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Abstract—Honey encryption (HE) protected password vaults
(called honey vaults) are promising tools that allow a user to
store multiple passwords (called a password vault) and encrypt
them with a master password using HE. In case password
vaults are somehow leaked and the attackers launch offline
password guessing, honey vaults can yield decoy password
vaults for incorrect guesses, forcing an offline guessing attacker
to interact with the authentication server to identify whether
passwords in decrypted vaults are correct or not. Therefore,
honey vaults transform the offline guessing attacker into an
online guessing attacker, i.e., honey vault distinguishing attacker.

In online guessing, attackers can adopt various attacks
to perform multiple guesses against multiple vaults, but the
existing theoretical message recovery (MR) security for HE
only focuses on the advantage of one-time guess against a
single vault, which cannot accurately model realistic attackers
and thus can not provide practical advice for users’ vault
security. To address this issue, we propose a theoretically-
grounded optimal strategy for distinguishing attackers, and
manage to derive a much tighter upper bound on the advantage
against MR security. Particularly, we provide much tighter
upper/lower bounds for advantage against HE-related crypto-
graphic security games, i.e., the security of distribution trans-
forming encoder (DTE), known message attack, and known
side information attack. This provides a better understanding
of the actual security of honey encryption.

To better understand the security of honey vault systems,
we instantiate our optimal strategy into three practical attacks
and propose an encoding attack. Extensive experiments against
two major honey vault systems demonstrate that our four
attacks can improve the attack success rate by 1.15-4.35 times
compared with their counterparts. For the intersection attack,
we propose a feature attack against Cheng et al.’s incremental
update mechanism (at USENIX SEC’21), and our attack can
breach their mechanism with 87%-93% advantage.

1. Introduction
While the number of accounts that users manage con-

stantly increases (e.g., with ordinary Internet users reported
to have 80-107 online accounts [15], [27]), the memory
capacity of human brains remains stable. Due to human
memory limitations, users often choose popular passwords
[34], [35] or reuse passwords [15], [25], [37], which leads
to the vulnerability of conventional password authentication.

Figure 1: An illustration of the honey vault system. For the
conventional password vault system (the upper part), once
the authentication server is compromised, the attacker can
perform offline password guessing against the user’s master
password. The decrypted Non-ASCII random junk strongly
signals the incorrectness of the candidate master password.
While in a honey vault system (the lower part), a wrong
decryption can still yield plausible looking passwords to
confuse the attacker. Therefore, honey vault systems weaken
the offline guessing attacker into an online guessing attacker.

To ease the burden of remembering multiple passwords,
password vaults (also called password managers) are widely
recommended by both academia and industry [7], [13], [22].

Generally, the password vault system stores vault files on
the server (as shown in Fig. 1). Vault files contain users’
frequently used passwords (encrypted by master passwords)
and related information (e.g., domains and usernames). Once
the server is compromised, attackers can perform offline
guessing on the users’ master passwords to recover all pass-
word vaults, i.e., attackers use candidate master passwords
to trial-decrypt the vault one by one. The decrypted random
junk is a strong signal to attackers that the wrong candidate
master password is tried, and attackers can immediately rule
out the candidate master passwords. Attackers can imple-
ment 109-1012 guesses per day using existing password
cracking software [28], [30]. Therefore, offline guessing
poses a major threat to conventional password vault systems.

To address this issue, honey encryption (HE) techniques
have been introduced into password vaults [4], [5], [6], [12].
Honey encryption [18] contains a conventional symmetric
encryption scheme Se that uses low-entropy keys (e.g., pass-
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words) and a randomized encoder: distribution-transforming
encoder (DTE). Encryption first uses DTE to encode the
message into a bit string (called code), and then encrypts
the code with Se. Decryption is the opposite. We call a
password vault system deployed with honey encryption as
a honey vault system. When decrypted with a wrong master
password, the honey vault system can yield decoy vaults
instead of random junk to confuse attackers. In an offline
guessing attack, a plausible vault is generated per trial-
decryption, forcing the attacker to implement online veri-
fication. That is, the attacker needs to enter the passwords
in every plausible vault on some websites and check whether
the login is successful. Since online guessing can be detected
and blocked effectively [11], [13], [29], rational attackers
need to determine an optimal verification order for plausible
vaults to reduce the time cost of verification. It weakens the
offline guessing attacker’s ability to distinguish the real vault
from decoy vaults. Therefore, honey encryption significantly
improves the security of vault systems.

1.1. Motivations
The goal of a honey vault distinguishing attacker is to

distinguish the real vault from decoy vaults by online login
attempts. However, the modeling of attackers/adversaries in
existing works [18] is far from realistic. Juels and Ristenpart
[18] derive a theoretical upper bound on the attacker’s
success rate under one guess and one user in a formal cryp-
tographic security game against honey encryption. However,
in practice, a variety of attacks can be launched (see [5],
[6], [12]), and these attacks are hard to be covered by the
theoretical model in [18]. More realistically, attackers can
often perform multiple online guesses on multiple users [4],
[5], [6], [12]. All this makes it impossible for theories in
[18] to accurately model the actual security of honey vault
systems, and thus users’ passwords cannot be secured. In all,
it remains a challenge to accurately model the attacker’s
advantage, and provide practical upper/lower bounds on
various realistic attacks.

Distribution transforming encoder (DTE) is the core com-
ponent of a honey encryption (HE) scheme. The security of
DTE is quantified by the difference between the distribution
of the binary strings outputted by DTE and the uniform
random distribution. The more similar the two distributions
are, the more secure the DTE is. However, existing security
proof techniques are relatively direct (i.e., using statisti-
cal distance [4], [6], [18]) and cannot accurately measure
the security of DTE. Similar problems exist in other HE-
related cryptographic studies (we will detail them in Sec.
2). A much more accurate upper/lower bound can help
us understand the security of existing systems and avoid
choosing unnecessarily large security parameters, such as
the encryption round and the code length. To our knowledge,
there is a lack of relevant studies on these issues.

Most prior art on honey vaults (see [4], [5], [6], [12])
mainly use heuristic distinguishing attacks (without solid
theoretical foundation) to evaluate the security of honey
vault systems. For example, Cheng et al. [5] assume the
attacker is unaware of the salt when guessing and has

excessive knowledge of the side-channel information of each
password in a vault. Thus, existing attacks cannot be used to
accurately evaluate the honey vault systems’ actual security
and may lead to biased security advice. It is necessary to
design realistic and theoretically-grounded attacks that help
us better evaluate honey vault systems’ actual security.

1.2. Background and Related work

In this section, we give a brief summary of some key
concepts and important prior arts related to honey encryption
and honey vaults, enabling a wide audience to access our
work. Further, we show technical details in Sec. 2.
Message recovery security (MR security). Juels and Ris-
tenpart [18] first proposed honey encryption (HE) and its
core component, the distribution transforming encoder. The
basic security property of HE is message recovery security
(MR security), which is defined in the MR security game;
i.e., the user randomly picks a message and a low-entropy
key, then obtains the ciphertext by encryption, and sends the
ciphertext to the MR adversary A, who wins if A outputs
the real message. We use A’s success rate in the MR game
(called MR advantage) to measure the MR security of HE.
The security of distribution transforming encoder. The
security of distribution transforming encoder (DTE) [18]
is defined against the distinguishing game, i.e., the distin-
guisher B tries to tell the difference between the distribution
of the bit string outputted by the DTE and the random
uniform distribution on bit strings. The higher the B’s
advantage, the lower the security of the DTE.
Inverse sampling distribution transforming encoder (IS-
DTE). Juels and Ristenpart [18] built an instantiation of
DTE, i.e., IS-DTE, utilizing the inverse sampling technique.
IS-DTE can encode message distributions into bit strings.
Message recovery security under Known Message Attack
(MR-KMA security). In 2016, Jaeger et al. [17] proposed
MR-KMA security for HE. The only difference with MR
security is that MR-KMA adversaries are capable of ac-
cessing the public encryption oracle. Also, they proved that
HE with a low-entropy key setting is unable to satisfy
MR-KMA security. In addition, Jaeger et al. [17] further
proposed target-distribution semantic (TDSS) security and
target-distribution non-malleability (TDNM) security. They
upper bounded TDSS and TDNM advantage using similar
proof techniques originating from the Ball&Bin game (a
mathematical model, which we illustrate in Sec. 2.1).
Message recovery security with Side Information (MR-
SI security). Oprisanu et al. [24] introduced MR-SI security
for honey encryption. The key distinction of MR-SI secu-
rity is that adversaries know partial information about the
challenge message, as opposed to MR security.
Honey vault systems. At IEEE S&P’15, Chatterjee et al.
[4] proposed the first honey vault system: NoCrack, and
its core is a carefully designed natural language encoder
(NLE) based on the PCFG model [32], [38], i.e., NoC-
rack’s NLE. The NoCrack’s NLE [4] are specifically for
encoding passwords into random-looking codes. Due to the
honey nature of the NLE, a random seed trial-decrypted



by arbitrarily wrong master passwords can be decoded into
a decoy password (or decoy vault). In 2016, Golla et al.
proposed Golla-NLE [12], which is similar to NoCrack’s
NLE [4] except that the former employs the Markov model
[19]. They also proposed an adaptive mechanism [12], which
can adjust generated decoy vaults according to the real vaults
to behave statistically closer to the real vault distribution.
Distinguishing attacks against honey vault systems. The
goal of distinguishing attacks is to tell the real vault from
a set of decoy vaults. In 2016, Golla et al. proposed the
Kullback-Leibler divergence attack [12], which estimates the
distance between the decrypted vault and decoy passwords
sampled from the NLE. A closer vault is more likely to
be identified as a decoy. In 2019, Cheng et al. found that
NoCrack’s NLE [4] and Golla-NLE [12] are vulnerable to
encoding attacks [6], i.e., attackers can check some simple
features in the code of the vault to tell the real vault from
decoy vaults without extra information. Cheng et al. [6] also
proposed a generic NLE design idea resistant to encoding
attacks. However, their design idea is impractical due to the
high complexity of enumerating all the generating rules in
NoCrack’s NLE [4] and Golla-NLE [12]. In 2021, Cheng
et al. [5] proposed a distinguishing attack strategy and then
instantiated this strategy into five realistic attacks.
Intersection attacks and Incrementally Updateable
mechanism. The goal of intersection attacks is also to
distinguish the user’s real vault from decoy vaults. However,
unlike distinguishing attacks, intersection attacks mainly
consider that the attacker obtains the ciphertext pair from
both the user’s current new vault and the old vault. Typically,
a user’s new vault and old vault differ by one or more
passwords at the end. A correct decryption will obtain two
real vaults with some password overlap, while an incorrect
decryption will obtain two completely different decoy vaults
with a high probability. To resist intersection attacks, Cheng
et al. [5] propose the Incrementally Updateable mechanism
(IU mechanism). IU mechanism [5] uses prefix-preserving
encryption to guarantee that any decrypted old and new
vaults contain a large number of overlapping passwords as
a way to confuse attackers.

