determine the following important
question: How shall the password policy be adjusted?
Or equally, shall the password policy be enhanced to
improve security, kept unchanged or even relaxed a bit
to get usability in return? In a nutshell, the core crux of
designing and selecting an appropriate password policy
or properly adjusting it lies in how to accurately assess
the strength of password datasets created under it. Note
that, here we presume that each existing authentication
system has already adopted some password policy (e.g.,
[8], [16]), and its adjustment mainly involves changing
some rules and the password strength threshold.



Inevitably, the accomplishment of accurately assessing the
strength of a password dataset would entail the settlement of
a more fundamental question: how to precisely characterize a
given password dataset? Or equally, what is the distribution
that user-generated passwords follow? Despite more than 30
years of intensive research efforts, passwords are still envelope-
d in mysterious veils and this same old question is asked year
in year out, which may well explain why most of today’s
password authenticated key exchange (PAKE) protocols with
provable security (in hundreds, some recent ones include [17],
[18]) still rely on an inconceivable assumption: Passwords
follow a uniform distribution.

To the best of our knowledge, the work by Malone and
Maher [19] may be the most relevant to what we will discuss
in this paper. They for the first time made an attempt to
investigate the distribution of passwords. They employed four
password datasets (three of which are with a size smaller than
105) and reached the conclusion that, their datasets are “unlike-
ly to actually be Zipf distributed”.1 Such a conclusion is right
contrary to what we will show in the current work. They also
concluded that “Zipf distribution is a relatively good match
for the frequencies with which users choose passwords”. A
bit self-contradictory? The key is that, they used an inherently
flawed method to attempt to model password distribution with
Zipf (naturally, they failed), and they compared their model
with a uniform model, and the comparison results showed that
their model is “a relatively good match”. Since nearly any
model would outperform a uniform model, the conclusion that
their model is “relatively good” is of no much sense. This
confusing, unsatisfactory situation motivates our work.

A. Our contributions
In this work, we bring the understanding of the distribution

of real-life passwords and the evaluation of password datasets
onto a sound scientific footing by adapting statistical tech-
niques, and make the following key contributions:
A Zipf model. We adopt techniques from computational
statistics to show that Zipf’s law exists in real-life passwords:
(1) the vulnerable portion of user-chosen passwords (i.e.,
popular passwords such as those with a frequency f ≥ 3)
natively follows a Zipf-distribution; and (2) the remaining
portion of user-chosen passwords (i.e., un-popular passwords
such as ones with a frequency f ≤ 2) is highly likely to
follow a Zipf-distribution. Extensive empirical experiments on
fourteen large-scale real-world password datasets demonstrate
the soundness of our Zipf model. This suggests that each
password can be seen as a specific sample drawn from the
underlying password population which follows the Zipf’s
law. This invalidates the claim made in [19], [20] that user
passwords are “unlikely to actually be Zipf distributed”.
A strength metric. We propose a novel metric for measur-
ing the strength of a given password dataset. This metric
utilizes the concrete knowledge of the password distribution
function, and thus it overcomes various problems in existing
metrics (e.g., uncertainties in cracking-based approaches [8]
and non-deterministic nature in α-guesswork [20]). Our metric
facilitates a better grasp of the strength of password datasets

1Almost at the same time, Bonneau [20] employed essentially the same
approach with [19] and as expected, the same conclusion with was reached
in [20]. Thus, we mainly use Malone-Maher’s work [19] for discussion.

(either in plain-text or hashed form) in a mathematically
rigorous manner, making it possible for security administrators
to precisely evaluate the security property of a password policy
under which these password datasets are created.
Some insights. We show an implication of our Zipf theory
for how to choose the right threshold of popularity-based
password policies (e.g., [6]). We for the first time provide a
sound rationale that explicates the necessity and feasibility (as
well as precautions) for popularity-based password policies.
Besides, we report an inherent flaw in the strength conversion
of α-guesswork [20] and manage to figure out how to fix it.

II. RELATED WORK

We now briefly review some related works on password
policy and password cracking to facilitate later discussions.

A. Password creation policies
In 1990, Klein proposed the concept of proactive password

checker, which enables users to create more secure password
distributions and checks, a priori, whether the newly submitted
passwords are “safe” [21]. The criteria can be divided into
two types. One type is the exact rules for what constitute an
acceptable password, such as minimum length and character
type requirements. The other type is using a reject function
based on estimated password strength. An example of this is a
blacklist of “weak” passwords that are not allowed. Although
the author called the technique “proactive password checking”,
it is indeed the same as password policies we know today, and
thus in this work we use the two terms interchangeably.

Since Klein’s seminal work, there have been proposed a
number of proactive password checkers that aim to reduce
the time and space of matching newly-created passwords with
a blacklist of “weak” passwords (e.g., Opus [22]). There
have also been attempts to design tuneable rules on a per-
site basis to shape password creation, among which is the
influential NIST Electronic Authentication Guideline SP-800-
63 [7]. However, by modeling the success rates of current
password cracking techniques against real-life user passwords
created under different rules, Weir et al. [11] showed that
merely rule-based policies perform poorly for ensuring a
desirable level of security. On the basis of Weir et al.’s work,
Houshmand and Aggarwal [8] proposed a novel policy that
improves password security while maintaining usability: it
first analyzes whether a user-selected password is weak or
strong according to the empirical cracking-based results, and
then modifies the password slightly if it is weak to create
a strengthened password. This policy facilitates measuring
the strength of individual passwords more accurately and in
addition, it can be adjusted more flexibly than previous policies
due to the fact that its adjustment only involves tuning the
threshold within a continuous range.

Perhaps the most relevant policy related to our strength
metric for assessing password datasets (see Section V) is
suggested by Schechter et al. [6]. Their intriguing idea is to
use a popularity oracle to replace traditional password creation
policies, and thus passwords with high popularity are rejected.
This policy is particularly effective at thwarting statistical-
based guessing attacks against Internet-scale authentication
systems with millions of user accounts. If this policy is in
place, our proposed metric would be largely unnecessary.
However, how to prevent an attacker from using their oracle



to online guess passwords is left as an open question. More-
over, this policy rejects passwords that occur at a probability
exceeding a threshold T (e.g., T = 1

106 as exampled in [6]),
yet whether it would greatly reduce usability has not been
evaluated thoroughly (e.g., how easily users may be able to
adapt to this new policy? No theoretical or empirical user
case study results have ever been reported). As an immediate
consequence of this policy, it might frequently annoy users
by forbidding them to use their intended passwords that are
typically popular. For instance, as we will show in Appendix
B, 34.89% of users in www.tianya.cn use passwords that are
more frequent than T = 1

106 , which indicates that over one third
of the users have an equal potential to be annoyed to select and
maintain a new password. Nevertheless, such a policy would
be very promising if these issues can be addressed.

B. Password cracking
Password-based systems are prone to various attacks, such

as on-line guessing, offline guessing, keylogging, shoulder
surfing and social engineering. Here we only consider the on-
line and offline guessing attacks, while other attack vectors
are unrelated to password strength or password dataset strength
and thus outside the scope of this work. Online guessing can be
well thwarted by non-cryptographic techniques, such as mod-
ern machine-learning-based rate-limiting or locking strategies,
while offline guessing are performed on local hardware that
the attacker controls and thus she can make as many guesses
as possible given enough time and computational power.

Florencio et al. [23] discussed scenarios where offline
guessing constitutes a real threat and identified a great “chas-
m” between a password’s guessing-resistance against these
two types of guessing. They found that in this “chasm”,
incrementally increasing the strength of passwords delivers
little security benefit, and thus they called into question the
common practice of nudging users towards stronger passwords
beyond online guessing resistance. Yet, it is not difficult to
see that such a “chasm” would be largely eliminated (and
so is the corresponding doubt), if one considers the cases
where passwords (e.g., in salted-hash) have been leaked yet
this leakage is detected by the victim site only after some
period of time (e.g., a few days). During this period, offline
password guessing indeed poses a realistic threat.

Consequently, it is essential for password-based authenti-
cation systems to properly evaluate their resilience to offline
guessing attacks. In the literature, this is generally done by
comparing the search space size (i.e., the number of guesses)
against the percentage of hashed passwords that would be
offline recovered. This measure only depends on the attacking
technique and the way users choose their passwords, and it
is neither related to the particular nature of the system (e.g.,
which hash function is used, SHA-1, PBKDF2 or CASH [24]?)
nor affected by the attacker capabilities. The nature of the
system and attacker capabilities will instead define the cost that
the attacker has to pay for each single guess [25]. For example,
system countermeasures against offline attacks, such as salting
to defeat pre-computation techniques (e.g., Rainbow tables) or
key strengthening to make guessing attacks more costly, only
constitute a key parameter when evaluating the resilience of
a password system to offline attacks. By combining this cost
with a measure of the search space, it becomes possible to
attain a concrete cost-benefit analysis for offline attacks. This
measure is followed in our work.

Password search space essentially depends on how the
users choose their passwords. It is a well known fact that
users tend to choose passwords (e.g., words from dictionaries
or something related to their daily lives) that are easily
rememberable [1], [3]. However, users rarely use unmodified
elements from such lists, for instance, because password
policies prevent this practice, and instead users modify the
words in such a way that they can still recall them easily. For
example, the popular pa$$word is generated by leeting two
letters of the easily guessable password.

To model this password generation practice, researchers
utilize various heuristic mangling rules to produce variants of
words from an input dictionary. For some widely used dictio-
naries, see [26]. This sort of techniques has emerged as early
as 1979 in Morris-Thompson’s analysis of 3,000 passwords
[27]. This initial work has been followed by independent works
[21], [28]. Later on, some dedicated software tools like John
the Ripper (JTR) [29] appeared. Subsequent studies (e.g., [10],
[11]) have often utilized these automated software tools to
perform dictionary attacks as a secondary goal.

It was not until very recently that password cracking began
to deviate from art to science. Narayanan and Shmatikov [30]
developed an advanced cracking algorithm that uses Markov
chain instead of ad hoc mangling rules to model user password
creation patterns. This algorithm generates passwords that
are phonetically similar to words. It is tested on a dataset
of 142 hashed passwords and 96 (67.6%) passwords were
successfully broken. Yet, their algorithm is not a standard
dictionary-based attack, for it can only produce linguistically
likely passwords. Moreover, the test dataset is too limited to
show the effectiveness of their algorithm.

In 2009, on the basis of probabilistic context-free grammars
(PCFG), Weir et al. [28] suggested a novel technique for
automatically deriving word-mangling rules, and they further
employed large real-life datasets to test its effectiveness. In
this technique, a password is considered as a combination
of alphabet symbols (denoted by L), digits (D) and special
characters (S). For instance, the password pa$$word123
is denoted by the structure L2S2L4D3. Then, a set of word-
mangling rules is obtained from a training set of clear-text
passwords. To simulate the optimal attack, this algorithm
generates guesses in decreasing order of probability, and it
is able to crack 28% to 129% more passwords than JTR [29].

