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Abstract— Despite three decades of intensive research efforts,
it remains an open question as to what is the underlying dis-
tribution of user-generated passwords. In this paper, we make a
substantial step forward toward understanding this foundational
question. By introducing a number of computational statistical
techniques and based on 14 large-scale data sets, which consist
of 113.3 million real-world passwords, we, for the first time,
propose two Zipf-like models (i.e., PDF-Zipf and CDF-Zipf) to
characterize the distribution of passwords. More specifically, our
PDF-Zipf model can well fit the popular passwords and obtain
a coefficient of determination larger than 0.97; our CDF-Zipf
model can well fit the entire password data set, with the maximum
cumulative distribution function (CDF) deviation between the
empirical distribution and the fitted theoretical model being
0.49%∼4.59% (on an average 1.85%). With the concrete
knowledge of password distributions, we suggest a new metric
for measuring the strength of password data sets. Extensive
experimental results show the effectiveness and general applica-
bility of the proposed Zipf-like models and security metric.

Index Terms— User authentication, password distribution,
Zipf’s law, strength metric, password policy.

I. INTRODUCTION

PASSWORD-BASED authentication continues to be the
dominant mechanism of user authentication over the

Internet. Despite its ubiquity, this kind of authentication is
accompanied by the dilemma of generating passwords that are
challenging for powerful attackers to crack but easy for com-
mon users to remember. Truly random passwords are difficult
for users to memorize, while user-generated passwords may be
highly predictable [1], [2]. In practice, common users tend to
gravitate towards weak passwords that are related to their daily
lives (e.g., names, birthdays, lovers, friends and hobbies [3]).

Manuscript received February 6, 2017; revised June 15, 2017; accepted
June 21, 2017. Date of publication June 28, 2017; date of current ver-
sion August 22, 2017. This work was supported in part by the National
Key Research and Development Plan under Grant 2016YFB0800603 and
Grant 2017YFB1200704 and in part by the National Natural Science
Foundation of China under Grant 61472016 and Grant 61472083. This paper
was presented in part at the Proceeding of the 21th European Symposium
on Research in Computer Security (ESORICS 2016). The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Karen Renaud. (Corresponding author: Ping Wang.)

D. Wang, H. Cheng, and G. Jian are with the School of EECS, Peking
University, Beijing 100871, China, and also with the Key Laboratory
of High Confidence Software Technologies, Ministry of Education,
Beijing 100871, China (e-mail: wangdingg@pku.edu.cn; chenghaibo@
pku.edu.cn; gpjian@pku.edu.cn).

P. Wang is with the National Engineering Research Center for Software
Engineering, Peking University, Beijing 100871, China, and also with the
School of Software and Microelectronics, Peking University, Beijing 100871,
China (e-mail: pwang@pku.edu.cn).

X. Huang is with the School of Mathematics and Computer Science, Fujian
Normal University, Fuzhou 350007, China (e-mail: xyhuang81@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2017.2721359

This means these passwords are drawn from a rather small
space, and thus they are prone to guessing attacks.

To mitigate this notorious “security-usability” dilemma,
various password creation policies have been proposed, e.g.,
random generation [4], rule-based [5], entropy-based [6] and
cracking-based [7]. They force newly created passwords to
adhere to some rules and to achieve an acceptable strength.
The diversity of password strength meters and rules brings
about an enormous variety of requirements between different
web services, resulting in highly conflicting strength out-
comes for the same password [8]. For example, the password
password$1 is deemed “Very Weak” by Dropbox, “Weak”
by Apple, “Fair” by Google and “Very Strong” by Yahoo!

The above contradictory outcomes of password strength
(for more concrete examples, see [8], [9]) are direct results
of the inconsistent password strength meters employed by
different web services. They may be further explained by
the un-soundness of current password meters and the diverse
interests of each website. It is a rare piece of good news
in password research that password policies do impact user
password choices and, if well-designed, password policies can
significantly improve password security while maintain usabil-
ity [10]. Accordingly, much attention (e.g., [8], [11], [12])
has been paid to the design and analysis of password policies.
While stricter policies might make passwords harder to crack,
the side effect is that users may feel harder to create and
remember passwords, and thus usability is reduced [13].
Results in [14] show that, improper password policies in a
specific context of use can increase both mental and cognitive
workload on users, and they will impact negatively on user
productivity. Ultimately, users will try every means to circum-
vent such un-friendly policies.

As a result, different types of application systems typically
have quite different choices. For e-commerce sites like eBay,
portals like Yahoo! and order accepting sites like Kaspersky,
usability is a critical property because anything that under-
mines user experience may result in loss of users to competi-
tors and impair the success of business. So they tend to have
less restrictive password policies [15]. On the other hand, it is
of great importance to prevent attackers from illicitly accessing
valuable resources on security-critical sites, e.g., cloud storage
sites that maintain sensitive documents and university sites
that manage course grades. So they may require that user-
selected passwords are subject to more complex constraints
(e.g., inclusion of digits and symbols, and rejection of popular
passwords like pa$$word123).

As different systems often implement quite varied pass-
word policies, a number of critical issues arise: how can the
password policy designers evaluate their policies? how can
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the administrators select the right policy for their systems?
In addition, usually the users of a system (as well as its
services) may dynamically change as time goes on. This highly
leads to large variations in the password dataset (distribution)
after some period of time (e.g., one year) even though the
password policy stays the same, which is especially true for
Internet-scale service providers. In this situation, it is desirable
that security administrators quantify the strength of passwords
and, accordingly, adjust the password policy. Either failing to
notice the changes in the password distribution, or conducting
improper countermeasures, may give rise to great (but subtle)
security and usability problems as shown above.

Hence, a proper assessment of the strength of password
distribution is essential, without which the security adminis-
trator is unable to determine the following important question:
how shall the password policy be adjusted? Or equally, shall
the password policy be enhanced to improve security, kept
unchanged or even relaxed a bit to get usability in return?
In a nutshell, the crux of designing, selecting and adjusting
an appropriate password policy lies in how to accurately
assess the strength of a password distribution created under
this policy. Note that, here we presume that each existing
authentication system has already adopted some password
policy (e.g., [7], [16]), and its adjustment mainly involves
changing some rules and the password strength threshold.

Inevitably, the accomplishment of accurately assessing the
strength of a password distribution would entail the settlement
of a more fundamental question: how to precisely characterize
a given password distribution? Or equally, what is the distribu-
tion that user-generated passwords follow? Despite more than
30 years of intensive research efforts, this same old question
is asked year in year out. This may well explain why most of
today’s password-based cryptographic protocols (in hundreds,
some recent ones include [17], [18]) still rely on a far from
realistic assumption: passwords follow a uniform distribution.

To the best of our knowledge, the work by
Malone and Maher [19] may be the most relevant to
what we will discuss in this paper. They for the first time
made an attempt to investigate the distribution of passwords.
They employed four password datasets (three of which are
with a size smaller than 105) and reached the conclusion that,
their datasets are “unlikely to actually be Zipf distributed”.1

Our PDF-Zipf model is based on the efforts of Malone-
Maher’s approach [19], but with the difference that we do
not fit these unpopular passwords of a dataset into the model.
We further propose another model called CDF-Zipf. Both our
models reach a different conclusion with that of [19].