1.3. Our contributions

The contributions of this work are as follows:

• New honey encryption theories. We propose an op-
timal attack strategy for MR adversaries and provide
an accurate upper bound for MR advantage using our
proposed optimal strategy, which fills a gap between
the theory of HE and practical applications/attacks.
To accurately estimate the security of IS-DTE [18],
we provide a much tighter upper bound for the IS-
DTE’s security. Additionally, we significantly im-
prove the lower bound for MR-KMA advantage, the
new lower bound is about 60 times better than Jaeger
et al.’s result [17] in the evaluation of real-world
datasets. Based on the same technique, we provide
a lower bound for MR-SI advantage.

• New attacks against honey vaults and extensive
evaluation. We propose a new encoding attack,
i.e., super encoding attack. It is more comprehen-
sive than the strong/weak encoding attack [6], as it
exploits the code distribution of Chatterjee et al’s
DTE output [4]. In our evaluation using the real-
world dataset, the super encoding attack improves
the attack success rate by 1.15-4.35 times compared
with its counterparts. In addition, we instantiate
three theoretically-grounded attacks using our op-
timal strategy. Extensive experiments reveal that our
three attacks improve by 1.23-2.05 times compared
with their counterparts.

• Further Exploration. We analyze the current adap-
tive mechanism in Golla-NLE [12] and reveal that it
can not effectively enhance the security of Markov
model-based NLE. Additionally, we propose a fea-
ture attack against Cheng et al.’s Incrementally Up-
dateable mechanism (IU mechanism). By obtaining
the ciphertexts of a user’s new and old vaults, our
attack achieves a significant advantage of nearly
90% in breaching the IU mechanism [5].

2. Preliminaries

2.1. Notation and Definitions
Notations. We denote by y←A(x) that given a randomized
algorithm A on input x, setting y equal to random output
of A. When A on input x is a deterministic algorithm, we
write y:=A(x). If G is a security game, we let Pr(G=1) and
Pr(G⇒true) denote G outputs 1 and true, respectively. We
use calligraphic uppercase to denote a set/space, e.g., S. A
distribution on set S is a function pS or PrS(·) : S → [0, 1],
such that

∑
s∈S PrS(s)=1. By s←pSS we denote sampling

an element s∈S according to the distribution pS and s $←−S
we denote sampling uniformly at random. For ease, we
further simplify s←pSS to s←S. We denote by |S| the size
of S. For a, b∈Z, we denote by (a, b] the set {a+1, . . . , b},
and by [a, b] the set {a, . . . , b}.

For honey encryption security definitions, such as mes-
sage recovery security (MR security), we use the MR game
to denote the cryptographic security game defining MR
security, the MR adversary to denote the adversary partici-
pating in the MR game, and the MR advantage to denote the
advantage obtained by the MR adversary in the MR game.
For other HE-related security definitions such as MR-KMA,
and MR-SI, we also use the same abbreviation convention.
Distance measures. Let µ and ν be two distributions on
a finite event space Ω; the statistical distance between
µ and ν is defined as ∥µ-ν∥:=

∑
x∈Ω max{0,µ(x)-ν(x)}.

The Kullback Leibler (KL) divergence is defined as
∆KL(µ, ν):=

∑
x∈Ω µ(x) ln(µ(x)ν(x) ). The chi-squared diver-

gence is χ2(µ, ν):=
∑

x∈Ω
(µ(x)-ν(x))2

ν(x) . Note that ∆KL(µ, ν)

and χ2(µ, ν) is well-defined because we require µ is full
support. The relation among the three measures can be
captured by Lem. 1 (Pinsker’s inequality). The proof for
Lem. 1 is given in Appendix A.1.



Lemma 1. (Pinsker’s inequality) Let µ and ν be two
distributions on a finite event space Ω. Based on the above
definition, we have

(∥µ− ν∥)2 ≤
1

2
∆KL(µ, ν);

∆KL(µ, ν) ≤ χ2(µ, ν).

(1)

Information-theoretic indistinguishability. The distin-
guishing game is used to estimate the differences between
two systems S0/S1. For a distinguisher B with access to
one of two systems, many security proofs require an upper
bound on

Advdist
S0, S1 (B) = |Pr(B(S0) = 1)− Pr(B(S1) = 1)|. (2)

In symmetric encryption, there exist some ways upper
bounding Advdist

S0, S1
(B) using statistical distance [2], [21].

More specifically, B performs a query u, and the sys-
tem S0/S1 sends a response v. Let (u, v) be a query-
response pair. B can perform multiple queries to S0/S1,
and the system will answer each query. Let the number
of queries by B be q (related to B’s capability), we de-
note the ordered sequence of q query-response pairs as
Zq = ((u1, v1), . . . , (uq, vq)) and ui and vi denote the ith
query and the system S0/S1’s response, respectively. Let
PrS0(Zq)/PrS1(Zq) be the probability of the sequence of q
query-response pairs in system S0/S1, then we have

Advdist
S0, S1 (B) ≤

∑
Zq

∥PrS0
(Zq)− PrS1

(Zq)∥, (3)

where Zq contains all sequence of q query-response pairs.
Ball&Bin game. There are m balls with mass distribution
pball and n bins. Each ball enters a bin randomly according
to the distribution of the bin pbin. Each bin mass is called
the load of the bin. We focus on the expectation of the
maximum load, denoted by E[Lpball,pbin

] where pball and pbin
are parameters. The MR security of HE can be modeled
using this game. We mainly discuss this game in Sec. 3.1.

2.2. Honey encryption

Distribution transforming encoder (DTE). The DTE is an
algorithm pair (encode, decode), where encode is a random-
ization algorithm. encode’s input and output are defined on
the message spaceM and the seed/code space S = {0, 1}l,
where l = l(λ) is code length, λ is the security parameter
and usually can be ignored. decode is vice versa. A secure
DTE must satisfy following properties.
1) Correctness. We require

Pr(decode(encode(m))=m : m←M) = 1. (4)

2) Pseudorandomness. For all (even computationally un-
bounded) distinguishers B, we require B’s advantage
AdvdteDTE, pM

(B) to be

|Pr(SAMP0Bpd = 1)− Pr(SAMP1BpM = 1)| ≤ negl(λ) (5)

where the SAMP0Bpd
and SAMP1BpM

are defined in Fig. 2.
According to Eq. 5, the pseudorandomness required for DTE
is that it is difficult for B to distinguish between m∈M that
is chosen according to pM and chosen by firstly picking a
seed s uniformly at random and then applying decode(s)
(gray part in SAMP0Bpd

in Fig. 2).

Noted the subscript of SAMP0Bpd
, we let pd/Prd(·) be the

distribution on M induced by the DTE. Formally,
Prd(m) = Pr(m = decode(s) : s $←−S) (6)

Instantiations of DTE. At Eurocrypt’14, Juels and Ris-
tenpart [18] built a DTE instantiation using the inverse
sampling technique, i.e., IS-DTE = (is-encode, is-decode).
Let CDF(·) be the cumulative distribution function of
a message distribution pM according to some order
{m1,m2, ...,m|M|} and define CDF(m0):=0, let the code
length l and factor ρ satisfy ρ:= 1

2l
≪ minm PrM(m). Next,

define the representation function repρ(·), such that for any
value a∈[0, 1], repρ(a):= argminb∈N |a− bρ|.

For is-encode(·), we have
s $←−[repρ(CDF(mi−1)), repρ(CDF(mi))). (7)

For is-decode(·), the message distribution pM is public
even to the adversary/attacker, thus one can simply deter-
mine the location of the code s, and then recover m.

SAMP0Bpd

s $←−S

m:=decode(s)

b←B(m)

return b

SAMP1BpM

m←M
b←B(m)

return b

Figure 2: Games for DTE secu-
rity. The left is SAMP0 and the
right is SAMP1. The difference
comes from the message distribu-
tion (The gray part).

In addition, there also
exists DTE for special
data, such as Chatterjee et
al.’s DTE [4] (Chatterjee-
DTE for short). Chatterjee-
DTE [4] is specific for
encoding fractions of the
form p

q , where p, q∈N and
p ≤ q. Usually, the frac-
tion p

q is the cumulative-
frequency of a message
[4]. We detail Chatterjee-
DTE [4] in Sec. 4.2. Exploiting the code distribution of
Chatterjee-DTE output [4] can help us implement attacks
against honey vault systems.

HEnc(k,m)

s←encode(m);

r $←−{0, 1}∗

c:=h(r∥k)⊕ s

c′:=(c, r)

return c′

HDec(k, c′)

(c, r):=c′

s:=c⊕ h(r∥k)
m:=decode(s)

return m

Figure 3: Hash-based honey en-
cryption (HE) scheme, which is the
HE scheme using a cryptographic
hash h, i.e., the symmetric encryp-
tion scheme Se is based on h (typi-
cally modeled as a random oracle).

Honey encryption.
An HE scheme (HEnc,
HDec) is a symmetric
encryption scheme Se =
(enc, dec) with a DTE
DTE = (encode, decode).
As shown in Fig. 3, in
encryption, the message
m is first encoded
into a code s then
encrypted using Se.enc
(Hash based symmetric
encryption scheme in
Fig. 3). Decryption is
the opposite. The difference between HE and conventional
symmetric encryption is that the former needs to be tailored
according to the message distribution.
MR & MR-KMA security. Juels and Ristenpart [18] first
instantiated HE schemes that achieve message recovery
security (MR security). MR game is defined in Fig. 4.
For a given HE scheme and message distribution pM, key
distribution pK, the MR adversary A (even computationally
unbounded) enters as input a ciphertext c of a challenge
message m and outputs a guess m∗, where the challenge
message m and key k are picked according to distributions



MR

m←M; k←K
s←encode(m)

c←enc(s, k)

m∗←A(c)
return m==m∗

MR-KMA

m←M; k←K
s←encode(m)

c←enc(s, k)

m∗←AEnc(c)

return m==m∗

Enc
m←M
c←HEnc(m, k)

return m, c

Figure 4: Games defining message recovery security (MR
security) and message recovery security under a known
message attack (MR-KMA security). The left is the MR
game, the middle is the MR-KMA game, and the right is a
public encryption oracle used in the MR-KMA game.

pM and pK. A wins iff m∗==m. We measure the MR
advantage by

Advmr
HE,pM,pK

(A):=Pr(MRA
pM,pK⇒true). (8)

Jaeger et al. [17] proposed message recovery security
for HE under Known Message Attack (MR-KMA security).
The MR-KMA game is shown in Fig. 4 The MR-KMA
adversary A is able to access the encryption oracle Enc.
With a low-entropy key setting, A has an infinite number
of Enc queries. We measure the MR-KMA advantage by

Advmr-kma
HE,pM,pK

(A):=Pr(MR-KMAA
pM,pK⇒true). (9)

2.3. Honey vault system
Natural language encoder (NLE). The core of the honey
vault system is the NLE, which encodes passwords/vaults
into random-looking bit strings (i.e., codes/seeds) and de-
codes arbitrary bit strings into passwords/vaults. More
specifically, the NLE usually contains two sub-modules,
i.e., a password probability model (PPM, such as PCFG
model [32], [38] and Markov model [19], [34]) and DTEs.
When encoding a vault, the PPM first parses each password
into multiple ordered rules, each of which is assigned a
probability, and then encodes these rules using DTE. The
decoding is the opposite. According to Kerchoff’s principle,
both PPM and DTEs are public. The security of the NLE
directly affects the security of the honey vault system.