In 2014, Ma et al. [31] introduced natural language pro-
cessing techniques, such as smoothing and normalization in-
to Markov-chain-based password cracking algorithms. They
found that, when tuned with the right order and employing
some appropriate ways to deal with the problems of data
sparsity and normalization, Markov-chain-based cracking al-
gorithms would perform better than PCFG-based cracking al-
gorithms. Therefore, in this work (see Section IV-C) we follow
Ma et al.’s Markov-based algorithms to evaluate the collected
datastets and make comparisons based on our proposed metric.

In 2015, Ur et al. [32] investigated how the above cracking
algorithms used by researchers compare to real-world cracking
by professionals and how the choice of cracking algorithms
influences research conclusions. They found that each cracking
algorithm is highly sensitive to its configuration and that
relying on a single cracking approach to evaluate the strength
of a single password may underestimate the vulnerability to
an experienced attacker, while the comparative evaluations of
a password dataset can rely on a single algorithm.



TABLE I. BASIC INFORMATION ABOUT THE FOURTEEN REAL-LIFE PASSWORD DATASETS

Dataset Web service Location Language When leaked How leaked Total passwords Unique passwords
Tianya Social forum China Chinese Dec. 4, 2011 Hacker breached 30,233,633 12,614,676

Dodonew Gaming&Ecommerce China Chinese Dec. 3, 2011 Hacker breached 16,231,271 11,236,220
CSDN Programming China Chinese Dec. 2, 2011 Hacker breached 6,428,287 4,037,610

Duowan Gaming China Chinese Dec. 1, 2011 Insider disclosed 4,982,740 3,119,070
Myspace Social forum USA English Oct. 1, 2006 Phishing attack 41,545 37,144

Single.org Dating USA English Oct. 1, 2010 Query string injection 16,250 12,234
Faithwriters Writer forum USA English Mar. 1, 2009 SQL injection 9,709 8,347

Hack5 Hacker forum USA English July 1, 2009 Hacker breached 2,987 2,351
Rockyou Gaming USA English Dec. 07, 2009 SQL injection 32,603,388 14,341,564

000webhost Web hosting USA English Oct. 28, 2015 PHP programming bug 15,251,073 10,583,709
Yahoo Web portal USA English July 12, 2012 Hacker breached 453,492 342,515
Gmail Email Russia Mainly Russian Sep. 10, 2014 Phishing&hacking 4,929,090 3,132,028

Mail.ru Email Russia Russian Sep. 10, 2014 Phishing&malware 4,932,688 2,954,907
Yandex.ru Search engine Russia Russian Sep. 09, 2014 Phishing&malware 1,261,810 717,203

TABLE II. TOP 10 MOST POPULAR PASSWORDS OF EACH DATASET

Rank Tianya Dodonew CSDN Duowan Myspace Singles.org Faithwriters Hak5
1 123456 123456 123456789 123456 password1 123456 123456 QsEfTh22
2 111111 a123456 12345678 111111 abc123 jesus writer ——
3 000000 123456789 11111111 123456789 fuckyou password jesus1 timosha

Top 3 (%) 5.58% 1.49% 8.15% 5.01% 0.40% 2.10% 1.03% 4.62%
4 123456789 111111 dearbook 123123 monkey1 12345678 christ ike02banaA
5 123123 5201314 00000000 000000 iloveyou1 christ blessed 123456
6 123321 123123 123123123 5201314 myspace1 love john316 zxczxc
7 5201314 a321654 1234567890 123321 fuckyou1 princess jesuschrist 123456789
8 12345678 12345 88888888 a123456 number1 jesus1 password westside
9 666666 000000 111111111 suibian football1 sunshine heaven ZVjmHgC355

10 111222tianya 123456a 147258369 12345678 nicole1 1234567 faithwriters Kj7Gt65F
Top 10 (%) 7.42% 3.28% 10.44% 6.78% 0.78% 3.40% 2.17% 7.20%

III. PRELIMINARIES

In this section, we first describe the collected datasets,
and then report some statistics about user-chosen passwords.
Finally, we give some background on the statistical techniques
used—linear regression and Kolmogorov-Smirnov (KS) test.

A. Description of the password datasets
We have collected fourteen large-scale real-life password

lists (see Table I) over a time span of nearly ten years.
They are different in terms of service, size, how leaked,
user localization, language, faith and culture background,
suggesting that our model is a generic one and can be used to
well characterize the distribution of user-chosen passwords. All
fourteen datasets were compromised by hackers or leaked by
anonymous insiders, and were subsequently disclosed publicly
on the Internet. Some early ones of them have also been used
by a number of scientific works that study passwords (e.g.,
[11], [31], [32]). We realize that while publicly available, these
datasets contain private data such as emails, user names and
passwords. Therefore, we treat all user names as confidential
and only report the aggregation information about passwords
such that using them in our research does not increase the
harm to the victims. Furthermore, attackers are likely to
exploit these accounts as training sets or cracking dictionaries,
while our study of them are of practical relevance to security
administrators and common users to secure their accounts.

The first four datasets, namely Tianya, Dodonew, CSDN and
Duowan, are all from Chinese web services. We name each
password dataset according to the corresponding website’s do-
main name (e.g. the “Tianya” dataset is from www.tianya.cn).
They are all publicly available on the Internet due to several
security breaches that happened in China in December, 2011
[33] and we collected them at that time. CSDN is the largest
community website of Chinese programmers; Tianya is one of
the most influential Chinese BBS; Duowan is a popular game

forum; Dodonew is also a popular game forum and it enables
monetary transactions. Duowan contains both hashed (MD5)
and plain-text passwords, and we limit our analysis to the 4.98
million plain-text ones.

The fifth dataset is the “Myspace” which was originally
published in October 2006. Myspace is a famous social
networking website in the United States and its passwords
were compromised by an attacker who set up a fake Myspace
login page and then conducted a standard social engineering
(i.e., phishing) attack against the users. While several versions
of the Myspace dataset exist, owing to the fact that different
researchers downloaded the list at different times, we get one
version from [26] which contained 41,545 plain text pass-
words. The following two datasets are the “Singles.org” and
the “Faithwriters”. They are both composed of people almost
exclusively of the Christian faith: www.singles.org is a dating
site ostensibly for Christians and www.faithwriters.com is
an online writing community for Christians. The former was
broken into via query string injection and 16250 passwords
were leaked, while the latter was compromised by an SQL
injection attack which disclosed 9,709 passwords.

The eighth dataset is from www.hak5.org and it was com-
promised by a group called ZF0 (Zero for 0wned) [34]. This
dataset is only a small portion of the entire www.hak5.org
dataset. Surprisingly, though Hak5 is claimed to be “a cocktail
mix of comedy, technolust, hacks, homebrew, forensics, and
network security”, its dataset is amongst the weakest ones (see
Section V). In this work, we use this dataset as a counterex-
ample for representatives of real-life password distributions.

Besides the above eight datasets, we additionally employ six
datasets (i.e., Rockyou, 000webhost, Yahoo, Gmail, Yandex.ru
and Mail.ru) to show the generalizability of our findings of
Zipf’s law in Section IV, and due to space constraints, they
will not be analyzed elsewhere. The Rockyou dataset includes



TABLE III. CHARACTER COMPOSITION INFORMATION ABOUT EACH PASSWORD DATASET

Dataset [a-z]+ [A-Z]+ [A-Za-z]+ [0-9]+ [a-zA-Z0-9]+ [a-z]+[0-9]+ [a-z]+1 [a-zA-Z]+[0-9]+ [0-9]+[a-zA-Z]+ [0-9]+[a-z]+
Tianya 9.96% 0.18% 10.29% 63.77% 98.05% 14.63% 0.12% 15.64% 4.37% 4.11%
Dodonew 8.79% 0.27% 9.37% 20.49% 82.88% 40.81% 1.39% 42.94% 7.31% 6.95%
CSDN 11.64% 0.47% 12.35% 45.01% 96.31% 26.14% 0.24% 28.45% 6.46% 5.88%
Duowan 10.30% 0.09% 10.52% 52.84% 97.59% 23.97% 0.37% 24.84% 6.04% 5.83%
Myspace 7.18% 0.31% 7.66% 0.71% 89.95% 65.66% 18.24% 69.77% 6.02% 5.66%
Singles.org 60.20% 1.92% 65.82% 9.58% 99.78% 17.77% 2.73% 19.68% 1.92% 1.77%
Faithwriters 54.40% 1.16% 59.04% 6.35% 99.57% 22.82% 4.13% 25.45% 2.73% 2.37%
Hak5 18.61% 0.27% 20.39% 5.56% 92.13% 16.57% 2.01% 31.80% 1.44% 1.21%
∗Note that the first row is written in regular expressions. For instance, [a-z]+ means passwords composed of only lower-case letters;
[A-Za-z]+ means passwords composed of only letters; [a-zA-z]+[0-9]+ means passwords composed of letters, followed by digits.

TABLE IV. LENGTH DISTRIBUTION INFORMATION OF EACH DATASET

Length 1-3 4 5 6 7 8 9 10 11 12 13-16 17-30 30+ All
Tianya 0.61% 0.65% 0.55% 33.77% 13.92% 18.10% 9.59% 10.28% 5.53% 2.88% 4.05% 0.07% 0.00% 100%

Dodonew 0.36% 0.70% 0.78% 9.71% 13.45% 18.49% 20.29% 14.69% 3.10% 1.34% 10.24% 6.79% 0.04% 100%
CSDN 0.01% 0.10% 0.51% 1.29% 0.26% 36.38% 24.15% 14.48% 9.78% 5.75% 6.96% 0.32% 0.00% 100%

Duowan 0.02% 0.13% 0.12% 20.62% 17.68% 22.49% 15.12% 11.55% 5.30% 2.72% 4.13% 0.12% 0.00% 100%
Myspace 0.25% 0.51% 0.79% 15.67% 23.40% 22.78% 17.20% 13.65% 2.83% 1.13% 1.15% 0.48% 0.17% 100%

Singles.org 0.68% 4.74% 7.68% 32.05% 23.20% 31.65% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100%
Faithwriters 0.04% 0.14% 0.99% 31.97% 20.95% 22.71% 10.35% 5.98% 3.24% 1.87% 1.53% 0.20% 0.01% 100%

Hak5 0.10% 0.64% 0.97% 12.96% 8.50% 20.89% 8.94% 30.83% 3.58% 3.08% 6.90% 2.44% 0.17% 100%
Average 0.26% 0.95% 1.55% 19.75% 15.17% 24.19% 13.20% 12.68% 4.17% 2.35% 4.37% 1.30% 0.05% 100%

32M passwords leaked from the gaming forum Rockyou in
Dec. 2009 [35]; The 13M 000webhost passwords was made
online by the hackers in Oct. 2015, and the 000Webhost
officials confirmed the breach and said it was the result of
hackers who exploited an old version of the PHP programming
language [36]; The 450K Yahoo passwords was made online
by the hacker group named D33Ds in July 2012; The last three
deatasets (i.e., 4.9M Gmail, 4.9M Mail.ru and 1.3M Yandex.ru)
were leaked by Russian hackers in Sep. 2014, and about 90%
of them are active [37], and it is said that these credentials are
collected not by hacking the sites but through phishing and
other forms of hacking attacks on users (e.g., key-loggers).