A. Our Contributions

In this work, we make the following key contributions:
1) Two Zipf Models: We propose two Zipf-like models

to characterize the distribution of passwords. Our results
consistently show that Zipf’s law exists in real-life passwords.
More specially, Our PDF-Zipf model works on popular

1Almost at the same time, Bonneau [20] employed essentially the same
approach with [19] and as expected, the same conclusion with [19] was
reached. Thus, we mainly use Malone-Maher’s work [19] for discussion.

passwords and reveals that: (1) the vulnerable portion of user-
chosen passwords (i.e., popular passwords with a frequency
f ≥ 4) naturally follow a Zipf-distribution; and (2) the
remaining portion of user-chosen passwords (i.e., unpopular
passwords with a frequency f ≤ 3) are highly likely to
follow a Zipf-distribution. Based on the PDF-Zipf model, we
further develop an advanced model, called CDF-Zipf, that
works on the entire password dataset and yields much better
fitting results: the maximum distance between the cumulative
distribution function (CDF) of the real data and CDF of the
fitted model is 0.48%∼4.59% (avg. 1.84%), while this figure
for the PDF-Zipf model is 6.26%∼27.88% (avg. 16.56%).

2) A Security Metric: We propose a novel metric for
measuring the security strength of a given password
distribution. This metric utilizes the concrete knowledge of the
password distribution function, and thus it overcomes various
problems in existing security metrics (e.g., uncertainties in
cracking-based approaches [16] and non-deterministic nature
in α-guesswork [20]). Our metric facilitates a better grasp of
the strength of a given password dataset (either in plain-text
or hashed form) in a mathematically rigorous manner. This
enables security administrators to better evaluate the security
property of a password policy under which the password
dataset is created.

3) An Extensive Evaluation: Our evaluation builds on
14 large-scale real-world password datasets. Our datasets are
composed of a total of 113.3 million passwords, cover a diver-
sity of Internet services, involve various languages/password
creation policies, and are among the largest corpuses ever
collected for a password study. Results from extensive exper-
iments suggest that each password can be seen as a spe-
cific sample drawn from the underlying password population
which follows the Zipf’s law. This invalidates the claim made
in [19] and [20] that user passwords are “unlikely to actually
be Zipf distributed”.

II. RELATED WORK

We now briefly review some related works on password
policy and password cracking to facilitate later discussions.

A. Password Creation Policies

In 1990, Klein proposed the concept of proactive password
checker, which enables users to create more secure password
distributions and checks, a priori, whether the newly submitted
passwords are “safe” [21]. The criteria can be divided into
two types. One type is the exact rules for what constitute an
acceptable password, such as minimum length and character
type requirements. The other type is using a reject function
based on estimated password strength. An example of this is
a blacklist of “weak” passwords that are not allowed. Although
the author called the technique “proactive password checking”,
it is indeed the same as password policies we know today, and
thus in this work we use the two terms interchangeably.

Since Klein’s seminal work, there have been proposed a
number of proactive password checkers, aiming to reduce the
time and space of matching newly-created passwords with a
blacklist of “weak” passwords (e.g., Opus [22]). There have
also been attempts to design tuneable rules on a per-site basis
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to shape password creation, among which is the influential
NIST Electronic Authentication Guideline [6]. However, by
modeling the success rates of current password cracking tech-
niques against real-life user passwords created under different
rules, Weir et al. [11] showed that merely rule-based policies
perform poorly for ensuring a desirable level of security. Later,
Houshmand and Aggarwal [16] proposed a novel policy that
improves password security while maintaining usability: it first
analyzes whether a user-chosen password is weak or strong
according to the empirical cracking-based results, and then
slightly modifies and strengthens the password if it is weak.
This policy facilitates measuring the strength of individual
passwords more accurately. In addition, it can be adjusted
more flexibly than previous policies, because its adjustment
only involves tuning the threshold within a continuous range.
Observing that users often reuse or slightly modify an existing
password for a new service but not create a completely
new password, Wang et al. [7] further improves Houshmand-
Aggarwal’s policy to more practically capture user behavior.

Perhaps the most relevant policy related to our strength
metric for assessing password datasets (see Section V) is
suggested by Schechter et al. [5]. Their intriguing idea is to
use a popularity oracle to replace traditional password creation
policies, and thus passwords with high popularity are rejected.
This policy is particularly effective at thwarting statistical-
based guessing attacks against Internet-scale authentication
systems with millions of user accounts. If this policy is in
place, our proposed metric would be largely unnecessary.
However, how to prevent the server (or a dishonest insider
of the server) from learning the queried password is left as
an open question. Moreover, this policy rejects passwords that
occur at a probability exceeding a threshold T (e.g., T = 1

106

as exampled in [5]), yet how it would affect usability has
not been evaluated thoroughly. No theoretical or empirical
usability results have ever been reported.

Based on the proposed Zipf’s law, we manage to develop
theoretical models to predict that, as an immediate conse-
quence of Schechter et al. policy [5], a large fraction of users
might be annoyed by forbidding them to use their intended
passwords that are typically popular. For instance, 34.89% of
users in www.tianya.cn use passwords that are more frequent
than T = 1

106 , indicating that over one third of the users
have an equal potential to be annoyed to select and maintain
a new password. Nevertheless, such a policy would be very
promising if these issues can be addressed.

B. Password Cracking

Password-based systems are prone to various attacks, such
as on-line guessing, offline guessing, keylogging, shoulder
surfing and social engineering. Here we only consider the
on-line and offline guessing attacks, while other attack vectors
are unrelated to password strength or password dataset strength
and thus outside the scope of this work. Online guessing can
be to some extent (but not readily [3]) counteracted by the
server by using non-cryptographic techniques, such as mod-
ern machine-learning-based detecting, rate-limiting or locking
strategies [23]. In contrast, offline guessing is performed on
local machine that is fully under the attacker’s control, and

thus she can make as many guesses as possible given enough
time and computational power.

Florencio et al. [24] discussed scenarios where offline
guessing constitutes a real threat, and they identified a great
“chasm” between a password’s guessing-resistance against
these two types of guessing. They found that in this “chasm”,
incrementally increasing the strength of passwords delivers
little security benefit, and thus they called into question the
common practice of nudging users towards stronger passwords
beyond online guessing resistance. Yet, it is not difficult to
see that such a “chasm” would be largely eliminated (and
so is the corresponding doubt), if one considers the cases
where passwords (e.g., in salted-hash) have been leaked yet
this leakage is detected by the victim site only after some
period of time (e.g., a few days). During this period, offline
password guessing indeed poses a realistic threat.

Consequently, it is essential for password-based authenti-
cation systems to properly evaluate their resilience to offline
guessing attacks. In the literature, this is generally done by
comparing the search space size (i.e., the number of guesses)
against the percentage of hashed passwords that would be
offline recovered. This measure only depends on the attacking
technique and the way users choose their passwords. It is
neither related to the particular nature of the system (e.g.,
which hash function is used, SHA-1, PBKDF2 or CASH [25]?)
nor affected by the attacker capabilities. The nature of the
system and attacker capabilities will instead define the cost that
the attacker has to pay for each single guess [26]. For example,
system countermeasures against offline attacks, such as salting
to defeat pre-computation techniques (e.g., Rainbow tables) or
key strengthening to make guessing attacks more costly, only
constitute a key parameter when evaluating the resilience of
a password system to offline attacks. By combining this cost
with a measure of the search space, it becomes possible to
attain a concrete cost-benefit analysis for offline attacks. This
measure is followed in our work.

Password search space essentially depends on how the users
choose their passwords. It is a well known fact that users
tend to choose passwords (e.g., words from dictionaries or
something related to their daily lives) that are easily remember-
able [1], [27]. However, users rarely use unmodified elements
from such lists, for instance, because password policies prevent
this practice. Instead, users modify the words in such a way
that they can still recall them easily. For example, the popular
pa$$word is generated by leeting two letters of the easily
guessable password.

To model this password generation practice, researchers
utilize various heuristic mangling rules to produce variants of
words from an input dictionary. For some widely used dictio-
naries, see [28]. This sort of techniques has emerged as early as
1979 in Morris-Thompson’s analysis of 3,000 passwords [29].
This initial work has been followed by independent works
[21], [30]. Later on, some dedicated software tools like John
the Ripper (JTR) [31] appeared. Subsequent studies (e.g., [10],
[11]) have often employed these automated software tools to
conduct dictionary attacks as a secondary goal.

