APPENDIX A
CLEANSING OF OUR DATASETS

Contaminated datasets. Of particular interest is our observa-
tion that, there is a non-negligible overlap between the original
Tianya dataset and 7k7k dataset. We were first puzzled by the
fact that the password “111222tianya” originally lay in
the top-10 most popular list of both datasets. We manually
scrutinize the original datasets (i.e., before removing the email
addresses and user names) and are surprised to find that there
are around 3.91 million (actually 3.91%2 million due to a split
representation of 7k7k accounts, as we will discuss later) joint
accounts in both datasets. We realize that someone probably
have copied these joint accounts from one dataset to the other.

QOur cleansing approach. Now, a natural question arises: From
which dataset have these joint accounts been copied? 1t is
highly likely that these joint accounts were copied from Tianya
to 7k7k, mainly for two reasons. Firstly, it is unreasonable
for 0.34% users in 7k7k to insert the string “tianya” into
their 7k7k passwords, while users from tianya.cn are natural
to include the site name “tianya” into their passwords for
convenience. The following second reason is quite subtle yet
convincing. In the original Tianya dataset, we find that the
joint accounts are of the form {user name, email address,
password}, while in the original 7k7k dataset such joint ac-
counts are divided into two parts: {user name, password} and
{email address, password}. The password “111222tianya”
occurs 64822 times in 7k7k and 48871 times in Tianya,
and one gets that 64822/2 < 48871. Therefore, it is more
plausible for someone to copy some (i.e., 64822/2 of a total
of 48871) accounts using “111222tianya” as the password
from Tianya to 7k7k, rather than to copy all the accounts
(i.e., 64822/2) using “111222tianya” as the password from
7k7k to Tianya and further reproduces 16460(= 48871 —
64822/2) such accounts.

After removing 7.82 million joint accounts from 7k7k,
we found that all of the passwords in the remaining 7k7k
dataset occur even times (e.g., 2, 4 and 6). This is expected,
for we observe that in 7k7k half of the accounts are of
the form {user name, password}, while the rest are of the
form {email address, password}, and it is likely that both
forms are directly derived from the form {user name, email
address, password}. For instance, both {wanglei, wangleil23}
and {wanglei@gmail.com, wangleil23} are actually derived
from the single account {wanglei, wanglei@gmail.com, wan-
gleil23}. Consequently, we further divide 7k7k into two equal
parts and discard one part. The detailed information on data
cleansing is summarized in Table I of the main text.

Weaknesses in existing studies. In 2014, Li et al. [7] has also
exploited the datasets Tianya and 7k7k. However, contrary to
what we have done above, they think that the 3.91M joint
accounts are copied from 7k7k to Tianya. Their main reason
is that, when dividing these two datasets into the reused
passwords group (i.e., the joint accounts) and the not-reused
passwords group, they find that “the proportions of various
compositions are similar between the reused passwords and
the 7k7k’s not-reused passwords, but different from Tianya’s
not-reused passwords”. However, they have never explained
what these “various compositions” are. Their explanation also
cannot answer the critical question: why are there so many
7k7k users using “111222tianya” as their passwords?

Hence, it would be more reasonable that they had removed
3.91*2 million joint accounts from 7k7k but not 3.91 million
ones from Tianya. In addition, they did not observe the
extremely abnormal fact that all the passwords in 7k7k occur
even times. Such contaminated data would highly lead to
inaccurate results and unreliable comparisons. For example,
Li et al. [7] reported that there are 9,477,069 (30.67%)
passwords in Tianya with consecutive exactly six digits, yet
the actual value is 2.5 times larger: 23,358,248 (75.59%). For
another example, Li et al. reported that there are 32.41% of
passwords in 7k7k containing dates in “YYYMMDD”, yet the
actual value is 6 times lower: 5.42%.

We have reported this issue to the authors of [7], they
responded to us and acknowledged this flaw in their journal
version [6]. Unfortunately, Han et al. [6] still fail to clean
the datasets properly in the journal version and address our
revealed issue in an oversimplified (and crude) way: “we
removed these duplicate passwords from both websites” [6].
As their journal version [6] is essentially a verbatim of [7], we
mainly use [7] for comparison and discussion.

APPENDIX B
DETAILED INFO ABOUT OUR 22 SEMANTIC DICTIONARIES

We now detail how to construct our 22 semantic-based
dictionaries, in order to make our work reproducible as well
as to facilitate the community. “English_word_lower” is from
http://bit.ly/2b2uPBX and it contains about 58,000 popular
lower-case English words. “English_lastname” is a dictionary
consisting of 18,839 last names with over 0.001% frequency
in the US population during the 1990 census, according to
US Census Bureau [3]. “English_firstname” contains 5,494
most common first names (1,219 male and 4,275 female
names) in US [3]. “English_fullname” is a cartesian product
of “English_firstname” and “English_lastname”, consisting of
1.04 million most common English full names.

To get a Chinese full name dictionary, we employ the 20
million hotel reservations dataset [5] leaked in Dec. 2013. The
Chinese family name dictionary includes 504 family names
which are officially recognized in China. Since the first names
of Chinese users are widely distributed and can be almost any
combinations of Chinese words, we do not consider them in
this work. As the names are originally in Chinese, we transfer
them into Pinyin without tones by using a Python procedure
from https://pypinyin.readthedocs.org/en/latest/ and remove the
duplicates. We call these two dictionaries “Pinyin_fullname”
and “Pinyin_familyname”, respectively.