B. Statistics about user-chosen passwords
In the 1980s, it was revealed that the most popular password

at that time was 12345; thirty years later, as can be seen
from Table II, 123456 takes the lead. It is a long-standing
problem that a significant fraction of users prefer the same
passwords as if by prior agreement, which is in part due
to the inherent limitations of human cognition. Note that,
this situation can not be fundamentally altered by simply
banning such popular passwords. For example, if password
is banned, then password1 will be popular (see the most
popular passwords of Myspace); if password1 is banned,
then pa$$word1 will be popular. It is hoped that the adaptive
password meters (e.g., [8], [16]) will ultimately eliminate this
issue. Most of the top 10 Chinese passwords are sole digits,
while most of the top 10 English passwords are sole letters.

What’s interesting is that “love” is also the eternal theme
of passwords: five datasets have a most popular password
related to “love”. For instance, the password 5201314, which
sounds as “I love you forever and ever” in Chinese, ranks
the 5th and 7th most popular password in Dodonew and
Tianya, respectively. Faith also has a role in shaping user
passwords. For example, the password jesus1 emerges in
the top-10 lists of both Sigle.org and Faithwriters (which
are sites for Christians). Startlingly, for several datasets a
mere top-3 of the most popular passwords account for more
than 5% of all the passwords. This indicates that, to break

into these corresponding sites, an online (trawling) guessing
attacker will succeed every one in twenty attempts. Also, as
a side note, even though popular passwords in Hak5 look
rather complex (diversified) and actually about 66.18% of its
passwords are composed of a mixture of lower/upper-case
letters and numbers, this dataset is still very concentrated and
among the weakest ones (see Section V). This means that
seemingly complex passwords may not be difficult to crack
and actually may be rather weak, which further suggests the
necessity of a foundational understanding of passwords.

The character composition information is summarized in
Table III. Chinese users are more likely to use only digits
to construct their passwords, while English users prefer using
letters. This complies with [38]. A plausible explanation may
be that Chinese users, who usually use hieroglyphics, are less
familiar with English words and letters. It is interesting to see
that, Myspace users tend to build their passwords by adding
the digit “1” to a sequence of lower-case letters. This may be
due to its policy that passwords shall include at least one digit.

Table IV shows the length distributions of each dataset. We
can see that the most popular password lengths are between
6 and 10, which on average account for 85.01% of the whole
dataset. Few users choose passwords that are longer than
12, with Dodonew being an exception. One telling reason
may be that, www.dodonew.com is a website that enables
monetary transactions and its users perceive their accounts as
being important, and thus longer passwords are selected. Of
particular interest to our observations is that the CSDN dateset
has much fewer passwords of length 6 and 7 as compared to
other datasets. This may be due to the fact that www.csdn.net
(as well as many other web services) started with a loose
password policy and later on enforced a strict policy (e.g.,
requiring the passwords to be of a minimum-8 length). We
also note that passwords from www.christian-singles.org are
all no longer than 8 characters, which may be due to a
policy that prevents users from choosing passwords longer
than 8 characters. Such a policy still exits in many financial
companies [39], and a plausible reason may be that the shift
to longer allowed password lengths is a non-trivial issue.



C. Linear regression
In statistics, linear regression is the most widely used

approach for modeling the relationship between two variables
by fitting a linear equation to the observed data. One variable
is considered to be an explanatory variable, and the other
one is considered to be a dependent variable. Usually, linear
regression refers to a model in which, given the value of x, the
conditional mean of y is an affine function of x: y = a+ b ·x,
where x is the explanatory variable and y is the dependent
variable. The slope of the line is b, and a is the intercept.

The most common method for fitting a regression line is by
using least-squares. This method computes the best-fitting line
for the observed data by minimizing the sum of the squares
of the vertical deviations from each data point to the line.
For example, if a point lies on the fitting line exactly, then its
vertical deviation is 0. More specifically, from the experiments
we collect a bunch of data: (xi, yi), 1 ≤ i ≤ N . We expect
y = a+ b · x+ ε, where a, b are constants and ε is the error.
If we choose b =

∑N
i=1(xi−x̄)(yi−ȳ)∑N

i=1(xi−x̄)2
and a = ȳ − bx̄, where

x̄ is the arithmetical mean of xi, and similarly for ȳ. Then
the sum of the squares of the errors

∑N
i=1(yi − a − b · xi)

2

is minimized. In regression, the coefficient of determination
(denoted by R2 ∈ [0, 1]) is a statistical measure of how well
the regression line approximates the real data points: the closer
to 1 the better. A R2 value of 1 indicates that all data points
perfectly dwell on the regression line.

D. The Kolmogorov-Smirnov test
Besides R2, we further employ statistical tests to measure

the “distance” between the sample and the theoretic distribu-
tion model. Since passwords are unlikely to obey the normal
distribution, non-parametric tests shall be used. KS test is
one of the most popular non-parametric tests for discrete data
[40], [41]. It quantifies the distance between the cumulative
distribution function (CDF) Fn(x) of an empirical distribution
and the CDF F (x) of the theoretic distribution:

D = sup
x

|Fn(x)− F (x)| ,
where n is the sample size and supx is the supremum of the
set of distances. This statistic D can be adopted to conduct a
rigorous test. Since the CDF of D is given by

Pr(
√
nD ≤ x) = 1−2

∞∑
i=1

(−1)i−1e−2i2x2

=

√
2π

x

∞∑
i=1

e
(2i−1)2π2

−8x2 ,

to see how unlikely such a large outcome of D would be if
the hypothesis is true, one can compute the p-value by:

Pr(
√
nD > x) = 2

∞∑
i=1

(−1)i−1e−2i2x2

.

The null hypothesis is that the assumed theoretic distribution
is acceptable, while the alternative is that it is not. A larger p-
value indicates it is safer for us to assume that the data tested is
not significantly different from the hypothesized distribution.

IV. THE ZIPF’S LAW IN USER-CHOSEN PASSWORDS

We now provide a new observation of passwords and show
that, as opposed to previous research (e.g., [19], [20]), Zipf’s
law is highly likely to exist in real-life passwords. Besides
regular statistical tests, we further justify our methodology in a
reverse prospective by simulating a perfect Zipf’s distribution
and seeing its regression behavior. We also show the wide
applicability of our Zipf model.

A. Our methodology
Initially, probabilistic context-free grammars (PCFG) is a

machine learning technique used in natural language process-
ing (NLP), yet Weir et al. [28] managed to exploit it to
automatically build password mangling rules. Very recently,
NLP techniques have also been shown useful in evaluating the
security impact of semantics on passwords [42] and in dealing
with the sparsity problem in passwords [31].

Inspired by these earlier works, in this study we make an
attempt to investigate whether the Zipf’s law,2 which resides in
natural languages, also exists in passwords. The Zipf’s law was
first formulated as a rank-frequency relationship to quantify
the relative commonness of words in natural languages, and it
states that given some corpus of natural language utterances,
the frequency of any word in it is inversely proportional
to its rank in the frequency table. More specifically, for a
natural language corpus listed in decreasing order of frequency,
the rank r of a word and its frequency fr are inversely
proportional, i.e. fr = C

r , where C is a constant depending
on the particular corpus. This means that the most frequent
word will occur about two times as often as the second most
frequent word, three times as often as the third most frequent
word, and so on. Zipf’s law was shown to account remarkably
well (i.e., R2 ≈1) for the distribution of intensity of wars [41],
software packages [44] and the Internet topology [45].

Interestingly, by excluding the least popular passwords from
each dataset (i.e., passwords with less than three or five counts)
and using linear regression, we find the distribution of real-life
passwords obeys a similar law: For a password dataset DS , the
rank r of a password and its frequency fr follow the equation:

fr =
C

rs
, (1)

where C and s are constants depending on the chosen dataset,
which in turn is probably determined by many confounding
factors such as the type of web services to be protected,
the underlying password policy adopted by the site, and the
demographic factors of users (like age, gender, educational
level, profession and language). Zipf’s law can be more easily
observed by plotting the data on a log-log graph (base 10 in this
work), with the axes being log(rank order) and log(frequency).
In other words, log(fr) is linear with log(r):

logfr = logC − s · logr. (2)

As can be seen from Fig. 1(a), 16.23 million passwords from
the website www.dodonew.com conform to Zipf’s law to such
an extent that the coefficient of determination (denoted by R2)
is 0.995531, which approximately equals 1. This indicates that
the regression line logy= 4.618284− 0.753771∗logx well fits
the popular passwords from Dodonew. This popular part is the
primary security concern as it consists of just these vulnerable
passwords: attackers would try these popular passwords first
[20]. As illustrated in Fig. 1(b) and Fig. 2, passwords from
the other twelve datasets also invariably adhere to Zipf’s
law and the regression lines well represent the data points
from corresponding datasets. Due to space constraints and the
aforementioned imperfect nature of Hak5 dataset, we do not
present its related Zipf curve here, though actually its fitting
line also has a high R2 of 0.923.

2Zipf’s law distributions are also called Pareto or power-law distributions,
and they can be derived from each other when the variable is continuous [43].



TABLE V. LINEAR REGRESSION (LR) RESULTS OF FOURTEEN PASSWORD DATASETS (“PWS” STANDS FOR PASSWORDS)

Dataset Totoal Least Fraction of Unique PWs Absolute value Zipf regression Coefficient of Kolmogorov-Smirnov test
PWs freq. used PWs in LR in LR (N ) of the slope (s) line (logy) determination(R2) Statistic D p-value

Tianya 30,233,633 5 0.50443286 486,118 0.905773 5.806523 − 0.905773∗logx 0.994204954 0.005190 0.075972
Dodonew 16,231,271 5 0.21640911 187,901 0.753771 4.618284 − 0.753771∗logx 0.995530686 0.001746 0.412139
CSDN 6,428,287 5 0.29841262 57,715 0.894307 4.886747 − 0.894307∗logx 0.985106832 0.001338 0.318784
Duowan 4,982,740 5 0.28653592 51,797 0.841926 4.666012 − 0.841926∗logx 0.976258449 0.004455 0.453535
Myspace 41,545 3 0.08094836 706 0.459808 1.722674 − 0.459808∗logx 0.965861431 0.000794 0.600451
Singles.org 16,250 3 0.22135384 658 0.518096 1.875405 − 0.518096∗logx 0.970277755 0.001452 0.743150
Faithwriters 9,709 3 0.12472963 242 0.486348 1.583425 − 0.486348∗logx 0.974175889 0.000376 0.899661
Hak5 2,987 3 0.15400067 76 0.643896 1.579116 − 0.643896∗logx 0.922662999 0.009256 0.000019
Rockyou 32,603,388 5 0.49600581 563,074 0.912453 5.913362 − 0.912453∗logx 0.997298647 0.004994 0.071003
000webhost 15,251,073 5 0.19687867 229,725 0.624446 7.354124 − 0.624446∗logx 0.989437653 0.002056 0.621795
Yahoo 453,492 3 0.22668537 12,608 0.675910 3.176150 − 0.675910∗logx 0.983232690 0.002463 0.354603
Gmail 4,926,650 5 0.29617143 77,397 0.799443 4.903847 − 0.799443∗logx 0.995817202 0.004374 0.170518
Mail.ru 4,938,663 5 0.33034872 83,914 0.732600 4.332851 − 0.732599∗logx 0.970047769 0.004945 0.206273
Yandex.ru 1,261,810 5 0.34210777 26,003 0.620519 3.394671 − 0.620519∗logx 0.972507203 0.008792 0.000155

(a) 16M Dodonew passwords: R2 = 0.996 (b) 32M Rockyou passwords: R2 = 0.997

Fig. 1. Zipf’s law in two example password datasets. Dodonew includes passwords of Chinese users, while Rockyou includes passwords of English users.