It was not until very recently that password cracking began
to evolve from art to science. Narayanan and Shmatikov [32]
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TABLE I

BASIC INFORMATION ABOUT THE FOURTEEN REAL-LIFE PASSWORD DATASETS

developed an advanced cracking algorithm that uses Markov
chain instead of ad hoc mangling rules to model user password
creation patterns. This algorithm generates passwords that
are phonetically similar to words. It is tested on a dataset
of 142 hashed passwords and 96 (67.6%) passwords were
successfully broken. Yet, their algorithm is not a standard
dictionary-based attack, for it can only produce linguistically
likely passwords. Moreover, the test dataset is too limited to
show the effectiveness of their algorithm.

In 2009, on the basis of probabilistic context-free gram-
mars (PCFG), Weir et al. [30] suggested a novel technique
for automatically deriving word-mangling rules. They further
employed large real-life datasets to test its effectiveness.
In this technique, a password is considered as a combination
of alphabet symbols (denoted by L), digits (D) and special
characters (S). For instance, the password pa$$word123
is denoted by the structure L2S2L4D3. Then, a set of word-
mangling rules is obtained from a training set of clear-text
passwords. To simulate the optimal attack, this algorithm
generates guesses in decreasing order of probability. It is able
to crack 28% to 129% more passwords than JTR [31].

In 2014, Ma et al. [33] introduced natural language process-
ing techniques, such as smoothing and normalization into
Markov-based password cracking algorithms. They found
that, when tuned with the right order and employing some
appropriate ways to deal with the problems of data sparsity
and normalization, Markov-based cracking algorithms would
perform better than PCFG-based cracking algorithms.

In 2015, Ur et al. [34] investigated: (1) how the above
cracking algorithms used by researchers compare to real-world
cracking by professionals; and (2) how the choice of cracking
algorithms influences research conclusions. They found that
each cracking algorithm is highly sensitive to its configuration.
They also observe that relying on a single cracking approach
to evaluate the strength of a single password may underes-
timate the vulnerability to an experienced attacker, while the
comparative evaluations of a password dataset (distribution)
can rely on a single algorithm.

In 2016, Wang et al. [3] systematically investigated to what
extent an online guessing attacker can gain advantages by
making use of various types of user personal information,
such as leaked passwords and user demographic information.

They devised a general guessing framework, called TarGuess,
that incorporates seven sound probabilistic guessing models
TarGuess-I∼VII. Their work provides comprehensive, quanti-
tative evidence of how serious the threat of targeted online
password guessing is. For instance, TarGuess-III can gain
success rates as high as 73% with just 100 guesses against
normal users and 32% against security-savvy hackers.

III. DATASETS, LINEAR REGRESSION AND KS TEST

In this section, we first describe the collected datasets,
and then report some statistics about user-chosen passwords.
Finally, we give some background on the statistical techniques
used—linear regression and Kolmogorov-Smirnov (KS) test.

A. Description of the Password Datasets

We have collected fourteen large-scale real-life password
lists (see Table I) over a time span of nearly ten years. They
are different in terms of service, size, how leaked, user local-
ization, language, faith and culture background, suggesting
that our model is a generic one and can be used to well
characterize the distribution of user-chosen passwords. All
fourteen datasets were compromised by hackers or leaked by
anonymous insiders, and were subsequently disclosed publicly
on the Internet. Some early ones of them have also been
used by a number of scientific works that study passwords
(e.g., [11], [33], [34]). We realize that while publicly avail-
able, these datasets contain private data such as emails, user
names and passwords. Therefore, we treat all user names as
confidential and only report the aggregation information about
passwords such that using them in our research does not
increase the harm to the victims. Furthermore, attackers are
likely to exploit these accounts as training sets or cracking
dictionaries, while our study of them is of practical relevance
to security administrators and common users to secure their
accounts.

The first four datasets, namely Tianya, Dodonew, CSDN
and Duowan, are all from Chinese web services. We name
each password dataset according to the corresponding
website’s domain name (e.g. the “Tianya” dataset is from
www.tianya.cn). They are all publicly available on the
Internet due to several security breaches that happened in
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TABLE II

CHARACTER COMPOSITION INFORMATION ABOUT EACH PASSWORD DATASET

TABLE III

LENGTH DISTRIBUTION INFORMATION OF EACH DATASET

China in December, 2011 [35] and we collected them at that
time. CSDN is the largest community website of Chinese pro-
grammers; Tianya is one of the most influential Chinese BBS.

The fourth dataset 000webhost contains 15.3 million pass-
words that were leaked in plain-text from 000Webhost, a pop-
ular free web-hosting site. This breach has been confirmed
by 000webhost officials, and it is believed to be the result of
hackers who exploited a weakness in an old version of the
PHP programming language. The fifth dataset is the 41.5K
“Myspace”, which was originally published in October 2006.
Myspace is a famous social networking website in the United
States and its passwords were compromised by an attacker
who set up a fake Myspace login page and then conducted
a standard social engineering (i.e., phishing) attack against
the users. While several versions of the Myspace dataset
exist, owing to the fact that different researchers downloaded
the list at different times, we get one version from [28]
which contained 41,545 plain text passwords. The following
two datasets are the “Singles.org” and the “Faithwriters”.
They are both composed of people almost exclusively of the
Christian faith: www.singles.org is a dating site ostensibly
for Christians and www.faithwriters.com is an online writing
community for Christians. The former was broken into via
query string injection and 16250 passwords were leaked, while
the latter was compromised by a SQL injection attack which
disclosed 9,709 passwords.

The eighth dataset is from www.hak5.org and it was com-
promised by a group called ZF0 (Zero for 0wned) [36]. This
dataset is only a small portion of the entire www.hak5.org
dataset. Surprisingly, though Hak5 is claimed to be “a cocktail
mix of comedy, technolust, hacks, homebrew, forensics, and
network security”, its dataset is amongst the weakest ones
(see Section V). In this work, we use this dataset as a

counterexample for representatives of real-life password
distributions.

Besides the above eight datasets, we additionally employ
six datasets (i.e., Rockyou, Battlefield, Gmail, Yandex.ru,
Mail.ru and Flirtlife.de) to establish the generalizability of
our findings of Zipf’s law in Section IV, and due to space
constraints, they will not be analyzed elsewhere. The Rockyou
dataset includes 32M passwords leaked from the gaming
forum Rockyou in Dec. 2009 [37]; 542K Battlefield passwords
were leaked by the hacker group LulzSec in 2011 [38];
The next three lists (i.e., 4.9M Gmail, 4.9M Mail.ru and
1.3M Yandex.ru) were leaked by Russian hackers in Sep. 2014,
and about 90% of them are active [39]. It is said that these
credentials are collected not by hacking the three sites but
through phishing and other forms of attacks on users (e.g., key-
loggers). The last dataset was leaked from the German dating
site Flirtlife.de in May 2006, and about half of the accounts
are still alive when the leakage was first detected [40].

B. Statistics About User-Chosen Passwords

The character composition information is summarized in
Table II. Chinese users are more likely to use only digits to
construct their passwords, while English users prefer using
letters. This complies with [41]. A plausible explanation may
be that Chinese users, who usually use hieroglyphics, are less
familiar with English words and letters. It is interesting to see
that, Myspace users tend to build their passwords by adding
the digit “1” to a sequence of lower-case letters. This may be
due to its policy that passwords shall include at least one digit.