The two existing honey vault systems are NoCrack [4] and
Golla-NLE [12]. The password probability model (PPM) in
NoCrack’s NLE [4] is PCFG model [38], while in Golla-
NLE [12] is Markov model [19]. For ease, we say that
NoCrack’s NLE [4] is based on PCFG model [38], while
Golla-NLE [12] is based on Markov model [19]. Both the
two NLEs use Chatterjee-DTE [4] to encode the rules.
Meanwhile, Golla-NLE [12] uses an adaptive mechanism
to generate more real decoy vaults [12], the idea is to
heuristically increase the frequency of some rare rules in
the Markov model, thus distorting the rule distribution in
the Markov model to confuse semantic-aware attackers.

2.4. Security model
The fundamental security goal of honey vault systems

is that, when given a vault ciphertext and wrong master
passwords, the honey vault system will generate a number
of decoy vaults, making them indistinguishable from the real

vault. This goal is defined against a honey vault distinguish-
ing attacker (HV attacker)A who has obtained the encrypted
vault files (such as the online synchronization service from
the password manager). Then A can try (almost) all pos-
sible candidate master passwords to trial-decrypt the vault
ciphertext and obtain n plausible-looking vaults, where n is
the number of candidate master passwords tried by A, and
distinguish the real vault from n plausible-looking vaults.
REMARK. HV attackers inherently differ from MR/MR-
KMA adversaries against honey encryption and DTE dis-
tinguishers B, because the latter three are theoretical adver-
saries against HE, while HV attackers are realistic attackers
against honey vault systems. To avoid ambiguity, when we
use the adversary/attacker notation A/B, we will specify it
in advance.
Honey vault distinguishing attacker (HV attacker). In
this work, we focus on distinguishing attacks against honey
vault systems (i.e., HV attackers). Given any user Ui’s
encrypted vault file, the attack process of the HV attacker
A is as follows.

1. A uses n candidate master passwords to trial-decrypt
the vault ciphertext, then gets n plausible-looking vaults.

2. A assigns a score to each of the n vaults through
a score function s(·), and logs in to the corresponding
domains according to the rank of scores to implement online
verification.

In the distinguishing attack, we mainly focus on the order
of online verification determined by the score function,
which can reflect the attack success rate and the security of
the honey vault system. Moreover, we assume that A can
always recover the real vault within n=1000 attempts. This
practice closely follows the best experimental setup in the
main-stream honey vault studies [4], [5], [6], [12]. Addi-
tionally, we have also tested larger values of n = 10,000,
1,000,000, which yielded similar results but significantly
increased the overall experimental time cost.
Attacker capabilities. In our evaluation, we assume that
the HV attacker A has somehow obtained the encrypted
vault files (i.e., vault ciphertexts), the algorithms of the
NLE and the DTE, etc., and knows all public information
such as the publicly leaked third-party password datasets.
All distinguishing attacks are based on a carefully-designed
score function s(·) used to score the vaults, and the order
of A’s online verification is based on the scores. Also, A
can use the publicly leaked password datasets to train some
data-driven score functions.
Other attackers: Intersection attacks. The goal of inter-
section attacks is to distinguish the user’s real vault from de-
coy vaults, similar to the honey vault distinguishing attacks.
In intersection attacks, the attacker A obtains the ciphertext
pair (cn, co) from the user’s both current new vault and the
old vault. Typically, the new vault and old vault differ by one
or more passwords at the end. In each trial decryption of the
ciphertext pair (cn, co), A obtains two plausible vaults (vn,
vo). A correct master password will decrypt (cn, co) into two
real vaults with some password overlap, while an incorrect
master password will decrypt it into two completely different
decoy vaults with a high probability.



2.5. Evaluation metrics
This work adopts the following metrics to equally the

security of a honey vault system.
Average rank r̄ and accuracy α are proposed by Chatterjee
et al. [4], where r̄ is the average rank of all the real vaults
given a honey vault system and an attack. The α is the
accuracy of distinguishing a real vault from a decoy one.
The two metrics measure the average-case performance of
a honey vault system and a practical attack. An ideal honey
vault system has r̄ of 0.5 and α of 0.5, while an ideal attack
has r̄ of 0 and α of 1.
Cumulative distribution graph (CDG) is proposed by
Cheng et al. [5], [6], which plots the ratio y of successfully
cracked vaults, when the attacker makes x online verifica-
tions. This metric measures the global picture of the attack
success rate. Golla et al. [12] proposed the discrete metric
Qk where k = 0.25, 0.5, which means that k fraction of
vaults are among the top-ranked Qk of the vaults. Thus, Qk

can also be represented in the CDG by x when y is k.

2.6. Our datasets and ethics considerations

Datasets. Our evaluation relies on Pastebin, which is the
only publicly accessible password vault dataset as far as we
know. Pastebin may have been leaked before June 2011 and
appears to have been collected by malware running on many
clients. Pastebin was first used by Chatterjee et al. [4] to
evaluate NoCrack’s NLE [4] and make the dataset available
along with the NoCrack source code. Pastebin contains the
usernames/domains-password pairs in every vault. Since the
honey vault systems we evaluate do not require personal
information, we only focus on the passwords in Pastebin.
Pastebin contains 276 vaults of sizes 2 to 50. In our evalu-
ation, we use these 276 vaults as our testset.

To make our experiments fairer, we use the Rockyou
dataset (Rockyou for short) as an auxiliary password
dataset as [4], [5], [6], [12], i.e., using Rockyou to train
some data-driven attacks. Rockyou was leaked in Decem-
ber 2009 [1], which is one of the largest password datasets
disclosed early and widely used in recent password security
studies [16], [19], [20], [25], [26], and contains 32.6 million
passwords. Therefore, Rockyou can provide large enough
password samples that an attacker can learn early user
password behaviors.

In addition, to make our evaluation more comprehensive,
we also incorporate a recently leaked dataset, Wishbone,
as another auxiliary password dataset. Wishbone was
leaked in January 2020 [3] and may reflect the most
current user password behaviors. It is a popular mobile
app that allows users to compare two items in a simple
poll. The Wishbone dataset is originally leaked in MD5
(not plaintext), and costs us 9 months to recover 95.61%
of it using various password guessing models [28], [30],
[35], [37]. These recovered passwords encompass diverse
compositions (@Ss7596953, Avarose#101), semantics
(watermelon1, l0vemet0day), and many randomly
looking passwords ($oftb@ll#1). Therefore, the current
set of plaintext passwords we recovered well represents

the distribution of the whole dataset. Following the data
cleaning method used by [34], [35], we removed non-
password strings from the original dataset, including titles,
descriptions, footnotes, and non-ASCII strings. We also
removed passwords with length > 30, as they may have
been randomly generated by password managers or spam.
Ethics considerations. We are aware that although publicly
available and widely used in the existing literature (e.g.,
[4], [5], [6], [12], [16], [19], [20], [25], [26]), these datasets
are private data. Therefore, for non-plaintext data recovery
(i.e., retrieving Wishbone plaintext passwords from MD5
hashes), our workstations are kept strictly independent from
the external network during the recovery, which ensures that
our password recovery is done only locally and indepen-
dently and in privacy. For all the plaintext password data,
we only report aggregated statistical information and treat
each individual account as confidential so that their use in
our study does not increase the risk to the corresponding
victim. We have consulted with privacy experts several times
and obtained approval from our center’s IRB. In addition,
these datasets may be exploited by attackers as training
samples, and our use facilitates the academic community
to understand the realistic security of honey vault systems.
Since our datasets are publicly available on the Internet, the
results of this work are fully reproducible.

3. Revisiting honey encryption

In this section, we propose a theoretically-grounded opti-
mal attack strategy for the MR adversary and further derive
a new upper bound on the MR advantage. Besides, we give
a tighter upper bound on the security of IS-DTE [18] and
further analyze MR-KMA and MR-SI security for honey
encryption and give much tighter bounds for them.

3.1. Advantages against MR security

Revisiting JR’s proof. Juels and Ristenpart [18] first upper
bounded the MR advantage, their proof contains three steps:
1) Estimating the difference between MR game (Fig. 4)
and Game2 (Fig. 5). The message distributions in MR game
and Game2 are pM and pd (gray part) separately. Therefore,
the difference between the MR game and Game2 is, at most,
the upper bound of the DTE distinguisher B’s advantage.
2) Game2 is equal to Game3. Assumption of the random or-
acle model for the conventional encryption scheme enables
us to assume ciphertexts (in the box) to be uniform (i.e., the
same as in Game3), so Game2 is equivalent to Game3.
3) Game3 is a Ball&Bin game. According to our assump-
tions, the keys are considered as balls and the messages
are considered as bins, and the maximum expected loading
E[LHE,pK ] of the Ball&Bin game upper bounds the advan-
tage of Game3. Finally, we use the hybrid argument to get
the advantage of MR adversary to satisfy

Advmr
HE,pM,pK

(A) ≤ AdvdteDTE,pM
(A) + E

[
LHE,pK

]
, (10)

where E[LHE,pK ] is the maximum expected loading of a
Ball&Bin game, the subscript is the parameters of Game2.



Although the MR advantage based on DTE security is
given, there are still some shortages in real-world appli-
cations: the encoding techniques used in some specific
DTEs [4], [12] (e.g., Chatterjee et al.’s DTE [4]) are not
the same as [18], we cannot directly estimate the MR
advantage of the schemes based on these DTEs. Moreover,
attackers against real-world applications (e.g., honey vault
distinguishing attackers [5], [6], [12]) usually implement
some attack strategies that cannot be captured by the security
model in [18] (Even exploiting some vulnerabilities in the
system implementation [6]). To address this issue, we give
a theoretically-grounded optimal strategy for the MR game
and derive a much tighter upper bound of MR advantage
based on our strategy. Meanwhile, our strategy can provide
a theoretical basis for the design of attacks against different
honey vault systems in Sec. 4.4.

Game1(n)

m←M ; k←K

s←encode(m)

c←enc(s, k)

m∗←A(c)
return m==m∗

Game2(n)

s $←−S ; k←K

m:=decode(s)

c←enc(s, k)

m∗←A(c)
return m==m∗

Game3(n)

c $←−C ; k←K
s:=dec(c, k)

m:=decode(s)

m∗←A(c)
return m==m∗

Diff Equal to

Figure 5: Games used in JR’s proof [18]. Game1 is the
MR Game in Fig. 4. The difference between Game1 and
Game1 is upper bounded by the distinguishing advantage;
Game2 and Game3 are equal under the random oracle
model; Game3 is a Ball&Bin game under the random oracle
model, the expected maximum loading is E[LHE,pK ].