More precisely, as summarized by the “Coefficient of de-
termination” column in Table V, every regression (except for
Hack5) is with a R2>0.965, which closely approaches to
1 and indicates a remarkably sound fitting. As for “Hak5”,
its R2 is 0.923, which is, though acceptable, not as good
as that of other datasets. A plausible reason may be that it
only contains less than 3000 passwords and probably can not
represent the real distribution of the entire password dataset
of www.hak5.org. What’s more, how the datasets leak may
have a direct effect on R2. As can be confirmed by Table
V, datasets leaked by phishing attacks are likely to have a
lower R2 as compared to those of datasets leaked by website
breaches, because phishing attacks generally can only obtain
a limited portion of a website’s passwords, while website
breaches, once succeed, all (or at least an overwhelming part
of) of the website’s passwords will be harvested.

In addition, we employ the KS test [40], [41] to evaluate
the goodness-of-fit and 12 out of the 14 regressions are
with a p-value>0.05 (see Table V). This means that, at the
most widely recognized 0.05 significance level,3 all these 12
datasets exhibit no statistically significant difference from a
Zipf-like distribution. Again, the low KS p-values of Hak5
and Yandex.ru are likely due to the fact that these two datasets
are obtained by phishing and thus their representativeness of
human behaviors may be insufficient.

The reason why we need to prune the least frequent pass-
words will be elaborated in Section IV-B. The selection of
a specific small value (e.g., 3 or 5) as the threshold of least
frequency (LF ) is essentially based on the findings in statistics

3Because of the effect of sample size on the practical significance of a
statistical test [46], in order to kept the 0.05 significance level meaningful for
our million-sized datasets, we adjust the KS sample size for each dataset to
5*105, a comparable one to [40], [41]. For more details, see Appendix A.

that (see Fig. 3 of [41]): when the sample size is smaller
than the sample space, the regression first improves greatly
as LF progressively increases until reaching the best point p̂,
after which the regression deteriorates (because of dwindling
the sample size) extremely slowly as LF increases. We have
performed a series of incremental experiments to identify the
exact LF that enables the regression to reach p̂, and find that,
as a useful guideline, for large datasets of million-scale, one
can set LF = 5, otherwise set LF = 3. Note that, to qualify
as a proper model for a dataset, a distribution function f(x)
shall hold within a range xmin ≤ x ≤ xmax of at least 2 ∼ 3
orders of magnitude (i.e., xmax/xmin ≥ 102∼3) [44]. Except
for Hack5, this condition is satisfied by all our regressions.

TABLE VI. COMPARISON OF OUR METHOD WITH THAT OF [41]

Dataset Zipf model from [41] Our Zipf model
xmin Zipf s= 1

α−1 KS p-value Time(sec.) Zipf s KS p-value Time(sec.)

Myspace 3 0.495050 0.012627 1.562 0.459808 0.600451 0.053
Yahoo 4 0.709220 0.167721 166.728 0.675910 0.354603 0.495

Yandex.ru 1 0.543478 0.015413 9515.634 0.620519 0.000155 1.761
Mail.ru 1 0.490196 4.65E-13 82962.997 0.732600 0.206273 5.612

We have also used more complex ways (see pp.12 of [41])
to estimate this threshold and attempted to more accurately
determine the distribution parameters, yet these methods are
unworkable due to two reasons. Firstly, they first need to
determine the parameters of a Power-law distribution, and then
convert the Power-law parameters to the Zipf’s law parameters.
This is unsuitable for discrete variables (e.g., rank of password
in our setting). We have tried some conversions (see Table
VI), yet the KS tests reject most of them (i.e., p-value<0.05).
Secondly, their time complexity is in O(|DS|2), which is
unsuitable for modeling large datasets. For instance, when
using the codes provided by [41] to process 32M Rockyou, it
would take over 306 hours to complete on a moderate computer
(i7-4790K 4.00GHz CPU and 16G RAM). In contrast, our



(a) Zipf’s law in passwords of Chinese users (b) Zipf’s law in passwords of English users (c) Zipf’s law in passwords of Russian users

Fig. 2. Zipf’s law in eleven real-life password datasets from three different populations, plotted on a log-log scale. Detailed Zipf parameters are referred to
Table V. Though a few top-popular passwords do not lie on the fitting line, they are negligible as compared to the ones that dwell on the fitting line.

simple approach is in O(|DS|) time complexity and would
take only 37.58s. Fortunately, the regression results in Table
V show that our selection of the LF threshold is satisfactory:
every regression attains a R2 close to 1 and most of the KS
tests accept our Zipf assumption (i.e., p-value>0.05).

Two other critical parameters involved are N and s, which
stand for the number of unique passwords used in regression
and the absolute value of the slope of regression line, respec-
tively. While there is no obvious relationships between N and
s, we find that: (1) there is a close linking between N and
the total passwords — the larger N is, the larger the latter
will be; (2) the parameter s falls in the range [0, 1], which is
different from other social phenomena (e.g., intensity of wars
and frequency of family names [41]) that are with s > 1.

B. Justification for our methodology
Malone and Maher [19] have also attempted to investigate

password distributions. Yet contrary to our findings that user-
generated passwords are Zipf distributed and that it is the
popular passwords (i.e., the front head of the whole passwords)
that natively follow the Zipf’s law, they concluded that their
datasets (including 32M Rockyou) are “unlikely to actually
be Zipf distributed” and that “while a Zipf distribution does
not fully describe our data, it provides a reasonable model,
particularly of the long tail of password choices.” We figure
out the primary cause of their different observations — they
fitted all the passwords of a dataset to the Zipf model.

Unpopular passwords (e.g., with f < 3) constitute a non-
negligible fraction of each dataset (see Table V) and become
the long tail of password choices (see Fig. 1 of [19]) or the
“noisy tail” in the statistical domain [43], yet they fail to reflect
their true popularity according to the law of large numbers.
More specifically, for a given password pwi, each observation
can be seen as a random Bernoulli variable with mean µ =
ppwi and standard deviation σ = ppwi(1 − ppwi) [20], where
ppwi is the true probability of pwi. After |DS| samples, pwi’s
empirical probability fpwi

|DS| is a binomial-distributed random

variable with µ=ppwi and σ=
√

ppwi
(1−ppwi

)

|DS| , where fpwi is
the frequency of pwi in the password dataset DS . Because
generally 1-ppwi≈1, this gives a relative standard error (RSE):

σ

µ
=

√
ppwi

(1− ppwi
)

|DS|
· 1

ppwi

≈

√
fpwi

|DS|2
· |DS|
fpwi

=

√
1

fpwi

This means that the true probability ppwi can be well approx-
imated by the empirical probability fpwi

|DS| only when fpwi is

relatively large. For instance, we can ensure a RSE< 1
2 when

fpwi>4 and a RSE> 1√
3

when fpwi<3. Thus, these unpopular
passwords will greatly negatively affect the goodness of fitting
when the entire dataset is used in regression. This well
explicates why diametrically opposed observations are made
between [19] and this work, and this also provides a direct
reason for the necessity of pruning the unpopular passwords.

We observe that there exists a more essential (yet subtle)
reason: even if the password population perfectly follows a
Zipf-distribution, the million-sized samples (e.g., 30 million
Tianya and 32 million Rockyou) are still too small to wholly
exhibit this intrinsic feature. For example, csdn.net adopts a
policy that allows passwords consisting of letters and numbers
and with a length of 8 to 16. This means that a user’s
password (denoted by a stochastic variable X) will have
about |X|=6216 − 628 ≈4.8∗1029 possible (distinct) values
under this policy. But we have only got 6.42∗106 CSDN
passwords from the leakage, a very small sample size as
compared to |X|. Owing to the polynomially decreasing nature
of probability in a Zipf distribution (see Eq.1), low probability
events (e.g., with f < 3) will overwhelm high probability
events in a small sample, and thus such a small sample
without exclusion of unpopular events is highly unlikely to
reflect the true underlying distribution. It follows that, when
fitting all passwords of relatively small datasets, the regression
will be negatively affected by these unpopular passwords and
no marked rule can be observed even if the front head of
passwords (i.e., popular ones) exhibits a good Zipf property.

We emphasize that, though these least frequent passwords
do not natively show the Zipf behavior, this fact does not
contradict our assertion that the password population (of a
site) is highly likely to follow a Zipf distribution. Table V
shows that, generally, the larger the dataset is (or equally, the
larger the sample size is), the larger the fraction of popular
passwords (i.e., passwords used in regression) will be. Based
on this trend, one can expect that, had the dataset been
sufficiently large, unpopular passwords would be few and
whether excluding them or not would have little impact on the
goodness of the fitting. That is, the entire dataset will exhibit
a Zipf property. Fortunately, one of our follow-up work (see
http://t.cn/R4cVxeo) on the distribution of user-chosen PINs,
a special kind of passwords, well confirms this inference. One
can see that, most of the examined 4-digit PIN datasets can be
wholly fitted into a Zipf model — even if PINs with f < 10
are excluded, there are still over 94% of the datasets left in
the regression, well following the Zipf’s law (R2 > 0.97).

http://t.cn/R4cVxeo


TABLE VII. EFFECTS OF SAMPLE SIZE AND LEAST FREQUENCY (LF)
ON REGRESSION WHEN SIMULATING A ZIPF DISTRIBUTION. THE BEST

SIMULATIONS ARE IN BOLD.
Zipf Zipf Z Sample LF # of Unique Passwords used Fitted Fitted