Table III shows the length distributions of each dataset.
We can see that the most popular password lengths are
between 6 and 10, which on average account for 85.01% of
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the whole dataset. Few users choose passwords that are longer
than 12, with Dodonew being an exception. One telling reason
may be that, www.dodonew.com is a website that enables
monetary transactions and its users perceive their accounts as
being important, and thus longer passwords are selected. Of
particular interest to our observations is that the CSDN dateset
has much fewer passwords of length 6 and 7 as compared to
other datasets. This may be due to the fact that www.csdn.net
(as well as many other web services) started with a loose
password policy and later on enforced a strict policy
(e.g., requiring the passwords to be of a minimum-8 length).
We also note that passwords from www.christian-singles.org
are all no longer than 8 characters, which may be due to
a policy that prevents users from choosing passwords longer
than 8 characters. Such a policy still exists in many financial
companies [42], and a plausible reason may be that the shift
to longer allowed password lengths is a non-trivial issue.

C. Linear Regression

In statistics, linear regression is the most widely used
approach for modeling the relationship between two variables
by fitting a linear equation to the observed data. One variable
is considered to be an explanatory variable, and the other
one is considered to be a dependent variable. Usually, linear
regression refers to a model in which, given the value of x , the
conditional mean of y is an affine function of x : y = a +b · x ,
where x is the explanatory variable and y is the dependent
variable. The slope of the line is b, and a is the intercept.
The most common method for fitting a regression line is by
using least-squares. This method computes the best-fitting line
for the observed data by minimizing the sum of the squares
of the vertical deviations from each data point to the line.
For example, if a point lies on the fitting line exactly, then
its vertical deviation is 0. In regression, the coefficient of
determination (denoted by R2 ∈ [0, 1]) is a statistical measure
of how well the regression line approximates the real data
points: the closer to 1 the better. A R2 value of 1 indicates
that all data points perfectly dwell on the regression line.

D. The Kolmogorov-Smirnov Test

Besides R2, we further employ statistical tests to measure
the “distance” between the sample and the theoretic distribu-
tion model. Since passwords are unlikely to obey the normal
distribution, non-parametric tests shall be used. KS test is
one of the most popular non-parametric tests for discrete data
[43], [44]. It quantifies the distance between the cumulative
distribution function (CDF) Fn(x) of an empirical distribution
and the CDF F(x) of the theoretic distribution:

D = sup
x

|Fn(x) − F(x)| ,

where n is the sample size and supx is the supremum of the
set of distances. D∈[0, 1] is essentially the max gap between
the two CDF curves Fn(x) and F(x), the smaller the better.

This statistic D can be adopted to conduct a rigorous test.
Note that, in our work the underlying distribution of each
password dataset is itself determined by fitting the data and

hence varies from one dataset to another. In other words, the
password distribution is not fixed. Thus, we cannot compute

the p-value by Pr(
√

nD > x) = 2
∑∞

i=1(−1)i−1e−2i2 x2
.

Instead, we need to resort to the Monte Carlo approach as
recommended in [44]: (1) fit a given password dataset by
using the theoretic model under question (e.g., PDF-Zipf),
and compute the corresponding KS statistic D; (2) generate a
number of (e.g., 2500 as suggested) synthetic datasets by using
the same distribution parameters fitted from the empirical
dataset; (3) fit each synthetic dataset individually by using
this theoretic model, and calculate the corresponding D′;
(4) p-value is defined to be fraction of the synthetic distances
(i.e., D′s) that are larger than D.

The null hypothesis is that the empirical data follows the
theoretic distribution, while the alternative is that it does not.
A larger p-value indicates it is safer for us to assume that the
data tested is not significantly different from the hypothesized
theoretic distribution.

IV. THE ZIPF’s LAW IN USER-CHOSEN PASSWORDS

We now propose two theoretic Zipf-like models to charac-
terize the distribution of passwords.

A. Our PDF-Zipf Model

Initially, probabilistic context-free grammar (PCFG) is a
machine learning technique used in natural language process-
ing (NLP), yet Weir et al. [30] managed to exploit it to
automatically build password mangling rules. Very recently,
NLP techniques have also been shown useful in evaluating
the security impact of semantics on passwords [45] and in
dealing with the sparsity problem in passwords [33].

Inspired by these earlier works, in this study we make an
attempt to investigate whether the Zipf’s law,2 which resides in
natural languages, also exists in passwords. The Zipf’s law was
first formulated as a rank-frequency relationship to quantify
the relative commonness of words in natural languages, and it
states that given some corpus of natural language utterances,
the frequency of any word in it is inversely proportional to
its rank in the frequency table. More specifically, for a natural
language corpus listed in decreasing order of frequency, the
rank r of a word and its frequency fr are inversely propor-
tional, i.e. fr = C

r , where C is a constant depending on the
particular corpus. This means that the most frequent word will
occur about two times as often as the second most frequent
word, three times as often as the third most frequent word,
and so on. Zipf’s law was shown to account remarkably well
(i.e., R2 ≈1) for the distribution of intensity of wars [44],
software packages [47] and the Internet topology [48].

Interestingly, by excluding the least popular passwords from
each dataset (i.e., passwords with less than three or five counts)
and using linear regression, we find the distribution of real-life
passwords obeys a similar law: For a password dataset DS , the
rank r of a password and its frequency fr follow the equation:

fr = C

rs
, (1)

2Zipf’s law distributions are also called Pareto or power-law distributions,
and they can be derived from each other when the variable is continuous [46].
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Fig. 1. Fitting passwords with our PDF-Zipf model. Dodonew includes passwords of Chinese users, while Rockyou includes passwords of English users.
Though a few top-popular passwords do not lie on the fitting line, they are negligible as compared to the ones that dwell on the fitted line. (a) 16M Dodonew
passwords: R2 = 0.996. (b) 32M Rockyou passwords: R2 = 0.997.

Fig. 2. Fitting passwords with our PDF-Zipf model, plotted on a log-log scale. For detailed Zipf parameters, see Table IV. To minimize the overlap among
the fitting curves, we divide 14 datasets into the current three groups. (a) Zipf’s law in passwords of Tianya, CSDN, Myspace and Yandex.ru. (b) Zipf’s law in
passwords of Rockyou, 000webhost, Battlefield, Singles.org and Mail.ru. (c) Zipf’s law in passwords of Dodonew, Flirtlife.de, Faithwriters, Hak5 and Gmail.

where C and s are constants depending on the chosen dataset,
which in turn is probably determined by many confounding
factors such as the type of web services to be protected,
the underlying password policy adopted by the site, and the
demographic factors of users (like age, gender, educational
level, profession and language). Zipf’s law can be more
easily observed by plotting the data on a log-log graph
(base 10 in this work), with the axes being log(rank order) and
log(frequency). In other words, log( fr ) is linear with log(r):

log fr = logC − s · logr . (2)

As can be seen from Fig. 1(a), 16.23 million passwords
from the website www.dodonew.com conform to Zipf’s
law to such an extent that the coefficient of determina-
tion (denoted by R2) is 0.995531, which approximately
equals 1. This indicates that the regression line logy =
4.618284 − 0.753771∗logx well fits the popular passwords
from Dodonew: this line explains 99.55% of the fitted data
points. This popular part is the primary security concern
as it consists of just these vulnerable passwords: attackers
would try these popular passwords first [20]. As illustrated in
Fig. 1(b) and Fig. 2, passwords from the other twelve datasets
also invariably adhere to Zipf’s law and the regression lines
well represent the data points from corresponding datasets.
Due to space constraints and the aforementioned imperfect
nature of Hak5 dataset, we do not present its related Zipf
curve here, though actually its fitting line also has a high R2

of 0.923.