“Pinyin_word_lower” is a Chinese word dictionary known
as “SogouLabDic.dic”, and “Pinyin_place” is a Chinese place
dictionary. Both of them are from [9] and also originally
in Chinese, and we translate them into Pinyin in the same
way as we tackle the name dictionaries. “Mobile_number”
consists of all potential Chinese mobile numbers, which are
11-digit strings with the first seven digits conforming to pre-
defined values and the last four digits being random. Since it
is almost impossible to build such a dictionary on ourselves,
we instead write a Python script and automatically test each
11-digit string against the mobile-number search engine http:
//ku.13131313131.com/.

As for the birthday dictionaries, we use date patterns to
match digit strings that might be birthdays. For example,

tianya.cn
http://bit.ly/2b2uPBX
https://pypinyin.readthedocs.org/en/latest/
http://ku.13131313131.com/
http://ku.13131313131.com/

“YYYYMMDD” stands for a birthday pattern that the first
four digits indicate years (from 1900 to 2014), the middle two
represent months (from 01 to 12) and the last two denote dates
(from 01 to 31). “PW with a ["-letter substring” is a subset
of the corresponding dataset and consists of all passwords that
include a letter substring no shorter than [, and similarly for
“PW with a [T-digit substring”.

APPENDIX C
A SUBTLETY ABOUT GOOD-TURING SMOOTHING ON
PASSWORD CRACKING

There is a subtlety to be noted when implementing the
Good-Turing (GT) smoothing technique. We denote f to be
the frequency of an event, and Ny to be the frequency of
frequency f. According to the basic GT smoothing formula,
the probability of a string “cica - --¢;” in a Markov model of
order n is denoted by

1
P(“cico---1q”) = HP(“Cilci—ncif(nfl) cecim1”), (1)

=1

where the individual probabilities in the product are computed
empirically by using the training sets. More specifically, each
empirical probability is given by
S(count(ci—pn - - ci—1¢;))
Y ees Slcount(ci—y - - - ci—1c))’
2
where the alphabet X includes 10 printable numbers on the

keyboard plus one special end-symbol (i.e., cg) that denotes
the end of a password, and S(-) is defined as:

P(“ci|ci—n - ci1”) =

S(f) = (f + 2L G
;

It can be confirmed that this kind of smoothing works
well when f is small, yet it fails for passwords with a high
frequency because the estimates for S(f) are not smooth. For
instance, 12345 is the most common 5-character string in the
Rockyou dataset and occurs f = 490, 044 times. Since there is
no S-character string that occurs 490,045 times, N4ggo45 Will
be zero, implying the basic GT estimator will give a probability
0 for P(“12345”). A similar problem regarding the smoothing
of frequency of passwords has been identified in [2].

There have been various improvements suggested in linguis-
tics to cope this problem, among which is Gale and Hill’s
“simple Good-Turing smoothing” [4]. This improvement is
famous for its simplicity and accuracy. This improvement
(denoted by SGT) takes two steps of smoothing. Firstly, SGT
performs a smoothing for Ny:

N(1) iff=1
2N(f) .
SN(f) =14 Fro - if 1 < f < max(f) @)
2N(f) o
T if f = max(f)

where fT and f~ stand for the next-largest and next-smallest
values of f for which Ny > 0. Then, SGT performs a linear
regression for all values SNy and obtains a Zipf distribution:
Z(f) = C - (f)*, where C and s are constants resulting

from regression. Finally, SGT conducts a second smoothing
by replacing the raw count N, from Eq.3 with Z(f):

<f+n¥%i if0<f<fo

S(f) = 2041 5)
(f + UW if fo<f
where ¢(f) = |(f + 1) - S5 — (f +1) - 42| and fo =

min{f € Z‘Nf > 0,4(F) > 1.65,/(f + DTt (1 + Njg—f)}

In 2014, Ma et al. [8] introduced GT smoothing into
Markov-based attacks to facilitate more accurate generation
of password guesses, yet little attention has been paid to the
unsoundness of GT for high frequency events as illustrated
above. To the best of our knowledge, we for the first time well
explicate the combination uses of GT and SGT in Markov-
based password cracking.

REFERENCES

[1] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus
of 70 million passwords,” in JEEE S&P 2012, pp. 538-552.

[2] ——, “Guessing human-chosen secrets,” Ph.D. dissertation, University
of Cambridge, 2012.

[31 R. A. Butler, List of the Most Common Names in the U.S., Jan. 2016,
http://names.mongabay.com/most_common_surnames.htm.

[4] W. Gale and G. Sampson, “Good-turing smoothing without tears,”
Journal of Quantitative Linguistics, vol. 2, no. 3, pp. 217-237, 1995.

[5] J. Goldman, Chinese Hackers Publish 20 Million Hotel Reservations,
Dec. 2013, http://bit.ly/2aVKyBw.

[6] W.Han, Z. Li, L. Yuan, and W. Xu, “Regional patterns and vulnerability
analysis of chinese web passwords,” IEEE Trans. Inform. Foren. Secur.,
vol. 11, no. 2, pp. 258-272, 2016.

[71 Z.Li, W. Han, and W. Xu, “A large-scale empirical analysis on chinese
web passwords,” in Proc. USENIX SEC 2014, pp. 559-574.

[8] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” in Proc. IEEE S&P 2014, pp. 689-704.

[91 Sogou Internet thesaurus, Sogou Labs, April 17 2016, http://www.sogou.
com/labs/dl/w.html.

http://names.mongabay.com/most_common_surnames.htm
http://www.sogou.com/labs/dl/w.html
http://www.sogou.com/labs/dl/w.html

	I Introduction
	II Conclusion
	Appendix A: Cleansing of our datasets
	Appendix B: Detailed info about our 22 semantic dictionaries
	Appendix C: A subtlety about Good-Turing smoothing on password cracking
	References