R2

N s Z size passwords in regression(%) N s
1000 0.9 Z 100 1 71.197 100.00% 71.197 0.429486 0.754566
1000 0.9 Z 100 2 71.262 41.10% 12.361 0.641264 0.884263
1000 0.9 Z 100 3 70.963 27.20% 5.307 0.719897 0.894042
1000 0.9 Z 100 4 71.068 20.59% 3.173 0.683547 0.916477
1000 0.9 Z 100 5 70.765 17.01% 2.215 0.622484 0.953243
1000 0.9 Z 200 1 123.933 100.00% 123.933 0.516278 0.822066
1000 0.9 Z 200 2 124.103 51.49% 27.074 0.688394 0.923847
1000 0.9 Z 200 3 123.795 36.71% 12.145 0.761613 0.935451
1000 0.9 Z 200 4 124.121 29.57% 7.392 0.785336 0.930795
1000 0.9 Z 200 5 123.954 25.08% 5.242 0.784747 0.921241
1000 0.9 Z 500 1 245.459 100.00% 245.459 0.633549 0.895852
1000 0.9 Z 500 2 246.040 65.37% 72.899 0.724630 0.951529
1000 0.9 Z 500 3 245.482 50.10% 34.245 0.796940 0.969880
1000 0.9 Z 500 4 245.697 42.34% 21.499 0.819386 0.970288
1000 0.9 Z 500 5 245.586 37.51% 15.372 0.834885 0.966581
1000 0.9 Z 1000 1 389.360 100.00% 389.36 0.730031 0.937941
1000 0.9 Z 1000 2 388.014 76.00% 148.053 0.756649 0.965318
1000 0.9 Z 1000 3 388.733 61.18% 74.478 0.807381 0.979783
1000 0.9 Z 1000 4 388.774 53.08% 47.184 0.833071 0.983395
1000 0.9 Z 1000 5 388.839 47.69% 33.829 0.847137 0.983550
1000 0.9 Z 2000 1 573.821 100.00% 573.821 0.835995 0.964407
1000 0.9 Z 2000 2 573.607 85.62% 286.058 0.790817 0.977339
1000 0.9 Z 2000 3 574.446 72.75% 158.041 0.818059 0.985691
1000 0.9 Z 2000 4 574.011 64.39% 102.03 0.840089 0.989460
1000 0.9 Z 2000 5 574.229 58.66% 73.534 0.854452 0.990812
1000 0.9 Z 5000 1 828.243 100.00% 828.243 0.963949 0.963691
1000 0.9 Z 5000 2 828.466 95.20% 588.56 0.861714 0.989008
1000 0.9 Z 5000 3 827.675 87.58% 397.276 0.842637 0.991843
1000 0.9 Z 5000 4 828.601 80.29% 276.308 0.849865 0.993588
1000 0.9 Z 5000 5 828.281 74.49% 203.349 0.859765 0.994832
1000 0.9 Z 10000 1 953.483 100.00% 953.483 1.013698 0.943442
1000 0.9 Z 10000 2 953.545 98.85% 838.141 0.929787 0.985080
1000 0.9 Z 10000 3 953.125 95.82% 686.791 0.884120 0.994655
1000 0.9 Z 10000 4 953.483 91.47% 541.471 0.867965 0.996179
1000 0.9 Z 10000 5 953.365 86.84% 425.614 0.866388 0.996641

∗For the 120 complete experiments, readers are referred to http://t.cn/R4ccgiF.

To further justify our assertion that user-chosen password
samples (i.e., datasets) follow Zipf’s law, we investigate the
regression behaviors of samples that are randomly drawn from
a perfect Zipf distribution, and see whether these two types
of samples show the same regression behavior. We explore
three parameters, i.e., exact distribution (3 kinds), sample size
(8 kinds) and the least frequency concerned (5 kinds), that
might influence a regression and thus perform a series of
120(=3·5·8) regression experiments. More specifically, suppose
that the stochastic variable X follows the Zipf’s law and
there are N=103 possible values {x1,x2,· · · ,x103} for X .
Without loss of generality, the distribution law is defined
to be {p(x1)=

C/1s∑N
i=1

C
is

= 1/1s∑N
i=1

1
is

, p(x2)=
1/2s∑N
i=1

1
is

,· · · , p(xN )

= 1/Ns∑N
i=1

1
is
}, where the sample space N and the slope s

define the exact Zipf distribution function. To be robust, each
experiment is run 103 times; For better comparison, each
experiment is with only one parameter varying. Due to space
constraints, Table VII only includes 35 experiments where Zipf
N is fixed to 103, Zipf s is fixed to 0.9, the sample size
varies from 102 to 104 and LF increases progressively from
1 to 5. Readers are referred to all 120 experimental results
in http://t.cn/R4ccgiF. Note that some integral statistics (e.g.,
the fitted N ) in Table VII are with decimals, because they are
averaged over 1000 repeated experiments.

Our results on 120 experiments show that, given a Zipf
distribution (i.e., when the Zipf parameters N and s are fixed),
no matter the sample size is smaller than, equal to or larger
than N , larger LF will lead to a better regression (i.e., the
fitted s is closer to the Zipf s, and R2 is closer to 1) at
the beginning, but will worsen the situation as LF further
increases. More specifically, when the sample size is smaller

than N , the fitted s first increases and then decreases as LF
increases progressively; When the sample size is larger than N ,
on the contrary, the fitted s first decreases and then increases
as LF increases progressively. Thus, we can identify the best
fittings (in bold) and from them we can see that, the larger the
sample size is, the larger the fraction of popular events will
be used in regression. This behavior well complies with our
observation on real-life password datasets.

Particularly, when the sample size is sufficiently large (e.g.,
104≫N=103), popular events (e.g., f ≥ 4) invariably account
for over 90% of each sample and well follow Zipf’s law
(R2≥0.99). This behavior well agrees with our regressions on
PINs and with our inference on password datasets. In addition,
when the sample size is much smaller than the sample space N ,
unpopular events constitute the majority yet we have to exclude
them to obtain a good fitting. This justifies our methodology of
data processing when performing regression analyses, because
the sizes of real-life password datasets are generally much
smaller than the password sample space. Overall, the behaviors
shown in our regressions on 14 datasets well accord with the
120 simulated experiments, thereby confirming our assertion
that the password population is highly likely to follow the
Zipf’s law.

C. General applicability of the Zipf model
From Section III we can see that, our fourteen datasets

include passwords created before 2006 (see Myspace) and also
as recent as Oct. 2015 (see 000webhost), cover 12 kinds of web
services and three kinds of languages, and represent a variety
of culture (faith) backgrounds. Fortunately, both coefficient of
determination and KS test show that, these diversified datasets
well follow Zipf’s law. This to a large extent demonstrates the
wide applicability of our Zipf model.

However, in previous regressions we have only focused
on datasets that are generated under loose password creation
policies. Table II∼IV show that quite short and letter-only
passwords appear in every dataset, which suggests that there
is no evident length or character requirement for generating
passwords in any site. Arguably, a more precise explanation for
this phenomenon is that most of these passwords are created
under a mixture of unknown policies: Initially, there is no rule;
Later on, some stricter (or looser) rule(s) is applied; Sometime
later, the sites were hacked. Yet, this is not true in some cases,
especially for security-critical services which may implement
strict policies at the very beginning.

To further establish the applicability of our findings, two
special kinds of password datasets created under more con-
strained (yet quite realistic) password policies are considered:
(1) Datasets with password lengths satisfying some minimum
length (e.g., at least length-8); and (2) Datasets with each
password being a mix of letters and numbers (e.g., at least
one letter and one number).

Since we did not have exact examples of passwords exactly
generated under some specific creation policies with a length
or composition requirement (as far as we know, there is no
such ideal data publicly available), we attempted to model
such policies by further dividing these datasets based on the
minimum length or composition requirement. However, it may
be meaningless to simply divide an existing dataset according
to some artificial policy, because user behaviors will be largely
skewed in this process. A collateral evidence of this caution is

http://t.cn/R4ccgiF
 http://t.cn/R4ccgiF


the observation that, passwords created under an explicit policy
“cannot be characterized correctly simply by selecting a subset
of conforming passwords from a larger corpus” and “such a
subset is unlikely to be representative of passwords created
under the policy in question” [13]. Mazurek et al. [12] reported
a similar observation. Fortunately, after careful examination of
our fourteen datasets (see Table III and Table IV), we find that:

(1) Only 2.17% passwords in CSDN are with a length<8.
These short passwords are highly due to the initial loose
policy and the other remaining 97.83% long passwords
are due to the later enhanced password policy. This
transition in password policies can be confirmed by [4];

(2) As high as 75.79%(=69.77%+6.02%) passwords in Mys-
pace are composed of both letters and numbers, and more
than 18.24% users select passwords with a sequence of
letters concatenated with the number “1”. This highly
suggests that there was a transition in composition re-
quirements at sometime before the hacking happened,
though by no means can we confirm this transition.

Consequently, these two datasets constitute useful subset-
s that are representative of passwords complying with the
above two constrained password policies, respectively. More
specifically, 97.83% long passwords from CSDN constitute a
dataset created under a policy that requires passwords to be
at least eight characters long, and 75.79% passwords from
Myspace constitute a dataset created under a policy that
requires passwords to be at least one letter and one number.
And we call them “csdn-lc” and “myspace-cc” for short,
where “lc” stands for “length constrained”, and “cc” stands
for “character constrained”. The linear regression results on
these two refined datasets are depicted in Fig. 3(a) and 3(b),
respectively. We can see that, the coefficients of determination
(R2) of these two regressions are 0.966 or higher, indicating a
sound fitting. This suggests that Zipf’s law can also be applied
to passwords created under very constrained policies.

To investigate whether subsets of a dataset that obeys Zipf’s
law also comply with this law, we further conduct linear
regressions on subsets randomly selected from the fourteen
datasets. As expected, there are no significant differences in
fitting effect between any of the subsets and their parent dataset
(Fisher’s exact test, p-value≥0.05). Due to space constraints,
only four randomly selected subsets (each with a size of 1
million) from Duowan are depicted in Fig. 3(c) ∼ Fig. 3(f).
As R2 of these four regressions are all 0.977 and very close to
1, it indicates Zipf’s law fits well in these subsets. This implies
that if we can obtain a sufficiently large subset of passwords
of an authentication system, then the distribution of the whole
passwords can be largely determined by conduction a linear
regression and fitting them to a Zipf’s law. Nevertheless, how
much fraction of a dataset can be deemed “sufficiently large”?
How about one sixth, one tenth, or one hundredth? This
suggests a natural direction for future research.

To the best of our knowledge, the datasets used in this work
are so far the most diversified and among the largest ones, and
they are of sound representativeness. It is expected that our
Zipf model would provide a much better understanding of the
distributions of human-generated passwords and can be widely
applicable. With our Zipf theory, now it is becoming possible
to compute the right threshold for popularity-based password
policies (see Appendix B) and to accurately assess the strength
of password datasets as we will show in the following section.

V. STRENGTH METRIC FOR PASSWORD DATASET

In this section, we address the question as to how to
accurately measure the strength of a given password dataset.
As one practical application of our Zipf theory, an elegant and
accurate statistical-based metric is suggested.

A. Our metric
Normally, a smart offline guessing attacker,4 would always

attempt to try the most probable password first and then
the second most probable password and so on in decreasing
order of probability until the target password is matched. In
the extreme case, if the attacker has also obtained the entire
password dataset in plain-text and thus, she can obtain the right
order of the passwords, this attack is called an optimal attack
[20], [25].5 Accordingly, we can use the cracking result λ∗(n)
to be the strength metric of a given password dataset:

λ∗(n) =
1

|DS|

n∑
r=1

fr, (3)

where |DS| is the dataset size and n is the number of guessing.
In Section IV, we have shown that the distribution of

passwords obeys Zipf’s law, i.e., fr = C
rs . Consequently, λ∗(n)

is essentially determined by N and s (Note that N is the
number of unique passwords, and s is the absolute value of
the slope of the fitting line):

λ∗(n) ≈ λ(n) =

∑n
r=1

C
rs∑N

r=1
C
rs

=

∑n
r=1

1
rs∑N

r=1
1
rs

. (4)

It should be noted that, in Eq. 4, λ∗(n) is not exactly equal
to the value of the rightmost hand even though our regression
line complies with the actual data very well. We plot λ∗(n) as
a function of n according to Eq. 3 and λ(n) as a function of
n according to Eq. 4, and put these two curves together to see
how they agree with each other. In Fig. 4(a), we depict λ∗(n)
and λ(n) for 30.23 million passwords from the Tianya dataset
and obtain an average deviation of 1.32% (i.e., a sound fitting)
for the two curves. Due to space constraints, here we cannot
illustrate the related pictures for the other datasets like that of
Tianya and Myspace, yet we summarize the average deviation
between the two curves λ∗(n) and λ(n) (1 ≤ n ≤ |DS|) for
each dataset in Table VIII.