More precisely, as summarized by the “Coefficient of deter-
mination” column in Table IV, every regression (except for
Hak5) is with a R2 >0.965, which closely approaches to 1 and
indicates a remarkably sound fitting. As for “Hak5”, its R2 is
0.923, which is, though acceptable, not as good as that of other
datasets. A plausible reason may be that it only contains less
than 3000 passwords and probably can not represent the real
distribution of the entire password dataset of www.hak5.org.
What’s more, how the datasets leak may have a direct effect
on R2. As can be confirmed by Table IV, datasets leaked by
phishing attacks are likely to have a lower R2 as compared
to those of datasets leaked by website breaches, because
phishing attacks generally can only obtain a limited portion of
a website’s passwords, while website breaches, once succeed,
all (or at least an overwhelming part of) of the website’s
passwords will be harvested.

However, we can not conclude that the distribution of
passwords is exactly characterized by the fitted theoretical
Zipf models. Indeed, the KS tests are all with a sufficiently
low p-value, and we have enough confidence to reject the
hypothesis that our datasets are drawn from the modeled
distribution (see parameters in Table IV). Note that, this does
not contradict with our conclusion that user passwords follow
the Zipf’s law: if the Zipf parameters are computed more
accurately, it is possible that we can obtain sufficiently large
p-values that pass the KS tests. In Sec. IV-C, we show this
by providing an improved Zipf model over the PDF-Zipf
model.
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TABLE IV

OUR PDF-ZIPF MODEL: FITTING RESULTS OF FOURTEEN PASSWORD DATASETS USING LINEAR REGRESSION (“PWs” STANDS FOR PASSWORDS)

The reason why we need to prune the least frequent pass-
words will be elaborated in Section IV-B. The selection of
a specific small value (e.g., 3 or 5) as the threshold of least
frequency (L F) is essentially based on the findings in statistics
that (see [44, Fig. 3]): when the sample size is smaller than
the sample space, the regression first improves greatly as
L F progressively increases until reaching the best point p̂,
after which the regression deteriorates (because of dwindling
the sample size) extremely slowly as L F increases. We have
performed a series of incremental experiments to identify the
exact L F that enables the regression to reach p̂, and find that,
as a useful guideline, for large datasets of million-scale, one
can set L F = 5, otherwise set L F = 3. Note that, to qualify
as a proper model for a dataset, a distribution function f (x)
shall hold within a range xmin ≤ x ≤ xmax of at least 2 ∼ 3
orders of magnitude (i.e., xmax/xmin ≥ 102∼3) [47]. Except
for Hak5, this condition is satisfied by all our regressions.

Two other critical parameters involved are N and s, which
stand for the number of unique passwords used in regres-
sion and the absolute value of the slope of regression line,
respectively. While there is no obvious relationships between
N and s, we find that: (1) there is a close linking between N
and the total passwords — the larger N is, the larger the latter
will be; (2) the parameter s falls in the range [0, 1], which is
different from other social phenomena (e.g., intensity of wars
and frequency of family names [44]) that are with s > 1.

B. Justification for Our PDF-Zipf Methodology

In the above, we have shown that the distribution of popular
passwords(e.g., with f ≥ 5) can be approximated by the Zipf’s
law. In the following, we justify our methodology and provide
evidence to support the conjecture that this law is highly likely
to hold in the remaining part of user-generated passwords.

Malone and Maher [19] have also attempted to investigate
password distributions. They concluded that their datasets
(including 32M Rockyou) are “unlikely to actually be
Zipf distributed”. They also reported that “while a Zipf
distribution does not fully describe our data, it provides a
reasonable model, particularly of the long tail of password
choices.” Our PDF-Zipf model is based the efforts of

Malone and Maher [19], but it differs from Malone-Maher’s
approach [19] in that these unpopular passwords (e.g., with
fr < 3) of a dataset are not fitted to the Zipf model, and
we observe different results. In the following, we make an
attempt to figure out why this work and Malone-Maher’s
work have different observations.

Unpopular passwords (e.g., with fr < 3) constitute a non-
negligible fraction of each dataset (see Table IV) and become
the long tail of password choices (see [19, Fig. 1]) or the
“noisy tail” in the statistical domain [46], yet they fail to reflect
their true popularity according to the law of large numbers.
More specifically, for a given password pwi , each observa-
tion can be seen as a random Bernoulli variable with mean
μ = ppwi and standard deviation σ = √

ppwi (1 − ppwi )
[20], where ppwi is the true probability of pwi . After

|DS| samples, pwi ’s empirical probability
f pwi|DS| is a

binomial-distributed random variable with μ=ppwi · |DS| and
σ=

√
ppwi (1 − ppwi ) · |DS|, where f pwi is the frequency of

pwi in the password dataset DS . Because generally 1 −
ppwi ≈1, this gives a relative standard error (RSE):

σ

μ
=

√
ppwi (1 − ppwi )

|DS| · 1

ppwi

≈
√

f pwi

|DS|2 · |DS|
f pwi

=
√

1

f pwi

This means that the true probability ppwi can be well approx-

imated by the empirical probability
f pwi|DS| only when f pwi is

relatively large. For instance, we can ensure a RSE< 1
2 when

f pwi >4 and a RSE> 1√
3

when f pwi <3. Thus, these unpop-
ular passwords will greatly negatively affect the goodness of
fitting when the entire dataset is used in regression. This well
explicates why different observations are made between [19]
and this work, and this also provides a direct reason for the
necessity of pruning the unpopular passwords.

We observe that there exists a more essential (yet subtle)
reason: even if the password population perfectly follows a
Zipf-distribution, the million-sized samples (e.g., 30 million
Tianya and 32 million Rockyou) are still too small to exhibit
this intrinsic feature. For example, csdn.net adopts a policy
that allows passwords consisting of letters and numbers and
with a length of 8 to 16. This means that a user’s password
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(denoted by a stochastic variable X) will have about |X | =
6216 − 628 ≈4.8∗1028 possible (distinct) values under this
policy. But we have only got 6.42∗106 CSDN passwords from
the leakage, a very small sample size as compared to |X |.
Owing to the polynomially decreasing nature of probability in
a Zipf distribution (see Eq.1), low probability events (e.g.,
with f < 3) will overwhelm high probability events in a
small sample, and thus such a small sample without exclusion
of unpopular events is highly unlikely to reflect the true
underlying distribution.

It follows that, when fitting all passwords of relatively small
datasets into the PDF-Zipf model, the regression will be neg-
atively affected by these unpopular passwords and no marked
rule can be observed even if the front head of passwords (i.e.,
popular ones) exhibit a good Zipf property. This reveals one
of the inherent limitations of the PDF-Zipf model: it is only
suitable for characterize the popular passwords of a dataset.
In Section IV-D, we further show that the PDF-Zipf model is
also not accurate. Both limitations call for a better model.

It should be noted that, though these least frequent pass-
words do not naturally show the Zipf behavior, this fact does
not contradict our conjecture that the password population
(of a site) is highly likely to follow a Zipf distribution. From
Table IV one can see that, generally, the larger the dataset
is (see the second column), the larger the fraction of popular
passwords (i.e., passwords to be used in regression, see the
fourth column) will be. Based on this trend, one can expect
that, had the dataset been sufficiently large, popular passwords
would account for an overwhelming fraction (and unpopular
passwords will be a small portion), and thus whether excluding
these unpopular passwords or not would have little impact on
the goodness of the fitting. That is, the entire dataset will
exhibit a Zipf property.