Our optimal strategy against MR Game. To construct our
optimal strategy against the MR game (shown in Fig. 4), we
use the Bayesian method to estimate the posterior probabil-
ity Pr(m|c) that the message picked by the user is m for a
given ciphertext c. This requires us to detail the encryption
process of the HE scheme. When the message m is picked,
let Sm be the set containing all possible codes of m in the
IS-DTE [18]. The IS-DTE [18] outputs a code s∈Sm uni-
formly at random. Then the user picks k∈K according to the
distribution pK and encrypts the code s using the symmetric
encryption scheme Se. Let Pr(enc(k, s)=c) be the probabil-
ity that Se.enc outputs the ciphertext c. Since the code s
and the key k are picked randomly, we need to enumerate
all cases of s∈Sm and k∈K to accumulate the posterior
probability of yielding the given ciphertext c for a given
message m. That is,

∑
s∈Sm

∑
k∈K PrK(k)Pr(enc(k, s)=c).

According to the above analysis, we first present our Thm.
1, which serves as the theoretical foundation for our optimal
attack strategy against the HE scheme.

Theorem 1. Let HE be the honey encryption scheme with
an IS-DTE [18]. Given the ciphertext c, if the guess of
the MR adversary A is m (shown in Fig. 4), then the MR
advantage is at most

∑
s∈Sm

PrM(m)

|S|Prd(m)PrC(c)

∑
k∈K

PrK(k)Pr(enc(k, s) = c), (11)

where PrM(·), PrK(·), PrC(·) denote the probability dis-
tribution of the message, low-entropy key, and ciphertext.
Prd(·) denotes the decoy message distribution modeled by
the IS-DTE [18]. Sm contains all possible codes of m and S
denotes code space. Pr(enc(k, s)=c) denotes the probability
that Se.enc encrypts the code s to the ciphertext c. Thm.
1 indicates that if A tries the message m as the guess for
the real message, her expected attack success rate can be
expressed by Eq. 11. The proof is given in Appendix A.2.
Explaining our optimal attack strategy. According to
Thm. 1, our optimal attack strategy is that, the MR ad-
versary A first calculates the Bayesian posterior probability
of each message m∈M given the ciphertext c, using Eq.
11 in Thm. 1. A then picks the message with the highest
posterior probability as her guess (denoted as m(1)). Note
that the superscript (i)(i∈[1, |M|]) indicates its ranking is
ith according to the Bayesian posterior probability Eq. 11.
From A’s view, m(1) is the most likely message picked by
the user. If this guess fails, A continues guessing subsequent
messages in descending order, i.e., {m(2), . . . ,m(|M|)} until
A succeeds. Overall, Thm. 1 is a Bayesian method to the
MR game, estimating the probability of the message m
given the ciphertext c, thus our attack strategy is optimal.
Comparing to the result in [18]. Based on our optimal
strategy reflected in Thm. 1, we derive a much tighter upper
bound for the MR advantage, i.e., Thm. 4 in Appendix A.2.
Compared to the upper bound of the MR advantage in [18],
our optimal attack strategy has two main advantages:

(1) In [18], Juels and Ristenpart construct two additional
games (i.e., Game2,Game3 in Fig. 5), using the hybrid
argument and scaling techniques for the Ball&Bin Game,
to obtain a relaxed upper bound on the MR advantage.
Compared to [18], our Bayesian method in Thm. 4 is
the theoretically optimal attack itself. Therefore, Thm. 4
provides a more accurate MR advantage.

(2) For relevance to real-world attacks, our Thm. 1 can
be used to design theoretically-grounded attacks against
honey vault systems (e.g., [4], [12] see in Sec. 4.4), thus
guiding honey vault distinguishing attackers (HV attack-
ers) to implement effective distinguishing attacks. More
specifically, Eq. 11 can be transformed into an effectively
calculated score function for HV attackers. Both PrM(·)
and Prd(·) can be efficiently estimated by a password model
and a natural language encoder, respectively. For the term
PrK(k)Pr(enc(k, s) = c), we can make a reasonable ap-
proximation based on a specific honey vault system. How-
ever, the upper bound given in [18] cannot achieve this. Our
attack strategy fills the gap between the theory and practical
security of honey encryption and honey vault systems.

3.2. Analysis of DTE security
The security of DTE directly affects the MR security

of honey encryption (Recall Eq. 10). To estimate the MR
advantage, it is necessary to estimate the DTE security ac-
curately. However, Existing proof methods are rather crude
and often do not provide tight bounds (see [6], [18]), espe-
cially when faced with some sophisticated concatenations of



multiple DTEs (e.g., NoCrack’s NLE [4], Golla-NLE [12]).
In this section, we give a much tighter bound on IS-DTE
security using new proof techniques. Our techniques can
also be used for the concatenation of multiple IS-DTEs [6].
Much tighter upper bounds for the IS-DTE [18] secu-
rity. Our main proof techniques build on the Chi-Squared
method, first proposed by Dai et al. [9], which can provide a
more accurate upper bound on statistical distance. The main
case considered by Dai et al. [9] is the adaptive query, i.e.,
the current response depends on previous ones. However,
in our setting, we consider the non-adaptive distinguisher
against DTE security, so we extend the Chi-square method
to non-adaptive distinguishers, i.e., Lem. 2. The proof of
Lem. 2 is given in Appendix A.3.
Lemma 2. ( [9] Lemma 3, adapted) For a distinguisher
B, capable of non-adaptively performing q queries on the
system S0 (resp. S1), we obtain that∑

Zq

∥PrS0
(Zq)− PrS1

(Zq)∥ ≤ (
1

2

q∑
i=1

χ2
i )

1
2 , (12)

where χ2
i is the chi-squared divergence of the ith pair

distribution in the two systems (SAMP0/SAMP1), i.e.,∑
z

(PrS0
(z)−PrS1

(z))2

PrS1
(z) . We get Thm. 2 using Lem. 1.

Theorem 2. Let B be a distinguisher distinguishing between
the two systems shown in Fig. 2. The advantage is

AdvdteIS-DTE,pM
(B) ≤

√
|M|/2
2l

≤
|M|
2l

. (13)

The proof is in Appendix A.4. Here we show the proof
sketches. We first estimate the chi-squared divergence of
the two systems’ response distributions at one query. Then
Lem. 2 is used to upper bound the divergence at q queries.
For computationally unbounded distinguishers, we apply
q=|M| to get the Eq. 13. Although the above process
seems intuitive, there are still some technical difficulties,
such as how to estimate the difference in the probability
of “one query” z=(u, v) in two systems SAMP0/SAMP1.
In summary, the key point is combining the estimation of
IS-DTE [18]’s response distribution and Lem. 1.
Implications. Thm. 2 is useful to realistic honey vault sys-
tem design, as it can reduce the code length of the original
system by log(

√
2|M|) bits without weakening the system

security. Reducing the code length can not only improve
the system’s computational performance but also reduce the
storage cost of encrypted vault files.

3.3. Revisting the MR-KMA security
MR-KMA security is crucial to HE schemes. Jaeger et

al. [17] state that in the low-entropy key setting, an MR-
KMA adversary can achieve the advantage at least 1

2κ2 when
Enc query number is at most κ=⌈log |K|⌉, where K is the
low-entropy key space. However, the advantage 1

2κ2 is too
small to enable users to understand the real-world MR-
KMA security. Meanwhile, a global expression of how the
advantage varies with the query number is needed, as it can
better portray the global picture of the MR-KMA security.
Lower bounded MR-KMA security for hash-based HE.
We propose a new attack against the MR-KMA game in
the low-entropy key setting, and give a much tighter lower

bounds for the MR-KMA advantage. Our attack enables the
MR-KMA adversary to gain an overwhelming advantage
and is far better than Jaeger et al.’s result [17]. Our result
is shown below.
Theorem 3. For a hash-based HE scheme in the low-entropy

key setting, there exists an MR-KMA adversary A, for
any distribution pM, pK with at most q ≥ 1 queries to
oracle Enc, the MR-KMA advantage satisfies

Advmr-kma
HE,pM,pK

(A) ≥ 1− |K|ωq
m, (14)

where |K| is key space size, and ωm:=maxm Prd(m). The
proof is in Appendix A.6. Here we briefly show our proof
idea. Let the user-picked key be k∗. A obtains q plaintext-
ciphertext pairs {(ci,mi)}qi=1 through oracle Enc. For ith
pair, A decrypts ci to mi using the key k∈K (k ̸= k∗) with
probability Prd(m) ≤ ωm. We call the key that makes all
q ciphertexts decrypted correctly as the consistent key, and
the probability of such an event is less than ωq

m. Using the
union bound for all keys except k∗, the probability of no
consistent key is at least 1 − |K|ωq

m. This indicates that A
can rule out all keys except the real key k∗.

Further, we use the Rockyou password dataset (see
Sec. 2.6) to model both of the distributions of master
passwords and common passwords (encrypted by master
passwords) in honey vault applications. Let the Rockyou
be D, |D| = 32, 581, 870, ωm ≈ 9 × 10−3. When the
Enc query number q=4, the MR-KMA adversary has an
advantage of at least 78.6%. While applying Jaeger et al.’s
result [17], the advantage is at least about 1.3%. Therefore,
our new result can increase the lower bound of the MR-
KMA advantage by about 60 times in the evaluation of the
Rockyou dataset.
Additional works. To understand MR-KMA security for
HE schemes, we further improve Jaeger et al.’s proof tech-
nique, breaking the limitation that Jaeger et al. [17] can
only estimate MR-KMA advantage given some specific
query numbers. We derive a global expression of MR-
KMA advantage for general HE schemes (see Thm. 5 in
Appendix A.5). Our MR-KMA advantage is much more
precise than that of Jaeger et al.’s. Moreover, using a similar
strategy, we further analyze the MR security under known
side information attack (MR-SI security), giving an exact
lower bound for MR-SI advantage (see Appendix A.7).

4. Security Analysis of Existing Honey Vaults
In this section, we analyze the security of existing honey

vault systems using our proposed HE-related theorems in
Sec. 3. We propose an encoding attack, i.e., super encoding
attack and instantiate our optimal strategy in Sec. 3.1 into
three theoretically-grounded attacks, i.e., List-based attack
against NoCrack’s NLE [4], TarGuess-II-based attack and
adaptive TarGuess-II-based attack against Golla-NLE [12].
The overview of our all attacks is shown in Table 1.

4.1. Formalizing the process of NLE
The NLE is an essential module in the honey vault system.

The security of the NLE directly affects the security of
the honey vault system [4], [5], [6]. The NLE contains



TABLE 1: AN OVERVIEW OF OUR PROPOSED PRACTICAL ATTACKS AGAINST HONEY VAULT SYSTEMS

Targeted honey vault systems attack How best to instantiate PrV(·)/PrPW(·) Instantiate Prd(·) Alternative models†Password (reuse) model Score function
All systems [4], [12] Super encoding attack - Eq. 16 - -
NoCrack’s NLE [4] List-based attack List model Eq. 18 NoCrack’s NLE [4] Hybrid models∗

Static Golla-NLE [12] TarGuess-II-based attack TarGuess-II [35] Eq. 19 Static Golla-NLE [12] Pass2path [25]

Adaptive Golla-NLE [12] Adaptive TarGuess-II-based attack TarGuess-II [35] Eq. 19 with
Pre-processing Adaptive Golla-NLE [12] Pass2path [25]

†These models have also been used to instantiate PrV(·)/PrPW(·), but according to the results of our additional experiments Fig. 8, they are not as effective as
List model and TarGuess-II [35]. Therefore, we mainly choose List model and TarGuess-II [35] to instantiate PrV(·)/PrPW(·).