TABLE VIII. THE AVERAGE DEVIATION BETWEEN λ∗(n) AND λ(n)
(1 ≤ n ≤ |DS|) FOR EACH DATASET

Tianya Dodonew CSDN Duowan Myspace Singles.org Faithwriters Hak5

Avg. Deviation 1.32% 1.76% 1.93% 0.86% 0.88% 1.43% 0.54% 3.05%

As evident from Table VIII, the λ∗(n) curve well overlaps
with the λ(n) curve for each dataset. Specifically, except for
Hak5, the average deviations are all below 2% (i.e., from
0.54% to 1.93%), suggesting sound consistence of λ(n) with
the optimal attacking result λ∗(n). As with Fig. 4, the two
curves for each dataset first deviate slightly when n is small
and then gradually merge into each other as n increases. This is

4The attacks mentioned in this Section are all offline attacks, because our
purpose is to measure the strength of an entire dataset, which is generally
characterized by how much percentage of passwords in salted-hash (or
unsalted-hash) could be successfully recovered (see Section II-B).

5Note that, the optimal attack is of theoretic value (i.e., providing the upper
bound) to characterize the best attacking strategy that an attacker can adopt.
In practice, if an attacker has already obtained all the plain-text passwords,
there is no need for her to order these passwords to crack themselves.
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Fig. 3. Zipf’s law in passwords created under constrained policies and in passwords randomly sampled from a real-life dataset (using Duowan as an example).

(a) Avg. deviation of Dodonew: 1.76% (b) Avg. deviation of Myspace: 0.88%
Fig. 4. Consistence of optimal attack with our metric on two example
datasets (16.2M Dodonew and 41.5K Mysapce). Our metric performs well.

mainly caused by the deviation of the first few high-frequency
passwords from the Zipf fitting line (see Fig. 2).

Now that the optimal attack can be well approximated by
λ(n), it is natural to propose the pair (NA, sA) to be the
metric for measuring the strength of password dataset A, where
NA is the number of unique passwords used in regression and
sA is the absolute value of the slope of the fitting line. Note
that, essentially, measuring a password dataset is equivalent
to measuring the policy under which this dataset is created.
In the following, we propose a theorem and a corollary, and
show that our metric not only is able to determine whether
the strength of a service’s password dataset becomes weak
after a period of time, but also can be used to compare the
strength of datasets from different web services. This feature
is rather appealing, for the confidence of security only comes
after comparison–having a comparison with other similar web
services, the security administrators now have a clearer picture
about what level of strength their datasets can provide. The
recent litany of catastrophic password leakages (e.g., [33],
[37]) provides good materials to facilitate such comparisons.

Theorem 1: Suppose NA ≥ NB , sA ≤ sB . Then
λA(n) ≤ λB(n),

where 0 ≤ n ≤ NA (if n > NB , define λB(n) = 1). If
either inequalities of the above two conditions is strict, then
λA(n) < λB(n), where 0 < n < NA.

The theorem will be proved in Section V-B, and in Section
V-C its compliance with cracking results will be shown by
the simulated optimal attack and the state-of-the-art cracking
algorithm (i.e., Markov-based [31]), respectively.

Corollary 1: Suppose NA ≤ NB , sA ≥ sB . Then
λA(n) ≥ λB(n),

This corollary holds due to the evident fact that it is exactly
the converse-negative proposition of Theorem 1.

The above theorem and corollary indicate that, given two
password datasets A and B, we can first use liner regression
to obtain their fitting lines (i.e., NA, sA, NB and sB), and then
compare NA with NB , sA with sA, respectively. This gives
rise to four cases: (1) If NA ≥ NB and sA ≤ sB , dataset A
is stronger than dataset B; (2) If NA ≤ NB and sA ≥ sB ,
A is weaker than B; (3) For the remaining two cases where
NA ≥ NB, sA ≥ sB or NA ≤ NB, sA ≤ sB , the relationship
between λA(n) and λB(n) is parameterized on the discrete
variable n, and thus it is non-deterministic (i.e., unable to reach
a direct conclusion). In such cases, we may have to draw the
cure (search space n VS. success rate) with n ranging from
1 to N , similar to other methods such as the cracking-based
approach (e.g., PCFG-based [28] and markov-based [31]).

The most relevant statistical-based metric to ours may
be Bonneau’s α-guesswork [20], which has won the NSA
2013 annual “Best Scientific Cybersecurity Paper Award” (see
Appendix C). We find this metric is subject to an inherent flaw,
and fortunately we manage to fix it. The flaw and the fix do
not affect our following analysis however, and thus they are
presented in Appendix C. In all four cases, α-guesswork [20]
is non-deterministic, i.e., it is inherently parameterized on the
success rate α (e.g., a relationship of G0.49(A) > G0.49(B)
can never ensure that G0.50(A) ≥ G0.50(B)). Bonneau [20]
cautioned that “we can’t rely on any single value of α, each
value provides information about a fundamentally different
attack scenario.” In this light, our metric is simpler.
Some Remarks. Note that, as with the entropy metric rec-
ommended in the NIST SP800-63-2 document [7] and the α-
guesswork proposed in [20], our metric is mainly effective on



password datasets that are in clear-text or un-salted hash and
cannot be applicable to passwords in salted-hash. This is an
inherent limitation of all statistic-based metrics (e.g., [7], [20]
and ours). For salted-hash passwords, one needs to resort to
attacking-based approaches (e.g., [31]), albeit at the cost of
reduced accuracy (as we will show in Section V-C, attacking-
based approaches in their current form are subject to too many
uncertainties). Also note that, there could be weak policies
that result in a good metric, like requiring users to type their
usernames as the start of a password. Obviously, this would
make all passwords more unique and leads to a better metric,
but it wouldn’t at all increase the resistance of passwords if the
attacker knows the underlying policy. This constitutes another
limitation of statistic-based metrics. In this case, one also needs
to resort to attacking-based approaches.

B. Proof of the theorem
Obviously the theorem holds when NA = NB, sA = sB .

First we prove the theorem under the condition sA = sB = s,
NA > NB . Recall that fr = C

rs , we denote the probability
of a password with rank r be pr(=

fr
sum = C

rs·sum ). Then∑NA

r=1
CA

rs = 1,
∑NB

r=1
CB

rs = 1, and CA = 1∑NA
r=1

1
rs

<

1∑NB
r=1

1
rs

= CB . So when 1 ≤ n ≤ NB , we have

λA(n)− λB(n) = (CA − CB)(
n∑

r=1

1

rs
) < 0.

When NB + 1 ≤ n ≤ NA − 1, we can get

λA(n)− λB(n) < 1− 1 = 0.

Next we prove the theorem under the conditions NA =
NB = N, sA < sB ,

0 < CA =
1∑N

r=1
1

rsA

<
1∑N

r=1
1

rsB

= CB.

When 1 ≤ n ≤ N − 1,
λA(n)− λB(n) =

∑N
r=1

CA

rsA −
∑N

r=1
CB

rsB

=CACB(

N∑
r1=1

1

rsB1

n∑
r2=1

1

rsA2
−

N∑
r1=1

1

rsA1

n∑
r2=1

1

rsB2
)

=CACB(

n∑
r1=1

1

rsB1

n∑
r2=1

1

rsA2
+

N∑
r1=n+1

1

rsB1

n∑
r2=1

1

rsA2

−
n∑

r1=1

1

rsA1

n∑
r2=1

1

rsB2
−

N∑
r1=n+1

1

rsA1

n∑
r2=1

1

rsB2
)

=CACB(
∑

1≤r2≤n<r1≤N

(
1

rsB1 rsA2
− 1

rsA1 rsB2
))

=CACB(
∑

1≤r2≤n<r1≤N

1

rsA1 rsB2
((
r1
r2

)sA−sB − 1)).

For r1 > r2, sA < sB , so ( rAr2 )
sA−sB < 1. Further, we have

λA(n)− λB(n) < 0.

Now the only left situation is NA > NB , sA < sB . We
choose a password dataset C satisfying NC=NA, sC=sB , then

λA(n) < λC(n) 1 ≤ n ≤ NA − 1

λC(n) < λB(n) 1 ≤ n ≤ NA − 1

Thus λA(n) < λB(n). This completes the proof.

C. Experimental results
In this subsection, we further use the simulated optimal

attack and the state-of-the-art password attacking algorithm
on real-life passwords to show that our metric is practically
effective. It has recently been shown [31], [32] that Markov-
based cracking algorithm generally performs better than other
ones (e.g., PCFG-based [28] and JTR [29]), and thus we prefer
Markov-based algorithm to characterize real-world attacks.

As the optimal attack is of theoretical importance to serve
as the ultimate goal of any real attacks, it can by no means be
seen as a realistic attack, for it assumes that the attacker is with
all the plain-text passwords of the target authentication system.
To see whether our metric is consistent with realistic attacks,
we relax this assumption a bit and suppose that the attacker
has obtained a quarter of the plain-text accounts (passwords) of
the target system and uses them to guess another quarter of the
target system’s passwords in any form (salted-hash or unsalted-
hash). Note that this new assumption is much more realistic,
because most of the compromised web services mentioned in
this work have leaked a large part of their accounts in plain-
text. And thus this new attacking scenario is rather practical
and we call it “simulated optimal attack”.

For better presentation, we divide the eight main datasets
into two groups:6 group one with dataset sizes all larger than
one million and group two smaller than one million. Simulated
optimal attacking results on group one are shown in Fig.
5(a), and results on group two are shown in Fig. 5(b). For
any two datasets in the same group, the attacking results
comply with our metric results listed in Table V. For instance,
from Fig. 5(a) we know that, for any search space size (i.e.,
every n), dataset Duowan is weaker than dataset Dodonew,
which implies Ndodonew > Nduowan, sdodonew < sduowan.
This implication accords with the statistics in Table V.

Furthermore, we perform more realistic guessing attacks
(i.e. Markov-based attacks) to assess the effectiveness of our
metric. As in simulated optimal attacks, we divide the eight
main datasets into two groups according to their sizes and lan-
guages. For the Chinese group, we use CSDN as the Markov
training set; For the English group, we use Myspace as the
Markov training set. As shown in [31], there are mainly three
smoothing techniques (i.e., Laplace, Good-Turing and backoff)
to address the data sparsity problem and two normalization
techniques (i.e., distribution-based and end-symbol-based) to
address the unbalanced password-length distribution problem.
Ma et al. found that the attacking scenario that combines the
backoff smoothing with the end-symbol based normalization
performs the best, and thus we adopt this scenario. The
cracking results for these two groups of passwords are depicted
in Fig. 5(c) and Fig. 5(d), respectively.