To further justify our conjecture that user-generated pass-
word datasets3 follow the Zipf’s law, we investigate the
regression behaviors of samples that are randomly drawn from
a perfect Zipf distribution, and see whether these two types
of samples show the same regression behavior. We explore
three parameters, i.e., exact distribution (3 kinds), sample size
(8 kinds) and the least frequency concerned (5 kinds), that
might influence a regression and thus perform a series of
120(= 3 · 5 · 8) regression experiments. More specifically,
suppose that the stochastic variable X follows the Zipf’s law
and there are N = 103 possible values {x1,x2,· · · ,x103} for
X . Without loss of generality, the distribution law is defined
to be {p(x1) = C/1s

∑N
i=1

C
is

= 1/1s
∑N

i=1
1
is

, p(x2) = 1/2s
∑N

i=1
1
is

,· · · ,

p(xN ) = 1/Ns
∑N

i=1
1
is

}, where the sample space N and the slope s

define the exact Zipf distribution function. To be robust,
each experiment is run 103 times; For better comparison,
each experiment is with only one parameter varying. Due to
space constraints, Table V only includes 35 experiments where
Zipf N is fixed to 103, Zipf s is fixed to 0.9, the sample
size varies from 102 to 104 and L F increases progressively

3Note that, a password dataset is a multi-set, and it can be seen as password
samples randomly drawn from the underlying password distribution of a given
authentication system.

TABLE V

EFFECTS OF SAMPLE SIZE AND LEAST FREQUENCY (LF) ON
REGRESSION WHEN SIMULATING A ZIPF DISTRIBUTION.

THE BEST SIMULATIONS ARE IN BOLD

from 1 to 5. Readers are referred to all 120 experimental
results in http://t.cn/R4ccgiF. Note that some integral statistics
(e.g., the fitted N) in Table V are with decimals, because they
are averaged over 1000 repeated experiments.

Our results on 120 experiments show that, given a perfect
Zipf distribution (i.e., when the Zipf parameters N and s are
fixed), no matter the sample size is smaller than, equal to or
larger than N , larger L F will lead to a better regression (i.e.,
the fitted s is closer to the Zipf s, and R2 is closer to 1)
at the beginning, but will worsen the situation as L F further
increases. More specifically, when the sample size is smaller
than N , the fitted s first increases and then decreases as L F
increases progressively; When the sample size is larger than N ,
on the contrary, the fitted s first decreases and then increases
as L F increases progressively. Thus, we can identify the best
fittings (in bold) and from them we can see that, the larger the
sample size is, the larger the fraction of popular events will
be used in regression. This behavior well complies with our
observation on real-life password datasets.

Particularly, when the sample size is sufficiently large
(e.g., 104�N = 103), popular events (e.g., f ≥ 4) invariably
account for over 90% of each sample and well follow
Zipf’s law (R2≥0.99). This behavior well agrees with our
regressions on PINs and with our inference on password
datasets. In addition, when the sample size is much smaller
than the sample space N , unpopular events constitute the
majority and they could impair the overall fitting even if
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popular events actually follow the Zipf’s law. This justifies our
methodology of data processing when performing regression
analyses, because the sizes of real-life password datasets
are generally much smaller than the password sample space.
Overall, the behaviors shown in our regressions on 14 datasets
well accord with the 120 simulated experiments, thereby
confirming our conjecture that the distribution of the entire
password dataset can be well approximated by the Zipf’s law.

C. Our CDF-Zipf Model

As shown in Table IV and Fig. 2, an undesirable feature
of the PDF-Zipf model is that, it can not well capture the
distribution of the least popular passwords. Note that, due
to the law of large numbers, the least frequent passwords
are inherently difficult to be captured by a theoretic model
that directly employs the probability of a password. We have
tried various means to adjust the PDF-Zipf parameters fitted
from the popular passwords to approximate these least popular
passwords, yet we are always caught in a dilemma: if they
are well captured, the overall fitting gets bad; if they are not
considered, the overall fitting will be with large R2s. Still, the
PDF-Zipf model (as well as [19]) provides us with a glimmer
that passwords are likely to follow a Zipf-like distribution,
and the key issue left is how to propose new Zipf models that
overcome the limitations of the PDF-Zipf model.

As the PDF of a distribution and its CDF can be converted
to each other, why not directly model the CDF of a password
distribution? Interestingly, we find the CDF graph of each
entire dataset can be well fitted by the Zipf’s law (see the
dash-dot green lines in Figs. 3(a) to 3(c) and Figs. 3(g) to 3(i)).
We call this model the CDF-Zipf model:

Fr = C ′ · r s ′
, (3)

where Fr is the cumulative frequency of passwords up to
rank r , C ′ and s′ are constants depending on the password
dataset and can be calculated by linear regression. Fr (·) is a
step function, because r = 1, 2, 3, · · · . Thus, we have

fr = Fr − Fr−1 = C ′ · r s ′ − C ′ · (r − 1)s ′
. (4)

Note that, fr can be approximated by using the derivative of
Fr when seeing Fr as a continuous function: fr ≈ d(Fr )/dr =
C ′ · s′ · r s ′−1, implying a Zipf’s law.

We fit the CDF-Zipf model to our 14 datasets (see Fig. 4),
and always obtain better fittings than the PDF-Zipf model
in terms of the KS statistic D (i.e., the max gap between
the CDF curves of a fitted model and the real data). Our
CDF-Zipf parameters are calculated by linear regression using
the well-known golden-section-search method.

As summarized in Table VI, the KS statistic D from fittings
under our CDF-Zipf model is 0.006170∼0.045874 (avg
0.018457). It is invariably smaller than the corresponding D
of the PDF-Zipf model (see Table IV). This means that the
max CDF gap under the CDF-Zipf model is always smaller
than those of the PDF-Zipf model. KS p-value results show
that, for 9 datasets, we have enough confidence to reject the
hypothesis that they are drawn from the exactly modeled
distribution (see parameters in Table VI). As said earlier,

TABLE VI

OUR CDF-ZIPF MODEL: FITTING RESULTS OF FOURTEEN DATASETS

this does not contradict with our conclusion that password
distributions can be well approximated by Zipf’s law. Actually,
the low p-values are due to the fact that “given a sufficiently
large sample, extremely small and non-notable differences
can be found to be statistically significant, and statistical
significance says nothing about the practical significance of a
difference” [49], which is known as the effect of sample size
on the practical significance of a statistical test [50].

We have tested that, when confining each password sam-
ple to a comparable one (e.g., 104 or 105) with that of
[44] and [50], most of the CDF-Zipf based fittings will pass
the KS tests. This is corroborated by Table VI that four fittings
on small datasets (i.e., Myspace, Singles.org, Faithwriters and
Hak5) under our CDF-Zipf model are with a p-value> 0.01.
Also note that, there is always the potential that more accurate
Zipf models can be proposed to fit password distributions
in the future, yet our CDF-Zipf model ensures that the max
improvements in KS statistic D of such new models will be
confined within [0, 0.018457]. That is, there is very limited
room for improvement. Particularly, for 16 million Dodonew
and 15 million 000webhost, the room for improvement is even
less than 0.0062. All this suggests the accurateness of our
CDF-Zipf model. The superiority of this model will be further
illustrated in what follows.

D. Comparison of the Models

In an attempt to more accurately determine the Zipf
distribution parameters, we have also employed a more
complex approach proposed by Clauset et al. [44]. Their
model was initially designed to characterize general Power-
law distributions but not password distributions. It first needs
to determine the parameters of a Power-law distribution,
and then convert the Power-law parameters to the Zipf’s
law parameters. To accommodate discrete variables (e.g., the
rank of a password in our setting), we employ [44, eq. 3.7]
as suggested. We have employed their model to fit our
14 password datasets.4 As shown in Table VII, the KS
statistic D from fittings under Clauset et al.’s model [44]
is 0.001079∼0.108263 (avg 0.031883), and hopefully four
fittings are accepted by KS tests (i.e., with a p-value>0.01).