∗The hybrid models αList +βPCFG+γMarkov (α,β, γ∈[0, 1] and α+ β + γ = 1) means: α fraction of probability are from List model, β from PCFG, Etc..

two sub-modules, i.e., a password probability model (PPM)
and DTEs. We first formalize the process of the NLE.
The goal of the NLE is to encode the vault into a code
(aka. seed). Generally, the NLE parses each password in
the vault into corresponding password generation rules us-
ing the PPM, then encodes these rules using Chatterjee-
DTE [4], and then concatenates the codes of all rules as
the code of the whole vault. For example, in the PCFG
model, the generation rules of the password abc123 are
{(S→WD),(W→abc),(D→123)}, where S, W, D de-
note the start symbol, word symbol, and digital symbol,
separately; in the 3-order Markov model, generation rules
are {(L→6),(∗ ∗ ∗, a),(∗∗a, b),...,(c12,3)},
where (L→6) denotes the password length, and the rest rules
come from the Markov chain.

Let a vault v containing n passwords be v=(pw1, ..., pwn).
For the code, let sv be the code of the vault v, let spwi be
the code of a password pwi∈v, and let s be the code of a
generation rule belonging to a password. For the rules, let r
be a rule, let the rpwi be the rule set of a password pwi∈v,
and let rv be the rule set of a vault. More specifically, for the
ith password pwi in the vault v, we denote the password rule
set as rpwi . If the password rule set rpwi contains ki=|rpwi |
ordered generation rules, we write it as rpwi={ri1, ..., riki}.
Thus, the vault rule set is rv={rpw1 , . . . , rpwn}. After en-
coding, we let the code of the rule rij be sij , let the code
of pwi be spwi=(si1, ..., siki), and the code of the vault is
sv=(spw1 , . . . , spwn).

For example, in a PCFG model, the rules for ith password
abc123 are ((S→WD),(W→abc),(D→123)), thus we
have ki=3, ri1 = (S→WD),..., ri3 = (D→123). If the code
length is 4, and the corresponding codes are si1 = 1100,
si2 = 1001, si3 = 0011, the code of the password abc123
is spwi

= (1100, 1001, 0011). For ease, we assume all
rules are encoded as the same length l and use the integers
in [0, 2l] to denote the code corresponding to the rule, so
we can write the code of abc123 as spwi

= (12, 9, 3).
We emphasize that the rules in a (password/vault) rule set

need to be kept in order so that the NLE can use the ordered
rules to recover the password and the vault. A password rule
set can only correspond to one password, but a password
may correspond to multiple password rule sets (According
to the ambiguity of password probabilistic models in the
NLE). For example, in a PCFG model, password may
have two rule sets r1= {S→W, W→password)} and r2=
{S→WW, W→pass, W→word}.

Here we take NoCrack’s NLE as an example to show
the whole process. NoCrack’s NLE [4] is based on the

PCFG model, which uses the sub-Grammar method [4] to
capture the similarity of passwords in a vault. For a vault v
= (password, 123456), the encoding process consists of
three steps:
1) Parsing the vault v into generation rules, we ob-
tain two possible vault rule sets for v, i.e., r1v= {S→W,
W→password, S→D, D→123456} and r2v= {S→WW,
W→pass, W→word, S→D, D→123456}.
2) Selecting the rule set with the highest probability under
the PCFG model PrPCFG(·). Assuming that PrPCFG(r

1
v) >

PrPCFG(r
1
v), we choose r1v as the rule set for v.

3) Encoding the sub-Grammar and the rules. We normalize
the frequencies of each rule in r1v to construct the sub-
Grammar, and then encode the sub-Grammar and r1v using
Chatterjee-DTE [4]. Decoding is in the opposite direction.

The process of Golla-NLE [12] is similar to that of
NoCrack’s NLE [4], except for a Markov model. Essentially,
the NoCrack’s NLE [4] and Golla-NLE [12] are more
comprehensive, we simplify it only for ease of explanation.

Notice that the PCFG model in NoCrack’s NLE [4] is
ambiguous, i.e., the vault v can generate two rule sets r1v
and r2v. But NoCrack’s NLE [4] selects the rule set with
the highest probability. This case provides the chance for
the weak encoding attack [6]. Generally, if the HV attacker
A obtains a vault code s by trial-decrypt a vault ciphertext
c, A first decodes the code s into the vault rule set, say
rd = {S→WW, S→D, W→pass, W→word, D→123456},
then get the vault v = (password, 123456) using rd.
In order to identify whether the recovered vault v a real
vault, A can parse the vault v in the encoding process and
obtain another vault rule set re = {S→W, W→password,
S→D, D→123456}. Noted that rd ̸=re, A can immediately
identify v as a decoy (as the decoded rule set rd is not
obtained in the encoding process). For ease, we refer to the
vault rule set rd obtained by decoding the vault code s as
the decoding rule set, and re obtained by parsing the vault
v (recovered by the decoding rule set rd) as the encoding
rule set. The weak encoding attack [6] checks whether the
decoding rule set is the same as the encoding rule set. The
score function sweak(v) = 1 if yes, 0 otherwise.

The strong encoding attack [6] is a further attack, which
uses the probability of the obtained rule set as the score
function, i.e., sstrong(v) =

sweak(v)
Pr(re) , where re is the encoding

rule set of the vault v, Pr(re) is the probability of re in
a password probabilistic model in the NLE, e.g., a PCFG-
based NLE PrPCFG(r

e).



4.2. The process of Chatterjee-DTE
In this section, we detail the encoding process of

Chatterjee-DTE [4], i.e., how to convert a rule into a code.
We do so because our attack exploits the encoding process
of Chatterjee-DTE [4]. Chatterjee-DTE [4] is specific for
encoding fractions of the form p

q , where p, q∈Z and p ≤ q.
The fraction p

q is the cumulative frequency of a rule. For
example, there are three rules: r1, r2, r3, with frequencies 2,
3, and 5 respectively. Then, their corresponding fractional
frequencies are 2

10 , 3
10 , 5

10 . In the cumulative distribution, we
let the fraction interval [ 0

10 ,
2
10 ) represent rule r1, [ 2

10 ,
5
10 )

represent r2, and [ 5
10 ,

10
10 ) represent r3. When encoding r2,

we uniformly randomly pick a fraction of form p
10 , (p∈N)

from [ 2
10 ,

5
10 ), say 4

10 . This case means rule r2 has p = 4
and q = 10, and its cumulative-frequency is 4

10 . That is, for
a given rule r, q is constant and public while p is a random
variable on the corresponding interval.

Next, we let b be the code length and l,h be two fixed
values that satisfy h = 2b mod q and lq+h = 2b. Random
variable X is on the uniform distribution U(0, 2b), random
variable Y is induced by X , i.e., Y = X − (X mod q).
Finally, we get the code s of the rule r, i.e., s = Y + p.
The decoding is the opposite, i.e., p = s mod q (Note that
the constant q is public). Notice that the code s contains
two random variables, i.e., p (picked uniformly from the
interval corresponding to the rule r) and Y . Accordingly,
the conditional code probability of the rule r is

Prencode(s = kq + p|r) =


q

2b|∆r|
, 0 ≤ k < l

h

2b|∆r|
, k = l,

(15)

where ∆r is the set of all fractions of the form p
q in the

interval corresponding to the rule r. For the same example
just above, the value |∆r2 | for rule r2 is 3, i.e., 2

10 , 3
10 , 4

10 .

4.3. Our proposed super encoding attack
We propose super encoding attack that is aware of the

non-uniformity of the code distribution of Chatterjee-DTE
output [4]. More specifically, the super encoding attack is
able to exploit the difference between the uniformly random
seeds and the code distribution of Chatterjee-DTE output
[4]. Our attack idea is that the code of Chatterjee-DTE
[4] output is non-uniformly distributed, which reveals that
lower probability codes are less likely to be outputted, while
a uniformly random seed has the same probability. For a
given vault, if the code of the vault has a lower condi-
tional probability in Chatterjee-DTE output [4], attackers
can utilize the strong signal to infer that the vault is more
likely to be a decoy. Hence, we can estimate the conditional
probability of the code s given the rule set r of a vault
v using Eq. 15, which is similar to the idea of maximum
likelihood estimation. That is, the higher the conditional
probability of the code under the vault v, the more real the
code and the corresponding vault are. Formally, for a vault
v= (pw1, ..., pwn), let rpwi = {ri1, .., riki} be the rule set of
the ith password pwi∈v, where rij be the jth rule belonging
to pwi, and ki=|rpwi

| be the number of rules belonging to

pwi. Let sv = (spw1
, ..., spwn

) be the vault code, where spwi

= (si1, .., siki
) is the code of pwi, and sij is the code of the

rule rij . Based on the above attack idea, our score function
for the super encoding attack is
ssuper(v) =

∏
i

∏
j

Pr(sij |rij) =
1∏

i

∏
j Prencode(sij |rij) · |∆rij |

,

(16)
where the index i denote the ith password in the vault v, and
the index j denote the jth rule belong to the ith password.
The term Pr(sij |rij) denotes the conditional probability of
a code sij for a given rule rij (see Eq. 15 for the explicit
expressions). ∆rij is the set of all fractions corresponding
to the rule rij . ssuper(v) is constructed similarly to sstrong(v),
but considers the outputted distribution of Chatterjee-DTE
[4], therefore ssuper(v) can estimate the conditional proba-
bility of sv under a vault v more accurately.

4.4. Our proposed theoretically-grounded attacks
The honey vault system is based on honey encryption

(HE). Thus we can use the MR adversary’s optimal attack
strategy (Thm. 1) to provide a theoretical basis for the design
of HV attackers. More specifically, we can instantiate Thm.
1 as score functions, i.e., the vault with higher conditional
probability is more real given the vault ciphertext. In this
way, we relate Thm. 1 to HV attackers.

NoCrack’s NLE [4] and Golla-NLE [12] are based on
different password models (i.e., PCFG model and Markov
model), and they are different in modeling the vault dis-
tribution. For example, NoCrack’s NLE [4] assumes that
passwords in a vault are independent of each other, while
Golla-NLE [12] assumes that there are correlations among
them. Since the vault distribution directly affects the attack
effectiveness of Thm. 1, it requires us to implement different
instantiation strategies for the two existing NLEs.
Our attacks against NoCrack’s NLE. In NoCrack’s NLE
[4], each password is independently encoded and then con-
catenated together. We focus on modeling the individual
passwords in the vault, and estimating the master password
distribution; Thus, the score of a single password pw is
(rephrase Thm. 1 in honey vault systems)

k ·
PrPW(pw)

Prd(pw)

∑
spw∈Spw

∑
mp∈W

PrMP(mp)Pr(enc(mp, spw) = c),

(17)
where k = 1

|S|PrC(c)
is a constant we can neglect. S is

the code (seed) space, W is the password space, c is the
ciphertext of pw and Spw is a code set contains all codes of
pw. PrMP(·) is the master password distribution, PrPW(·)
is the password distribution, while Prd(·) is the password
distribution induced by the targeted NLE. In our practical
application, we consider enc as an encryption algorithm, and
the salt and the initial vector used for encryption are public.
To efficiently estimate the score, we make the following
considerations.