It can be seen that the Markov-based attacking results on
most of the datasets are consistent with our metric, and the
only exception that violates our metric is on dataset Hak5.
According to Table V, NHak5 is smaller than that of any
other datasets and sHak5 is larger than that of any other
datasets in the same group, which means Hak5 is the weakest
one. However, Fig. 5(b) shows that, under the Markov-based
guessing attack, Hak5 is the strongest among the three English

6As said earlier, due to space constraints the six auxiliary datasets (see Table
I) are only shown to be Zipf-distributed, and actually, all the other general
properties revealed in this work are also hold by them.



(a) Simulated optimal attacks on Chinese sets (1/4 training set against 1/4 test set) (b) Simulated optimal attacks on English sets (1/4 training set against 1/4 test set)

(c) Markov-based attacks on Chinese datasets (CSDN as the training set, backoff
smoothing and end-symbol normalization)

(d) Markov-based attacks on English datasets (Myspace as training set, backoff smoothing
and end-symbol normalization)

Fig. 5. Simulated optimal attacks (see Figs. 5(a)∼5(b)) and state-of-the-art real-world attacks (see Figs. 5(c)∼5(d)) on two groups of datasets.

test sets. This inconsistence may be because of its non-
representative nature of real-world human password behaviors
, or due to the inappropriateness of the selected training set
and parameters for the Markov-based cracking algorithm.

Of particular interest may be our observation that, in some
cases, Markov-based attacks seem to be much less effective
than simulated optimal attacks. For example, at 105 guesses,
Markov-based attacks on Chinese datasets only achieve suc-
cess rates 14.5%∼28.1%, quite lower than those of simulated
optimal attacks. This gap is more pronounced for English
datasets. It shouldn’t come as a surprise, for the gap in
success rates is due to the inherent weaknesses of cracking
algorithms – their performance relies heavily on the choices
of training sets, smoothing/normalization techniques and may
also external input dictionaries, while such choices are subject
to too many uncertainties. This explains why we, in order
to reach better success rates, divide our datasets into two
groups according to populations, use different training sets
and specially choose smoothing/normalization techniques in
our Markov-based experiments. This also indicates that there
is still room for developing more practical attacking algorithms
that have fewer uncertainties yet are more effective. In a nut-
shell, this highlights the intrinsic limitations of using empirical
attacking results (e.g., [8], [16]) as the strength measurement
of a password dataset, suggesting the necessity of our metric.

VI. CONCLUSION

In this work, we have provided compelling answers to the
fundamental questions: (1) What is the underlying distribution
of user-generated passwords? and (2) How to accurately
measure the security strength of a given password dataset?
More specifically, by adopting techniques from computational

statistics and using 14 real-life large-scale datasets of 127.7
million passwords, we show that Zipf’s law well describes the
skewed distributions of passwords; by exploiting the concrete
distribution function of passwords, we propose a new statistic-
based metric for measuring the strength of a given password
dataset, and both theoretical and empirical evidence establish
the soundness of our metric. It is expected that the unveiling
of Zipf’s law in passwords is also of interest in other password
research domains, and this work lays the foundation for
their further theoretical development and practical application
(e.g., the recent “GenoGuard” password cryptosystem [47] and
“CASH” password hash function [24] have employed both the
theoretical law and numerical results presented in this work).

More work remains to be done on this interesting yet chal-
lenging topic. For instance, what is the underlying mechanism
that leads to the emergence of Zipf’s law in a chaotic process
like the user generation of authentication credentials? How
will the password distribution of a system evolve as time goes
on? Do extremely high value passwords (e.g., for e-banking
accounts) obey Zipf’s law? It is a mixed blessing that, the
chances for such investigations to be conducted in the future
are only increasing as more sites of high values are breached
and more password datasets are made publicly available.
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APPENDIX A
HOW TO SET UP THE KOLMOGOROV-SMIRNOV TESTS FOR

PASSWORD DATASETS

In most previous statistical studies regarding Kolmogorov-
Smirnov (KS) test on power-law or Zipf’s law distribution
(e.g., [1]–[3]), the sample sizes are often relatively small (e.g.,
in hundreds or thousands), and the 0.05 significance level is
generally preferred. This indicates that the 0.05 significance
level can be used for the small password datasets (e.g.,
Myspace and Singles.org) in our study.

However, we also note that nine of our datasets consist of
millions of passwords, and the 0.05 significance level is highly
unlikely to be suitable for KS tests on these large datasets.
This is due to the fact that “given a sufficiently large sample,
extremely small and non-notable differences can be found to be
statistically significant, and statistical significance says nothing
about the practical significance of a difference” [4], which is
known as the effect of sample size on the practical significance
of a statistical test [5]. In addition, significance levels shall
be set according to specific circumstances [4]. For instance,
in genome association studies, significance levels are often as
low as 10−8 for the million-sized genomes [6].

Accordingly, for the KS tests on large password datasets to
be meaningful, the 0.05 significance level shall be adjusted
to a much lower value. However, as far as we know, so far
little attention has been paid to this issue. Now a natural way
to overcome this issue is to reduce the sample size for each
large dataset to a comparable one (i.e., 5 ∗ 105) with that of
[1], [5], when performing the KS tests. More specifically, for
each million-sized password dataset, we randomly draw 5∗105
passwords from it and then use the 5∗105 sampled passwords
to perform a KS test against the fitted Zipf model, and obtain
the corresponding p-value. To ensure validity, this process is
repeated 1000 times for each dataset, and this would produce
1000 sampled p-values for each dataset. Finally, The p-value
for each dataset (as shown in Table V of the main text) is an
average of these 1000 sampled p-values.

APPENDIX B
IMPLICATIONS FOR PASSWORD CREATION POLICIES

Recently, many works on password policy (e.g., [7], [8])
have suggested disallowing users from choosing dangerously-
popular passwords (e.g., 123456 and password123) which
occur with probabilities greater than a predefined threshold T
(e.g., T = 1/106). Surprisingly, their motivation is mainly
based on the mere simple empirical observation that some
users employ undesirably popular passwords and such pass-
words are particularly prone to statistic attacks, a form of
dictionary attack (maybe either online or offline) in which
an attacker sorts her dictionary by popularity and guesses the
most popular passwords first. So far, little underlying rationale
has been given and many foundational questions remain to
be addressed. For example, what’s the fundamental tendency
of growth of the fraction of users that will be affected by
decreasing the popularity threshold T ? What proportion of
users choose popular passwords under a given threshold? What
proportion of users will be affected if we restrict the top
0.0001% most popular passwords? How about restricting the
top 0.01% most popular passwords?

We are now ready to answer these questions. In Section
4 of the main text, we have shown that in most cases,
user-generated passwords well obey the Zipf’s law, which
states that the rank r of a password and its frequency fr
follow the equation fr = C

rs , where C is a constant that
is typically slightly smaller than the frequency of the most
popular password (denoted by F1), i.e., C = f1 ≤ F1. For
illustrative purpose, assume the frequency of user password X
is a continuous real variable, and the corresponding probability
of taking a value in the interval from x to x+ dx is denoted
by p(X = x)dx. According to [9], now p(X = x) obeys a
power law distribution. More specifically,

p(X = x) = C ′ · x−α, (1)

where α = 1+ 1/s, s is as defined in Eq. 1 of the main text.
As for C ′, it is given by the normalization requirement that

1 =

∫ ∞

xmin

p(X = x) dx

= C ′ ·
∫ ∞

xmin

x−α dx

=
C ′

1− α
[x−α+1]∞xmin

,

(2)

where xmin, in practical situations, is defined not to be the
smallest value of x measured but to be the smallest for which
the power-law behaviour holds. As α = 1 + 1/s > 1, we get

C ′ = (α− 1)xmin
α−1. (3)

Thus, the probability that the frequency of a particular
password will be greater than x (x ≥ xmin) is given by

P (X > x) =

∫ ∞

x

p(X = x′) dx′

=
C ′

α− 1
x−α+1 = (

x

xmin
)−α+1.

(4)

Note that by definition, P (X > x) can also be seen as the
cumulative password popularity distribution function. Based
on Eq. 2 and Eq. 3 as well as the fact that α = 1 + 1/s > 2
(see s in Table V of the main text), the largest frequency xT
allowed under a threshold T can be determined

xT = T ·
∫ ∞

xmin

xp(X = x) dx

= T · C ′ ·
∫ ∞

xmin

x−α+1 dx

= T · α− 1

α− 2
xmin.

(5)

We denote the exact fraction of user accounts (with pass-
word frequencies exceeding xT ) that will be potentially and
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Fig. 1. The fraction of users that will be potentially/actually affected by a popularity-based policy, if passwords are distributed following a Zipf law with
exponent s as listed in Table V of the main text.

TABLE I. EFFECTS OF PASSWORD POPULARITY THRESHOLD T ON THE FRACTION OF PASSWORDS WITH UNDESIRABLE POPULARITY (I.E., P ) AND ON
THE FRACTION OF USER ACCOUNTS THAT WILL BE ACTUALLY AFFECTED (I.E., Wa)

Password T =1/1024 T =1/10000 T =1/16384 T =1/1000000

Dataset P Wa P Wa P Wa P Wa

Tianya 0.0001% 6.6023% 0.0015% 10.7586% 0.0023% 11.6473% 0.4416% 30.9110%
Dodonew 0.0001% 1.3926% 0.0009% 3.1556% 0.0014% 3.6298% 0.2958% 11.2351%

CSDN 0.0002% 9.4648% 0.0029% 12.2806% 0.0049% 12.8732% 0.8441% 24.6874%
Duowan 0.0004% 5.8130% 0.0048% 8.8648% 0.0079% 9.6064% 1.6607% 24.4955%

Myspace 0.0054% 0.1228% 0.5358% 2.1952% 1.9007% 4.6961% – –
Singles.org 0.1553% 2.6154% 14.1818% 24.7138% – – – –

Faithwriters 0.1917% 1.3390% – – – – – –
Hak5 3.2327% 10.3113% – – – – – –

Note: A dash “–” stands for “not applicable”, due to the mere fact that 1/T is larger than the size of corresponding dataset.

actually affected by the threshold T to be Wp(X > xT ) and
Wa(X > xT ),1 respectively, where

Wp(X > xT ) =

∫∞
xT

x′p(X = x′) dx′∫∞
xmin

x′p(X = x′) dx′ = (
xT

xmin
)−α+2.

(6)

Wa(X > xT ) =

∫∞
xT

(x′ − xT )p(X = x′) dx′∫∞
xmin

x′p(X = x′) dx′

=
1

α− 1
· ( xT

xmin
)−α+2.

(7)

Using Eqs. 4∼7, we can get the fraction of user accounts
with each of its password lies in the most popular part P (X >
xT ):

Wp(X > xT ) = (P (X > xT ))
(−α+2)/(−α+1). (8)

Since α = 1 + 1/s, Eq. 8 can be re-written as

1Note that, Wp(X > xT ) and Wa(X > xT ) are indeed two independent
and useful indicators to measure the extent to which usability will be affected.
For instance, now if www.dodonew.com enforces a popularity-based policy
with T = 1/1024, then there will be Wp(X > xT )=3.33% accounts with
passwords more popular than T = 1/1024, which means each of these 3.33%
accounts has an equal potential to be required to change a new password.
However, there will only be Wa(X > xT )=2.51% accounts that will actually
be required to choose a different password for the reason that, after Wa(X >
xT )=2.51% accounts have already been changed, the remaining Wp(X >
xT ) − Wa(X > xT )=0.82% accounts will be with passwords less popular
than T = 1/1024.