4We thank the source-codes http://tuvalu.santafe.edu/~aaronc/powerlaws/.
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Fig. 3. A comparison of three different Zipf models, using 6 representative datasets for illustration. The absolute value of “CDF deviation” equals the
KS statistic D. Our CDF-Zipf model performs much better than the other two: lower CDF deviations and 100% dataset coverage. See more details in
Table VIII. (a) Approximating the distribution of Tianya. (b) Approximating the distribution of Rockyou. (c) Approximating the distribution of Gmail.
(d) CDF deviation of each model when fitting Tinaya. (e) CDF deviation of each model when fitting Rockyou. (f) CDF deviation of each model when fitting
Gmail. (g) Approximating the distribution of Dodonew. (h) Approximating the distribution of 000webhost. (i) Approximating the distribution of Mail.ru.
(j) CDF deviation of each model when fitting Dodonew. (k) CDF deviation of each model when fitting 000webhost. (l) CDF deviation of each model when
fitting Mail.ru.

Fig. 4. Zipf’s law in all 14 real-life password datasets from four varied languages, using 3 different fitting approaches. For detailed Zipf parameters from
each model, see Tables IV, VI and VII. Generally, the superiority of these models are in the order: CDF-Zipf ≥ Clauset et al.’09 [44] ≥ PDF-Zipf. (a) Zipf’s
law in PWs of Chinese, English and German. (b) Zipf’s law in PWs of English. (c) Zipf’s law in PWs of Russian and English.

Table VIII provides a detailed comparison of the three
Zipf models examined above. In terms of the KS statistic D,
we can observe that: (1) The CDF-Zipf model and

Clauset et al.’s model [44] are always better than the
PDF-Zipf model; and (2) For million-sized datasets, the
CDF-Zipf model generally performs the best among all,
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TABLE VII

CLAUSET et al.’09 MODEL [44]: FITTING RESULTS OF 14 DATASETS

TABLE VIII

COMPARISON OF THREE ZIPF MODELS FOR PASSWORDS

while Clauset et al.’s model [44] performs the best when
password datasets are in small size (e.g., less than 1 million).
For better comprehension, see Fig. 4. In terms of the
dataset coverage, we can observe that: in all cases, the
CDF-Zipf model performs the best (i.e., achieving 100%
coverage), the PDF-Zipf model performs the second best,
while Clauset et al.’s model [44] performs the worst. In all,
our CDF-Zipf model generally produces the most desirable
fittings among the three Zipf models.

We also examined the time complexity of the three models
when fitting a given dataset. More specifically, the time
complexity of our PDF-Zipf model, our CDF-Zipf model and
Clauset et al.’s model [44] is in O(|DS|), O(|DS| · log|DS|)
and O(|DS|), respectively. For a concrete example, on a
moderate multi-core computer (i7-4790K 4.00GHz CPU and
16G RAM), when fitting the 32 million Rockyou passwords,
our PDF-Zipf model takes 32.40 seconds, our CDF-Zipf
model takes 14.67 hours, and Clauset et al.’s model [44]
takes 69.39 seconds. In a nutshell, all three Zipf models can
be completed in acceptable time with moderate computing
resources.

E. General Applicability of our Zipf Models

The general applicability our Zipf models come from the
diversity and wide representativeness of our 14 datasets.
Section III shows that, our 14 datasets include passwords

created before 2006 (see Myspace) and also as recent as
Oct. 2015 (see 000webhost), cover 12 kinds of web services
and four kinds of languages. They also represent a variety
of culture (faith) backgrounds. Fortunately, results from both
our PDF-Zipf model and CDF-Zipf model suggest that, these
diversified datasets well follow the Zipf’s law.

Particularly, among our 14 datasets, five kinds of different
password policies can be inferred from Table II and III:

1) CSDN implements the policy “length len ≥8”. Only
2.17% of passwords in CSDN are with len <8, while
generally there are 10 times more such short passwords
in other Chinese sites. This implies that a transition
in password policy has occurred: these 2.17% short
passwords are created under the initial loose policy,
while most of the 97.83% long passwords are created
under the later enhanced policy (i.e., with len ≥8).

2) Myspace implements the policy “at least a letter and a
number”. Over 75.79%(=69.77%+6.02%) of passwords
in Myspace are composed of both letters and numbers.
In addition, 18.24% of users select passwords with a
sequence of letters ended with “1”, which is 4∼9 times
higher than the other English sites. This highly indicates
that there was a transition in password policy at some-
time before the hacking happened, though by no means
can we confirm this transition.

3) 000webhost implements the policy “at least a letter and
a number, and len ≥6”. Only 0.01% of passwords in
000webhost are with len <6, while generally there are
50 times more such short passwords in other Chinese
sites. This is likely due to a transition in password
policy: these 0.01% short passwords are created under
the initial loose policy, while most of the 99.99% long
passwords are created under the later enhanced policy:
len ≥6.

4) Singles.org implements the policy “len ≤8”. 100% of
passwords in Singles.org are with len ≤8, while gener-
ally such short passwords account for at most 80% in
every other English sites. This is resulted from a obvious
password policy: “len ≤8”.

5) The other 10 sites show no apparent policy. They might
implement no policy all along, or have conducted pass-
word policy transitions in the middle of their lifetime and
thus the new password policies are not obvious from the
resulting passwords.

As shown above, our password datasets are generated under
a wide variety of password policies: from very loose ones to
the restrictive ones “length len ≥8” and “at least a letter and a
number, and len ≥6”. Though currently we do not experiment
on datasets that were generated under more restrictive policies
(e.g., “at least a letter, a number and a symbol, and len ≥8”),
one can have a high confidence that passwords created under
such policies will also follow the Zipf’s law. We leave the
confirmation of this conjecture as an open issue.

In all, our datasets cover a wide variety of service types,
sizes, how leaked, user localization, languages, faith, culture
background and password policies. This demonstrates the wide
applicability of our Zipf models and they can be used to well
characterize the distribution of user-chosen passwords.
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F. Some Implications

We now sketch three implications that our Zipf theory may
have. For more details, readers are referred to [51].

1) For Password-Based Cryptographic Protocols: We
propose to use the formulation C ′ · Q(k)s ′

to capture an
attacker’s advantages in making at most Q(k) on-line guesses
against password-based cryptographic protocols, superseding
the traditional ones (i.e., Q(k)/|D| [52], [53] and Q(k)/2m

[54], [55]), where k is the system security parameter, D is
the password space, C ′ and s′ are the CDF-Zipf regression
parameters of dataset D, and m denotes the min-entropy
of D. Experiments on our 14 large-scale password lists show
the superiority of our new formulation over existing ones.
Generally, given a target system, the values of C ′ and s′ can
be approximated by leaked datasets from sites with a similar
service, language (and policy). For instance, if the password
protocol is to be deployed in a Chinese e-commerce site, one
can set C ′ = 0.019429 and s′ = 0.211921, which come from
the Dodonew passwords (see Table VI).

2) For Password Creation Policies: Based on the Zipf
assumption of passwords, we propose a series of prediction
models to facilitate the choices of the threshold parameter T
for the promising popularity-based password creation policy
in [5]: (1) These passwords with a popularity above T account

for the percentage η = ( T
C ′·s ′ )

1
s′−1 · (C ′)

1
s′ ; (2) The percentage

of users that will be potentially affected is Wp(η) = ηs ′
;

and (3) The percentage of users that will be actually affected
is Wa(η) = (1 − s′) · ηs ′

. Our models provide new insights
and highlight that, usability will be largely impaired if T is
improperly chosen. For instance, when setting T = 1/106

(which is widely recommended [5], [24]) for Internet-scale
sites, our model predicts that an average of 38.73% of users
will be potentially annoyed. Our theory well accords with the
extensive experiments.

3) For the α-Guesswork Metric: Under the Zipf assumption
of password distribution, we reveal that the widely used pass-
word strength metric α-guesswork [20], which was believed to
be always parametric with the success-rate α, is actually non-
parametric in two of four cases. As passwords are generally
Zipf-distributed, this result makes α-guesswork much simpler
to use — now we only need a single value of the advantage α
instead of “all values of α” [20] to inform decisions.