A password pw may have the same ciphertext un-
der different master passwords and different codes
(i.e., enc(s∗pw,mp∗)=enc( ¯spw

∗, m̄p∗), and s∗pw, ¯spw
∗∈Spw).

However, this case happens only with very low probability,
which is also argued by Cheng et al. [5]. To avoid extremely



low computational performance, we ignore this negligible
probability and assume that for a pw and a ciphertext c,
there exists only one master password mp∗ and only one
code s∗pw guaranteeing enc(s∗pw,mp∗)=c.

Because the salt and the initial vector are public, enc be-
comes a deterministic algorithm. It also guarantees that for
any master password mp, any ciphertext c and any password
code spw, Pr(enc(spw,mp) = c) has only two possible
values, i.e, 0 and 1. Therefore, we can further simplify Eq.
17 as PrPW(pw)PrMP(mp)

Prd(pw) . We cannot directly estimate the
master password distribution because we lack a priori data
set of master passwords. To efficiently estimate PrMP(mp),
we use the following strategy to approximate. We assume
the passwords in a vault and the master password are picked
by the same user, so the two password distributions are
approximately equal, i.e., PrPW(·)≈PrMP(·).

We make this assumption mainly for two reasons. Firstly,
if the passwords in the user’s vault are generated by a pass-
word manager as random passwords, as described in [4], we
can directly design a basic natural language encoder (NLE),
which is called UNIF. More specifically, when encoding a
password, UNIF encodes each character ci in this password
into a random number xi satisfying xi=c̄i mod 96, where c̄i
is the rank of the character ci under a canonical (e.g., alpha-
betical) order. Decoding is the opposite. In this case, when
the HV attacker trial-decrypts with wrong master passwords,
UNIF yields randomly looking decoy passwords that are
indistinguishable from real random passwords. Therefore,
UNIF can achieve almost ideal security. However, the above
simple UNIF cannot handle the complicated case of user-
chosen passwords. Therefore, as described in [4], [5], [6],
[12], honey vault systems (such as NoCrack [4] and Golla-
NLE [12]) are primarily designed to address complicated
yet realistic user-chosen passwords (i.e., passwords in the
vault and the master password used for encrypting the vault
are both chosen by the user).

Secondly, although password managers can generate ran-
dom passwords, recent studies [23], [39] have shown that
the adoption rate of the auto-generation feature of password
managers by users is low, and users tend to prefer using
their own chosen passwords. Additionally, a recent user sur-
vey [31] targeting 1,012 American password manager users
revealed that only 27% of users utilize random password
generators of password managers to generate passwords.
Overall, considering the significant number of ordinary users
lacking sufficient security knowledge and the limited adop-
tion rate of random passwords, our assumption is reasonable.

According to the above assumption, we use pass-
words in the vault as prior samples to approximate
the probability of mp. Using the geometric average
of the probabilities of the passwords, we can estimate
the probability of mp. That is, for a given master
password mp and a vault v=(pw1, ..., pwn), we have
PrMP(mp)= n

√∏
pw∈v PrPW(pw). The score function is

s(v)=
∏

pw∈v

PrPW(pw)

Prd(pw)
PrMP(mp)=

∏
pw∈v

(PrPW(pw))2

Prd(pw)
. (18)

Our attacks against Static Golla-NLE. For Static Golla-

NLE [12], our treatment is similar to that of NoCrack’s NLE
[4]. Since Static Golla-NLE [12] implements encoding on
the whole vault, we need to consider the whole vault instead
the individual password. Based on the previous assumptions,
we also use the geometric average to estimate the probability
of mp, i.e., PrMPW(mp) = n

√
PrV(v), where PrV(·) is the

vault distribution. The score function against Static Golla-
NLE [12] is

s(v) =
PrV(v)

Prd(v)
· n
√

PrV(v) =
(PrV(v))

n+1
n

Prd(v)
. (19)

Our attacks against Adaptive Golla-NLE. Adaptive Golla-
NLE [12] is the Static Golla-NLE with an adaptive mecha-
nism [12]. The adaptive mechanism essentially distorts the
4-gram (i.e., (abc, d)) distribution in the Markov model
to confuse semantics-aware attackers. Golla et al. argued
that their adaptive mechanism improves the security of static
NLE [12]. Its process is as follows: (1) For each password in
the vault, we randomly choose a 4-gram from that password
and multiply the frequency by 5 (boosted). (2) For the
unboosted 4-grams, we multiply the frequency by 5 with
a probability of 0.2. (3) Normalize the probability. After
that, we encode the password with the modified Markov
dictionary and note that this dictionary is public. Thus Adap-
tive Golla-NLE [12] contains a distorted 4-gram distribution
compared to Static Golla-NLE [12]. For security purposes,
Golla et al. propose a stronger attacker, i.e., the attacker
is aware of boosted 4-gram sets [12]. In this work, we
have the same setting as Golla et al [12]. Our treatment
is similar to that of Static Golla-NLE [12], in addition to a
pre-processing: we first use the boosted 4-grams to rule out
some simple decoys. i.e., if there exists at least one password
in the vault whose set of 4-grams does not intersect with the
boosted 4-gram set. After pre-processing, we again use the
score function, i.e., Eq. 19.
Instantiate the above attacks. NoCrack’s NLE [4] treats
the passwords in a vault independently, while Golla-NLE
[12] considers password reuse, i.e., old passwords influence
new passwords. We adopt different strategies in estimating
PrPW(·) for NoCrack [4] and PrV(·) for Golla-NLE [12].

(1) Modeling PrPW(·) in NoCrack’s NLE [4], using con-
ventional password models are a direct method. Password
models such as PCFG model [38], Markov model [19],
and List model [33] are widely used in password security
[5], [6], [33], [36]. However, all current password models
seem flawed, which leads to the misestimation of password
probabilities. For example, Markov overestimates password
fragments with some basic semantics, e.g., 110120130,
because the model only considers local information among
character relations and cannot be extended to the global
information [33]. An inaccurate estimation of the score can
significantly weaken the attack success rate. Therefore, we
design the hybrid models of PCFG [38], Markov [19], and
List [33] (e.g., 1

3List + 1
3PCFG + 1

3Markov), with a total
number of 7 (

(
3
1

)
+
(
3
1

)
+ 1). As seen in Fig. 8(d) and 8(e),

the List-based attack (i.e., using List model [33]) always has
the best attack success rate among all the 7 attacks.

(2) For PrV(·) in Golla-NLE [12]. Golla-NLE [12] is
designed with the password reuse model, i.e., the encoding



of new passwords depends on the old passwords. Pass-
word reuse models have been intensively studied in recent
years, and some well-known password reuse models, such
as TarGuess-II [35] and Pass2path [25], have been widely
used. Therefore, a simple and direct method is to instantiate
PrV(·) by using password reuse models. As shown in Figs.
8(f), 8(g), 8(h), and 8(i), the attack success rate of TarGuess-
II-based method is better than Pass2path [25], so we mainly
use TarGuess-II [35] to instantiate PrV(·).

5. Evaluation experiments

vspace-0.5em We now evaluate the security of the natural
language encoder (NLE) in existing honey vault systems by
practical attacks via real-world datasets, and examine the
attack efficiencies of our proposed four attacks in Sec. 4.
5.1. Evaluation setup

Evaluation process. Our evaluation includes two attack
types, i.e., heuristic and theoretical. The idea of heuristic
attacks is to exploit vulnerabilities in the system implemen-
tation, while theoretical attacks are based on the optimal
strategy of MR adversaries. Heuristic attacks can be blocked
by a carefully-designed NLE, while any NLE based on a
password probability model (PPM) certainly suffers from
theoretical attacks. Given a honey vault system and an attack
A and A’s score function sA(·), the setup follows the attack
process in Sec. 2.3, which contains three steps.
1) For each vault with size ≥ 2 in Pastebin, we randomly
sample 999 decoy vaults using the targeted NLE and then
shuffle the 999 decoys and the real vault as one test list.
2) Use the public dataset to train the attack A. For each
sweet vault list, use sA(·) to score all 1, 000 vaults and rank
the vaults according to the scores in descending order.
3) For each test list, check the ranking of the real vault, then
calculate the evaluation metrics in Sec. 2.5.

Here are the heuristic and theoretical attacks involved in
the comparison. The theoretical attacks (the last four) are
all proposed by Cheng et al. [5] and based on the same
general score function, i.e., PrV(v)

Prd(v)
. The difference between

these attacks is the heuristic methods instantiating PrV(v).
Strong/weak encoding attack [6]. Cheng et al. [6] proposed
the two attacks, which are shown in Sec. 4.1.
KL divergence attack [12]. This attack was proposed by
Golla et al. [12]; it uses KL divergence of the frequencies of
the passwords in the vault and the decoy passwords (sampled
from the targeted NLE) as the score of the vault.
Single password attack [5]. This attack assumes passwords
in one vault are independent of each other, and estimates the
password probability using a heuristic statistical model.
Password similarity attack [5]. This method assumes that
the passwords in the vault are correlated and models the
vault distribution using some heuristic password features.
Adaptive extra attack [5]. This method mainly targets
Adaptive Golla-NLE [12], exploits the boosted 4-grams in
the adaptive mechanism [12] and uses heuristic binomial
distribution to model the leaked information. Note that this
method uses the unrealistic assumption that the attacker

knows the passwords corresponding to each boosted 4-gram.
However, we still incorporate this method in the comparison.
(Adaptive) Hybrid attack [5]. This method is a hybrid of
the above three attacks, and its score function is the product
of the score functions of the above three methods.

5.2. Results on heuristic attacks

The performance of our attacks. As shown in Fig. 6, our
proposed super encoding attack performs better against all
heuristic attacks. For all the static NLEs, the super encod-
ing attack achieves 87.75% accuracy α against NoCrack’s
NLE [4] and 58.62%-60.50% against Golla-NLE [12]. The
average rank r̄ for NoCrack’s NLE [4] is 12.25%, and those
for Golla-NLE [12] are 39.50%-41.38%.

Overall, our super encoding attack demonstrates signifi-
cantly higher attack success rates compared to other coun-
terpart attacks. Taking NoCrack’s NLE [4] as an example,
our super encoding attack achieves an average rank r̄ at
12.25%, compared to 15.18%-53.33% for counterpart at-
tacks, making it 1.24 (=15.18/12.25) to 4.35 (=53.33/12.25)
times more efficient than existing attacks. This translates
to requiring 21.37% to 76.13% fewer online verification,
greatly enhancing the attack success rate. Additionally, our
attack improves the attack success rate by 1.15-1.32 times
for static Golla-NLE [12], and 1.15-1.49 times for adaptive
Golla-NLE [12] compared with its foremost counterparts.

For strong encoding attack [6], its α and r̄ are 84.82% and
15.18% for NoCrack’s NLE [4]; 38.28%-55.74%, 44.26%-
61.72% for Golla-NLE [12], which are less effective than
our super encoding attack. This reveals that considering the
distribution of the output code can improve the accuracy of
modeling the conditional probability of the code.