Wp(X > xT ) = (P (X > xT ))
(1− 1

s )/(−
1
s ) = (P (X > xT ))

1−s.
(9)

Similarly, Eq. 7 can be re-written as

Wa(X > xT ) =
1

α− 1
· (P (X > xT ))

(1− 1
s )/(−

1
s )

= s · (P (X > xT ))
1−s.

(10)

This suggests that the two reduced-usability indicators
Wp(X > xT ) and Wa(X > xT ) follow a Pareto’s law with
a positive exponent 1− s, regarding the cumulative password
popularity distribution function P (X > xT ). For a better
comprehension, in Fig. 1 we depict the form of the curves of
Wp(X > xT ) and Wa(X > xT ) against P (X > xT ) for
various values of s as listed in Table V of the main text.

The steep increase of Wp and Wa at the very beginning
of their curves (see Fig. 1) explicitly reveal that, popular
passwords are overly popular and a non-negligible fraction
of users will be inconvenienced even if only a marginal
proportion of popular passwords are checked. For example,
according to Eq. 10, Wa=2.51% users will be annoyed when
s = 0.7538, T = 1/1024 and P = 0.0001%. To see whether
our theory accords with the reality, we also summarize the
statistical results from eight real-life password datasets in
Table I. One can confirm that, the theoretical Wa exceeds
the empirical Wa by a factor of 1 ∼ 3. The main reason
why the results obtained from our theoretical model are larger
than the experimental statistical results is that, there is a



large proportion of passwords that are not frequent (i.e., their
frequencies are below xmin), which is generally called the
“noisy tail” [2] in the statistical domain. In addition, for
simplicity we have modelled the frequency of a user password,
which is a discrete integer, to be a continuous real variable,
and this will inevitably introduce some deviations.

Though the above theoretical model is not perfectly ac-
curate, as far as we know, it for the first time does reveal
the fundamental tendency of the fraction of users that will
be affected by a popularity threshold and provides insightful,
concise and practical indicators that facilitate policy designers
and security administrators to offer a more acceptable trade-off
between usability and security. For example, under our theory
it is not difficult to see that it might be unreasonable to set
T = 1/106 for Internet-scale sites, for more than 60% users
will be potentially annoyed. However, previous works (e.g.,
[7], [10] just explicitly (or implicitly) suggested such a value
for T . On the other hand, the Zipf’s law revealed in Section
4 of the main text suggests that the frequencies of the most
popular passwords descend at an approximately logarithmic
rate, and thus only a limited proportion of passwords are
overly popular. Consequently, we only need to prevent these
overly passwords and set an appropriate popularity threshold
T . For instance, less than 13% users of most systems will
be annoyed when T is set to the moderate value 1/16384
complying with a Level 2 certification [11], which suggests
that T = 1/16384 would be more acceptable for most Internet-
scale e-commerce sites. This, for the first time, provides
a sound rationale (foundation) that explicates the necessity
and feasibility (as well as precautions) for popularity-based
password policies. We also emphasize that the picture we
draw here is an elementary, plausible (rather than conclusive)
evaluation of the policy usability, and thorough field studies
are still intrinsically necessary.

APPENDIX C
FINDING AND FIXING AN INHERENT FLAW IN THE

STRENGTH CONVERSION OF α-GUESSWORK

To overcome the various problems (e.g., incomparability,
inaccuracy and un-repeatability) in existing password strength
metrics, Bonneau [12] proposed the α-guesswork that relies on
the statistical distribution of passwords and is parameterized
on an attacker’s desired success rate α. It well captures the
reality that a practical attacker A is generally satisfied with
cracking the weak fraction of accounts. This metric has been
widely used in academia [13]–[15] and also won the NSA 2013
annual “Best Scientific Cybersecurity Paper Award” [16]. Here
we report an inherent flaw in its strength conversion and further
manage to figure out how to fix it.

For better comprehension, here we follow the notations in
[12] as closely as possible. The probability distribution is
denoted by X , each password xi is randomly drawn from
X with a probability pi, such that

∑
pi=1. Without loss of

generality, assume p1≥ p2 ≥ · · · ≥ pN , where N is the the
total number of possible events in X . For 0<α≤1, µα(X ) =
min

{
j|
∑j

i=1 pi ≥ α
}

measures the minimal number of fixed
guesses per account that A needs to crack at least a fraction
α of total passwords, and λβ(X ) =

∑β
i=1 pi denotes the

expected success for A limited to β guesses per account. Thus,
λµα measures A’s actual success when given µα guesses per

G
Α
HU

10
4 L

Μ
Α
HU

10
4 L

0.0 0.2 0.4 0.6 0.8 1.0

0

2000

4000

6000

8000

10000

Sucess rate Α

N
u

m
b

e
r

o
f
g

u
e

s
s
e

s

Fig. 2. How Gα(UN ) and µα(UN ) vary with α. We use a discrete uniform
distribution U104 (i.e., pi = 1/104 for all 1 ≤ i ≤ 104) as an example.

account and λµα
≥ α. With these terminologies, α-guesswork

is defined as:

Gα(X ) = (1− λµα) · µα +

µα∑
i=1

pi · i, (11)

Gα(X ) characterizes the expected number of guesses per
account to reach a success rate α. The intuition of Eq. 11 is
that: (1) against every account not in A’s dictionary she will
make µα guesses, giving rise to the first term; and (2) against
all accounts that are in A’s dictionary, she proceeds in optimal
order and the expected number of guesses required constitutes
the second term. Gα(X ) well models the reality of real-world
attackers, who care about cost-effectiveness, to stop cracking
against the most strong accounts.

For easier comparison with other existing metrics and for
better comprehension of programmers and cryptographers,
Bonneau [12] further converted Gα(X ) into units of bits (i.e.,
G̃α(X )) by computing “the logarithmic size of a discrete
uniform distribution UN (with pi = 1/N for all 1 ≤ i ≤ N )
that has the same value of the guessing metric”. Since an
attacker A who desires to break a proportion α of accounts will
“attain one successful guess per Gα/α guesses”, A will “break
an account every (N + 1)/2 guesses” against UN . This gives
the formula (see pp.49 of [17] for a more detailed explanation):

Gα(X )

λµα

=
N + 1

2
(12)

Then, it is natural to get N =
[ 2·Gα(X )

λµα
− 1

]
. According

to the definition of the effective key-length: “· · · it represents
the size of a randomly chosen cryptographic key which would
give equivalent security.” (see Section II-E of [12] and pp.49
of [17]), one can compute the effective key-length of Gα(X )
as

G̃α(X ) = lgN = lg
[2 ·Gα(X )

λµα

− 1
]

(13)

G̃α(X ) obtained from Eq. 13 should have been constant for
any uniform distribution UN , but Bonneau [12] found it was
not the case. So, he artificially added the “correction factor”
lg 1

2−λµα
to G̃α(X ), giving:

G̃α(X ) = lg
[2 ·Gα(X )

λµα

− 1
]
+ lg

1

2− λµα

(14)



However, in the following we will demonstrate that Eq. 12
inherently does not hold true. As a result, Eq. 13 is invalid.
As can be seen from Fig.2(a) in [12], it was believed that
Gα(UN ) = µα(UN ). Quite the contrary, our Fig. 2 well serves
as a concrete counter-example that Gα(U104) ̸= µα(U104).
Essentially, according to Eq. 11, one can get

Gα(UN ) =

µα∑
i=1

i · 1

N
+ (1− λµα) · µα

=
(1 + µα)µα

2
· 1

N
+ (1− λµα) · µα

(15)

On the other hand, according to the definition of µα and λβ

in [12], we get
µα(UN ) = N · λµα(UN ) (16)

Based on Eq. 16, Eq. 15 can be rewritten as

Gα(UN ) =
(1 +N · λµα) · Nλµα

2N
+ (1− λµα) · N · λµα

=
λµα

2
+

1

2
(2− λµα) · N · λµα

(17)

From Eq. 16 and Eq. 17, it is evident that Gα(UN ) ̸=
µα(UN ). Based on Eq. 17, for UN and X to be of equivalent
security, we get

Gα(UN ) = Gα(X )
Eq.16
=⇒ N =

2Gα(X )− λµα(UN )

(2− λµα(UN ))λµα(UN )
(18)

Note that, for 0<α≤1, 0 ≤ λµα(UN ) − α < 1
N and

0 ≤ λµα(X ) − α < pn, where pn ≤ pn−1 ≤ · · · ≤ p1
and

∑n−1
i=1 pi < α ≤

∑n
i=1 pi = λµα . This suggests

that − 1
N ≤ λµα(X ) − λµα(UN ) ≤ qn, giving |λµα(X ) −

λµα(UN )| ≤max{ 1
N , qn}. Note that, only when α is large

enough (0.5 as a benchmark recommended in [12]), G̃α(X )
will show advantage over µ̃α(X ); qn decreases as α increases.
When α ≥ 0.2, qn < 1

1000 holds for all our 14 datasets.
Further, for human-generated passwords, generally N ≥ 215

[12], [18]. All this gives the relationship that, when α is
large enough, λµα(UN ) ≈ α ≈ λµα(X ). Consequently, both
λµα(UN ) and λµα(X ) can be unified as λµα . This for the first
time explains why λµα in the equations (10) and (11) of [12]
leave out the distribution X or UN . Based on this observation
and Eq. 18, for 0 < α < 1, the Eq. 12 can be shown to be
incorrect:

Gα(X )

λµα

=
1 +N · (2− λµα)

2
̸= N + 1

2
(19)

Only when α = 1, because 1 = α ≤ λµα ≤ 1, λµα will be
equal to 1 and the equation Gα(X )

λµα
= N+1

2 holds true.

Further, using Eq. 18, the “effective key-length” (i.e., bit-
strength) of Gα(X ) can be naturally formulated as

G̃α(X ) = lgN = lg
2Gα(X )− λµα

(2− λµα)λµα

= lg
[2 ·Gα(X )

λµα

− 1
]
+ lg

1

2− λµα

(20)

It follows that there is no need to add a factitious “correction
factor” in the strength conversion of α-guesswork (i.e., when
converting Gα(X ) to its effective key-length form G̃α(X )),
thereby demonstrating the inherent flaw in [12], [17]. As
far as we know, little public work has ever employed the
metric Gα(X ), and most related works (e.g., [13]–[15], [18]–
[20]) have preferred the effective key-length metric G̃α(X ).
While G̃α(X ) is overwhelmingly favored over Gα(X ) in the
research community and it is widely hold that Gα(UN ) =
µα(UN ), our above contribution lies not only in identifying
and fixing an inherent flaw in the derivation of G̃α(X ),
but also, equally importantly, in revealing a counter-intuitive
relationship: Gα(UN ) ̸= µα(UN ).
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