Summary: Different from the conclusion made in previous
research (e.g., [19], [20]) that user passwords are “unlikely to
actually be Zipf distributed”, our models show that Zipf’s law
does exist in real-life passwords. The comparison results reveal
that our CDF-Zipf model performs the best, while our PDF-
Zipf model is worse than Clauset et al.’s model [44]. Our CDF-
Zipf model is superior to the other two models in terms of both
the KS statistic D and the dataset coverage. Particularly, Our
CDF-Zipf model achieves remarkable accuracy: its max CDF
deviation (i.e., the KS statistic D) is 0.006170∼0.045874 (avg
0.018457). To our knowledge, our datasets are so far among
the most diversified and the largest ones in password studies,
and they are of sound representativeness. It is expected that our
Zipf theory would provide a much better understanding of the
distributions of human-generated passwords, and it has already

been adopted in other important password-related areas than
what we have discussed (e.g., password encryption [56],
password hash [25], password-datasets generation [57],
password-cracking [3] and password manager [58]).

V. STRENGTH METRIC FOR PASSWORD DATASET

In this section, we address the question as to how to
accurately measure the security strength of a given password
dataset. As one practical application of our Zipf theory, an
elegant and accurate statistical-based metric is suggested.

A. Our Metric

Normally, a smart guessing attacker, would always attempt
to try the most probable password first and then the sec-
ond most probable password and so on in decreasing order
of probability until the target password is matched. In the
extreme case, if the attacker has also obtained the entire
password dataset in plain-text and thus, she can obtain the
right order of the passwords, this attack is called an optimal
attack [20], [26].5 Accordingly, we can use the cracking
result λ∗

X (n) to be the strength metric of a given dataset
(distribution) X :

λ∗
X (n) =

n∑

r=1

pr(X ) = 1

|DS|
n∑

r=1

fr (X ), (5)

where |DS| is the dataset size and n is the number of guessing.
In Section IV-C, we have shown that the distribution of

passwords can be well approximated the law: pr (X ) =
fr (X )/|DS| = Fr (X ) − Fr−1(X ) ≈ C ′ · r s ′ − C ′ · (r − 1)s ′

.
Consequently, λ∗(n) is essentially determined by C ′ and s′:

λ∗
X (n) =

n∑

r=1

pr (X ) = Fn(X ) ≈ C ′ · ns ′ = λX (n). (6)

B. Evaluation

It should be noted that, in Eq. 6, λ∗
X (n) is not exactly equal

to the value of the rightmost hand even though our CDF-Zipf
model fits the actual data very well. We plot λ∗

X (n) as a
function of n according to Eq. 5 and λX (n) as a function
of n according to Eq. 6, and put these two curves together
to see how they agree with each other. In Fig. 5(a), we
depict λ∗

X (n) and λX (n) for 16 million passwords from the
Dodonew dataset and obtain an max deviation of 0.49%
(avg 0.19%) for the two curves. Due to space constraints, here
we cannot illustrate the related pictures for the other datasets
like that of Dodonew and 000webhost, yet we summarize the
average deviation between the two curves λ∗

X (n) and λX (n)
(1 ≤ n ≤ |DS|) for each dataset in Table IX.

Table IX shows that, except for Rockyou and Flirtlife.de,
the average deviations are all below 2% (i.e., from 0.19%
to 1.81%), suggesting sound consistence of λX (n) with the
optimal attacking result λ∗

X (n). This means that the λ∗
X (n)

5Note that, the optimal attack is of theoretic value (i.e., providing the upper
bound) to characterize the best attacking strategy that an attacker can adopt.
In practice, if an attacker has already obtained all the plain-text passwords,
there is no need for her to order these passwords to crack themselves.
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Fig. 5. Consistence of optimal attack with our CDF-Zipf-based metric (i.e., λX (n)) on two example datasets (16.2M Dodonew and 15.3M 000webhost).
(a) Approximating the optimal attacker against Dodonew. (b) Approximating the optimal attacker against 000webhost.

TABLE IX

THE DEVIATION BETWEEN λ∗
X (n) AND λX (n) (1 ≤ n ≤ |DS|)

curve well overlaps with the λX (n) curve for each dataset.
As shown in Fig. 5, these two curves for both datasets
almost overlaps with each other. We also provide a concrete
comparison of our CDF-Zipf model with the other four models
in terms of how well they approximate the real attacker. Fig. 5
shows that our CDF-Zipf based metric λX (n) performs the
best, followed by Clauset et al.’s model based metric.

Now that the optimal attack can be well approximated by
λX (n), it is natural to propose λX (n) to be the metric for
measuring the strength of password dataset X , where n is the
number of guessing attempts.

VI. CONCLUSION

In this work, we have provided compelling answers to the
fundamental questions: (1) What is the underlying distribution
of user-generated passwords? and (2) How to accurately
measure the security strength of a given password dataset?
More specially, by introducing a number of NLP techniques
and statistic-based computational theories, we propose two
Zipf-like models to characterize the distribution of passwords:
PDF-Zipf and CDF-Zipf. Extensive experiments based on
fourteen large-scale datasets, which consist of 113.3 million
real-world passwords, show that our PDF-Zipf model can
well fit the popular passwords (i.e., with fr ≥ 4) and obtain
R2 > 0.97, while our CDF-Zipf model can well fit the entire
password dataset, with the maximum CDF deviation of the

empirical distribution and the fitted theoretical model being
0.48%∼4.59% (avg. 1.84%).

In comparison, our CDF-Zipf model not only covers
100% of a given password dataset, but also is generally
more accurate than both Clauset et al.’s model [44] and
our PDF-Zipf model. Thus, we recommend the use of our
CDF-Zipf model to characterize password distributions.
However, two out of our fourteen datasets (i.e., Rockyou and
Flirtlife.de) are with the maximum CDF deviation >3% and
the KS test p-value <10−4. This suggests the limitation of our
CDF-Zipf model: there is no single distribution function that
can perfectly fit all kinds of password distributions. In other
words, our CDF-Zipf model can be further tuned to cater for
some cases, e.g., extending our power law Fr = C ′ · r s ′

to
a power law with exponential cutoff Fr = C ′ · r s ′ · θ r or a
shifted power law Fr = C ′ · (r + θ)s ′

, where C ′, s′ and θ are
constants. Still, our CDF-Zipf model is very accurate for most
of the datasets (i.e., with the maximum CDF deviations being
0.49% ∼2.28% and their average being 1.85%), and even
for Rockyou and Flirtlife.de, it obtains 2 times better fittings
(in terms of KS statistic D) than other existing models.

Armed with the concrete distribution function of passwords,
we suggest a new metric for measuring the strength of
password creation policies. We further briefly sketch three
important applications of our Zipf theory. It is expected that
the unveiling of Zipf’s law in passwords is also of interest
in other password research domains, and this work lays the
foundation for their further theoretical development and prac-
tical application. For instance, our Zipf theory and numerical
results have already been adopted in a wide range of password-
related domains such as password encryption [56], password
hash [25], password-dataset generation [57] and password
manager [58].

More work remains to be done on this interesting yet
challenging topic. For instance, how to more accurately
(and efficiently) determine the Zipf parameters of password
distributions? What is the underlying mechanism that leads
to the emergence of Zipf’s law in passwords? How will the
password distribution of a system evolve as time goes on?
Do passwords generated under a much restrictive policy (e.g.,
“at least a letter, a number and a symbol, and length≥8”)
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obey Zipf’s law? Do extremely high value passwords
(e.g., for e-banking accounts) follow Zipf’s law? This
highlights the need for more attention from a wide range of
research domains to join forces to address these issues. It is
also a mixed blessing that, the chances for such investigations
to be conducted in the future are increasing as more sites of
high values are breached and more password datasets (and
the associated user behavior information) are made publicly
available.
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