For KL divergence attack [12], it has significant attack
success rate 69.84% for α and 30.16% for r̄ against NoC-
rack’s NLE [4]. Dell’Amico and Filippone [10] pointed out
that the distribution of samples from the PCFG model tends
to head aggregation, which is significantly different from
human password distribution. If a weak password appears in
a vault, the vault is more likely to be considered as sampled
by the PCFG model (i.e., decoys). When facing Golla-NLE
[12], passwords sampled from the Markov model exhibit
a more uniform distribution compared to those from the
PCFG model. As a result, each decrypted vault contains
passwords of varying strengths in a nearly uniform manner.
This uniformity hinders the ability of KL divergence to
distinguish between the real vault and the decoys, leading
to a loss of the attack success rate.
The performance of honey vault systems. The Fig. 6
shows that NoCrack’s NLE [4] is vulnerable to encoding
attacks. NoCrack’s NLE [4] uses grammatical rules with
ambiguity and a deterministic rule set selection, which re-
sults in multiple encoding rule sets for one password. These
features are easily captured by encoding attacks. While for
Golla-NLE [12], the encoding rule set is unique, and the
only information that encoding attacks can exploit is the
conditional probability of the code. Hence, Golla-NLE [12]
can resist weak encoding attack [6]. In summary, the attack



(a) NoCrack’s NLE (b) Static Golla-NLE (c) Adaptive Golla-NLE
Figure 6: Experimental results of 4 practical heuristic attacks against NLEs of three honey vault systems based on a
real-world password vault dataset Pastebin, where the baseline curve represents the random guess. Strong/weak encoding
attack is proposed in [6], and KL divergence attack is proposed in [12].

(a) NoCrack’s NLE (Rockyou) (b) Static Golla-NLE (Rockyou) (c) Adaptive Golla-NLE (Rockyou)
Figure 7: Experimental results of 3 theoretical attacks against NLEs based on Rockyou. Attacks on Fig. 7(a), 7(b) and
7(c) are trained on Rockyou. In Fig.7(a), our new attack is List-based attack, and in Fig. 7(b), 7(c), our new attack is
TarGuess-II-based attack. For adaptive Golla-NLE [12], our adaptive TarGuess-II-based attack, adaptive extra attack [5]
and adaptive hybrid attack [5] consider the boosted 4-grams.

success rate of encoding attacks against Golla-NLE [12] is
reduced by 3.22-3.38 times compared with NoCrack [4].

5.3. Results on theoretically-grounded attacks
The performance of our attacks. As shown in Fig. 7, all of
our proposed new attacks, i.e., List-based attack, TarGuess-
II-based attack, and adaptive TarGuess-II-based attack all
(seen these green curve) perform better against all their
counterparts. The experimental results on the Wishbone
dataset are shown in Fig. 8(a), 8(b) and 8(c). Taking the
Rockyou dataset as an example, for NoCrack’s NLE [4],
our List-based attack achieves 63.76% for accuracy α,
and 36.24% for average rank r̄. For Golla-NLE [12], our
TarGuess-II-based attack has 74.22%/74.34% against stat-
ic/adaptive Golla-NLE [12]. As the r̄ for static Golla-NLE
[12] is 25.78% and that for adaptive Golla-NLE [12] is
25.66%. In summary, our List-based attack can improve
the attack success rate by 1.23-1.62 times compared to
its foremost counterparts; our TarGuess-II-based attack and
adaptive TarGuess-II-based attack can improve the attack
success rate by 1.23-1.75 times and 1.30-2.05 times.

For single password attack [5], its α and r̄ are 72.41% and
27.59% against NoCrack’s NLE [4], and 47.40%-62.48%,
37.52%-57.60% against Golla-NLE [12], which are less
effective than our attacks. One possible reason is the used
single password model [5] does not match the real password
distribution, and loses accuracy facing passwords with a low
frequency and a low decoy probability (i.e., Prd(pw)), and
these passwords account for a large proportion (69.25%).

For password similarity attack [5], its α and r̄ are 40.98%
and 59.02% against NoCrack’s NLE [4] and 40.98%-
70.24%, 29.76%-59.02% against Golla-NLE [12], which
are less effective than our TarGuess-II-based attack. Note

that it performs slightly better against Golla-NLE [12] than
NoCrack’s NLE [4], because the used password similarity
model [5] is more closely to the Golla-NLE [12], i.e., it con-
siders the password reuse. But the password similarity model
estimates the password vault with a coarse-grained method,
considering some simple local statistics features, which sig-
nificantly weakens the efficiency. For the (adaptive) hybrid
attack [5], it mixes the above two attacks, i.e., it mixes the
single password model [5] and password similarity model
[5]. But according to our above analysis, the (adaptive)
hybrid attack [5] still has shortages in modeling password
features because it contains two inaccurate models.

5.4. Potential threats
Our feature attack against IU mechanism. To resist
intersection attacks, Cheng et al. [5] propose the Incremen-
tally Updateable mechanism (IU mechanism) adopting a
prefix-preserving symmetric encryption scheme PPSE. IU
mechanism [5] encodes the old vault vo and the new vault
vn into the code svo and svn , ensuring svo is a prefix of svn ,
and then applies PPSE to encrypt. However, IU mechanism
[5] still has security vulnerabilities and we propose a feature
attack that can completely break IU mechanism [5] with a
probability close to 90%. Our feature attack is as follows.

For a decrypted new and old vaults code pair (snv , s
o
v), the

decoded vault pair is (vn, vo). We first identify the same bit
string prefix of (snv , s

o
v), and denote the bit string prefix as

bsp. Our attack idea is that a bsp from a real vault code pair
should be decoded into some complete passwords exactly.
Hence, if bsp can be exactly decoded into some passwords,
i.e., all the bits in bsp are utilized. In this case, we determine
the score of the vault pair (vn, vo) as 1. Conversely, if some
remaining bits at the end of the bsp cannot be decoded to a



(a) NoCrack’s NLE (Wishbone) (b) Static Golla-NLE (Wishbone) (c) Adaptive Golla-NLE (Wishbone)

(d) NoCrack’s NLE (Rockyou) (e) NoCrack’s NLE (Wishbone) (f) Static Golla-NLE (Rockyou)

(g) Static Golla-NLE (Wishbone) (h) Adaptive Golla-NLE (Rockyou) (i) Adaptive Golla-NLE (Wishbone)

Figure 8: Figs. 8(a), 8(b) and 8(c) show the results of three theoretical attacks against three NLEs based on Wishbone.
For adaptive Golla-NLE [12], the adaptive TarGuess-II-based attack, adaptive extra attack [5] and adaptive hybrid attack [5]
consider the boosted 4-grams. For Golla-NLE [12], notice that in Fig. 7(b) and 8(b), the success rate curves are the same
for password similarity attack [5], and it is similar for adaptive extra attack [5] in Fig. 7(c) and 8(c). This is because these
two attacks do not require the additional password datasets Rockyou and Wishbone for training. Figs.8(d) and 8(e)
are our attacks based on 7 (mix) password probability models (PPM) against NoCrack’s NLE on two real-world datasets.
Attacks on Figs. 8(d) and 8(e) are trained on Rockyou and Wishbone, respectively. List-based attack performs better
than its counterparts. Figs.8(f), 8(g), 8(h), and 8(i) are our new attack based on two PPMs against Golla-NLE. Attacks on
Fig. 8(f) and 8(h) are trained on Rockyou and Fig. 8(g) and 8(i) are trained on Wishbone. Our TarGuess-II-based attack
and adaptive TarGuess-II-based attack perform better than their counterparts.

complete password (i.e., can only be decoded into password
fragments), the score is 0.

Figure 9: Experimental results
of our feature attack.

Experimental results.
We combine the IU-
mechanism with exist-
ing NLEs to obtain three
new NLEs. We pick
vaults in Pastebin
(with size ≥2) as the
testset. We use the last
password as a newly
added one. In this way,
we can get the new and old versions of each vault. Then, we
use IU-mechanism to generate decoy new/old vaults for the
real new/old vault simultaneously. The rest of the experiment
setup is the same as in Sec. 5.1. As shown in Fig. 9, for
the three NLEs with Cheng et al.’s IU-mechanism [5], our
feature attack can achieve 87.31%-93.22% for accuracy α.
To conclude, existing NLEs with IU-mechanism [5] are all

vulnerable to our proposed feature attack.

5.5. Security discussion
How to design a secure honey vault system. Our security
analysis highlights the following countermeasures.
(1) Based on our optimal attack strategy (Thm. 1) and
the instantiated attacks (Eqs. 18&19) in Sec. 4.4, To make
the honey vault system resist our instantiated attacks (Eqs.
18&19), the password probability model used by the NLE
(which is the core component of the honey vault system)
should accurately model the user’s real password distri-
butions, i.e., ensuring Prd(·) ≈ PrV(·) to resist attacks
exploiting differences between real and decoy vaults (e.g.,
our instantiated attacks). This is because when the decoy
vault distribution Prd(·) modeled by the NLE satisfies
Prd(·) ≈ PrV(·), our instantiated attacks (Eqs. 18&19) de-
grade into random guessing according to vault probabilities.
(2) Based on our analysis of the workflow of existing NLEs
[4], [12] in Secs. 4.1-4.2, to enable the honey vault system



to resist our super encoding attack, the password probability
model (PPM) in the NLE should not comprise ambiguous
rules. This is because if the password probability model used
by the NLE does not include ambiguous rules, the super
encoding attack will be unable to exploit multiple different
rules from the same vault, effectively degrading into random
guessing. This countermeasure can also apply to Cheng et
al.’s encoding attack [6].
Security implications of high-entropy vault passwords.
If all passwords in the vault v are high-entropy pass-
words generated by password managers, since these high-
entropy passwords are typically independent of each
other, the probability of this vault can be expressed as
PrV(v)=

∏
pw∈v PrPW(pw). Compare to user-chosen pass-

words, due to the presence of high-entropy passwords in v,
this leads to a lower vault probability PrV(v). According
to our theoretically-grounded attacks’ score functions (see
Eqs. 18&19), the lower vault probability further results
in a corresponding lower score of vault v, causing v to
rank higher among all n plausible vaults. Consequently, HV
attackers need to expend more online verification attempts
to successfully guess this vault. Thus, the presence of high-
entropy passwords in the vault significantly reduces the
attack success rate of HV attackers.
The impacts of authentication system’s security mecha-
nisms on the attack effectiveness. The impact of security
mechanisms deployed in real-world authentication systems
on our proposed practical attacks is marginal. This is pri-
marily attributed to two reasons. First, various techniques
are available to circumvent security mechanisms deployed
by websites. For instance, when faced with the k-strike
lockout mechanism, the attacker can stop attempts after
trying k-1 online verifications in the lockout mechanism’s
permitted time phase. The attacker then waits for the lockout
mechanism to reset in the next time phase (e.g., typically 24
hours later or after the legitimate user’s login), and continues
attempting k-1 times, and so forth. Additionally, widely
deployed CAPTCHAs can also be bypassed [14]. Second,
even when online security mechanisms are effective, our
results demonstrate that distinguishing attacks remain highly
effective: Based on our experimental results (Figs. 6&7),
within just 10 online verifications, the real vault can be
distinguished with probabilities of 41.83% for NoCrack’s
NLE, 27.35% for Golla-NLE, and 25.21% for adaptive
Golla-NLE, respectively.
Experimental results of higher n. A higher n will have
little effect on our results. We have conducted experiments
with higher n, and the results were consistent with our
findings. For instance, in our representative List-based attack
against NoCrack’s NLE [4] using the Rockyou dataset, we
set n to 10,000, 100,000, 1,000,000, and 10,000,000. The
average rank r̄ of real vaults are approximately 36.02%,
35.77%, 35.93%, and 36.74%, respectively. These results are
consistent with n = 1, 000 in this work where r̄ is 36.24%.

6. Conclusion
We have provided significantly tighter upper/lower

bounds for HE-related security games, and propose four

attacks against honey vault systems. Extensive experiments
show that our four attacks drastically outperform their coun-
terparts. Particularly, we propose a feature attack against the
incrementally updateable mechanism at USENIX SEC’21,
which makes intersection attacks a damaging threat against
most of the existing honey vault systems. We believe our
work constitutes an important step forward in this direction
and will trigger interest in new honey technique research.
Considering the prevalence and catastrophic impacts of
offline password guessing attacks, we believe our work
constitutes an important step forward in this direction.
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Appendix A.
Omitted Proofs

A.1. Proof for Lemma 1
In Lem. 1, the first inequality is the Pinsker’s inequality

[8]. Here we primarily provide the proof for the second
inequality: Because ln(x) is concave, we have∑

x∈Ω

µ(x) ln(
µ(x)

ν(x)
) ≤ ln(

∑
x∈Ω

µ(x)2

ν(x)
). (20)

Meanwhile

χ2(µ, ν) =
∑
x∈Ω

(µ(x)− ν(x))2

ν(x)

=
∑
x∈Ω

µ(x)2

ν(x)
−

∑
x∈Ω

(2µ(x)− ν(x)) =
∑
x∈Ω

µ(x)2

ν(x)
− 1.

(21)

Using the inequality x− 1 ≥ ln(x), we have

χ2(µ, ν) =
∑
x∈Ω

µ(x)2

ν(x)
− 1 ≥ ln(

∑
x∈Ω

µ(x)2

ν(x)
) ≥ ∆KL(µ, ν). (22)

Here we complete our proof.

A.2. Proof for Theorem 1 and Theorem 4

We first present the Thm. 4. The upper bound of MR
advantage in Thm. 4 is obtained by our optimal strategy
Thm. 1.
Theorem 4. Given the same settings as Thm. 1, for any MR

adversary A , we have the MR advantage

max
A

Advmr
HE,pM,pK

(A) ≤∑
c∈C

max
m

PrM(m)

Prd(m)|S|
∑

s∈Sm

∑
k∈K

PrK(k)Pr(enc(k, s) = c).
(23)

Since Thm. 1 and Thm. 4 are closely related, in this
section, we prove them at the same time. We consider the
MR game shown in Fig. 4. Given the ciphertext c, we apply
the Bayesian method directly, the probability that m is a
real message is

Pr(m|c) =
1

PrC(c)
Pr(m, c)

=
PrM(m)

PrC(c)

∑
s∈Sm

Pr(s|m)
∑
k∈K

PrK(k)Pr(enc(k, s) = c).
(24)

Most existing honey encryption schemes [5], [6], [17],
[18] use IS-DTE [18] that can output uniformly random
codes, so we have Pr(s|m) = 1

|Sm| = 1
Prd(m)|S| . We can

write Eq. 24 as



Pr(m|c) =
1

PrC(c)
Pr(m, c)

=
1

PrC(c)

∑
s∈Sm

PrM(m)

Prd(m)|S|
∑
k∈K

PrK(k)Pr(enc(k, s) = c).
(25)

Therefore, for each given ciphertext c, the optimal strat-
egy is that A chooses the message m with the largest con-
ditional probability as the guess. According to this strategy,
we rewrite Eq. 25 as

max
m

Pr(m|c) =

1

PrC(c)
max
m

∑
s∈Sm

PrM(m)

Prd(m)|S|
∑
k∈K

PrK(k)Pr(enc(k, s) = c).
(26)

According to Eq. 26, we finally get that for any MR
adversary A, the MR advantage is at most

Advmr
HE,pM,pK

(A) ≤
∑
c∈C

PrC(c)max
m

Pr(m|c)

=
∑
c∈C

max
m

PrM(m)

Prd(m)|S|
∑

s∈Sm

∑
k∈K

PrK(k)Pr(enc(k, s) = c).
(27)

Here we complete the proof. Note that we have omitted
the probability of random bits used by the random oracle
model in the above equations.

A.3. Proof for Lemma 2
According to Lem. 1, we have

1

2
∥PrS0

− PrS1
∥2 ≤

∑
Zq

PrS1
(Zq) ln(

PrS1
(Zq)

PrS0
(Zq)

)

=
∑
Zq

q∑
i=1

PrS1
(Zq) ln(

PrS1
(Zi

q)

PrS0
(Zi

q)
)

=
∑
Zq

q∑
i=1

(

q∏
j=1

PrS1
(Zj

q)) ln(
PrS1

(Zi
q)

PrS0
(Zi

q)
)

=

q∑
i=1

∑
Zq

(

q∏
j=1

PrS1
(Zj

q)) ln(
PrS1

(Zi
q)

PrS0
(Zi

q)
)

=

q∑
i=1

PrS1
(Zj

q) ln(
PrS1

(Zi
q)

PrS0
(Zi

q)
) ≤

q∑
i=1

χ2
i

(28)

A.4. Proofs for Theorem 2

Before our proof, we first recall the following concepts:
the seed/code space S= {0, 1}l, the cumulative distribution
function of m is CDFM(m), and a fraction a∈[0, 1] is repre-
sented by value b such that b:=repρ(a). round(·) is the round
function. For any message mi, is-encode(mi) randomly
picks s $←−(repρ(CDF(mi−1)), repρ(CDF(mi))] as the code
of mi. The process of is-decode(mi) is reverse.

Our proof contain the following steps. We first introduce
a new concept: representation error.
Representation error. First we consider the representation
error of IS-DTE [18]. We set code length to be l and assume
that l is appropriate, i.e., 2−l ≪ minm PrM(m), and let
ρ:=2−l. We denote the representation error as ϵ and obtain

ϵ = max
a∈img(CDF(·))

|a− round(
a

ρ
) · ρ|

≤ max
a∈img(CDF(·))

|a− (
a

ρ
−

1

2
) · ρ| =

ρ

2
,

(29)

where round(·) is the round function. Next, using the rep-
resentation error ϵ, we estimate the chi-squared divergence
between real message distribution PrM(·) in SAMP1 and
the IS-DTE [18] induced message distribution Prd(·) in
SAMP0 (as shown in Fig. 2).
Estimating chi-squared divergence. The responses of sys-
tem SAMP0 and SAMP1 at one query conform the distri-
bution PrM(·) and Prd(·), thus, for any m we have

PrM(m)

Prd(m)
=

ai − ai−1

biρ− bi−1ρ
=

biρ+ δi − bi−1ρ− δi−1

biρ− bi−1ρ

=
biρ− bi−1ρ+ (δi − δi−1)

biρ− bi−1ρ
= 1 +

(δi − δi−1)

biρ− bi−1ρ
.

(30)

which uses that PrM(m) = ai− ai−1 and Prd(m) = biρ−
bi−1ρ (Recall Instantiating DTE in Sec. 2.2). We let δi =
ai− biρ, and have |δi| ≤ ϵ (Absolute value inequalities, the
same as δi−1) and |δi − δi−1| ≤ 2ϵ. We obtain the relation∣∣∣PrM(m)
Prd(m) − 1

∣∣∣ ≤ 2ϵ. Then we compute the χ2
i at one query

to SAMP0/SAMP1 as follows

χ2
i (pM, pd) =

∑
m∈M

(PrM(m)− Prd(m))2

Prd(m)

=
∑

m∈M
(
PrM(m)

Prd(m)
− 1)2Prd(m) ≤

∑
m∈M

4ϵ2Prd(m) = 4ϵ2.

(31)

Combining the chi-squared divergence and Lem. 2.
Finally, According to Lem. 2 and Eq. 31, we have

AdvdteIS-DTE,pM
(B) ≤ ∥PrS0

(·)− PrS1
(·)∥ ≤

√√√√(
1

2

q∑
i=1

χ2
i ) ≤ ϵ

√
2q.

(32)
According to the low-entropy key setting, the distin-

guisher B’s query number q is set to |M|. We apply
q=|M| and ϵ=2−l−1 to Eq. 32, and have the final result

AdvdteIS-DTE,pM
(B) ≤

√
|M|/2
2l

, which is much tighter than
the upper bound AdvdteIS-DTE,pM

(B) ≤ |M|
2l

given in [18].

A.5. Much more precise MR-KMA lower bound
We derive a global expression for MR-KMA advantage

that is general for all HE schemes. Compared to Jaeger
et al.’s result [17], our MR-KMA advantage is much more
precise. According to our result, we reveal that any systems
based on HE schemes are vulnerable to MR-KMA adver-
saries, i.e., MR-KMA adversaries will gain an overwhelming
advantage. We first show our new MR-KMA result: Thm.
5.
Theorem 5. For a HE scheme in a low entropy key setting,

there exists an MR-KMA adversary A, for any distribu-
tion pM, pK with at most q − 1(q ≥ 1) queries to oracle
Enc and the advantage satisfies

Advmr-kma
HE,pM,pK

(A) ≥ 1
q
√
|K|

. (33)

Our proof. We let the user-chosen message be m∗ and the
challenge ciphertext be c∗. The MR-KMA adversary A can
get at most q-1 message-ciphertext pairs by q-1 Enc queries.
Let the q-1 message-ciphertext pairs be {(mi, ci)}q-1

i=1. Tak-
ing q-1 pairs as an example, we enumerate all the low-
entropy keys in K and use the q-1 pairs as a filter. Here
we stress that since HE schemes are primarily designed for



low-entropy key settings, A can enumerate all low-entropy
keys k∈K. Let Eq-1 be the set of keys k∈K that satisfies
the q-1 pairs, which means that for any i∈[1, q-1], A can
decrypt ci into mi correctly with any k∈Eq-1. We know that
Eq-1 must contain the keys that can yield the user message
m∗ when decrypting c∗, Further, we denote the set of keys
that can decrypt the challenge ciphertext c∗ into m∗ as Eq.
Therefore, the average success rate is 1

q

∑q
i=1

|Ei|
|Ei−1| , and

the MR-KMA advantage is 1
q

∑q
i=1 E

|Ei|
|Ei−1| ] ≥ E[ q

√
|Eq|
|E0| ],

which is greater than 1
q
√

|K|
. Formally, A makes at most

q-1 Enc queries, and the MR-KMA advantage satisfies
Advmr-kma

HE,pM,pK
(A) ≥

∑q
i=1

1
qE[

|Ei|
|Ei−1| ], where E0 ⊆ K and

Eq ̸= ∅. For any q, we have Eq+1 ⊆ Eq, thus we have

Advmr-kma
HE,pM,pK

(A) ≥
q∑

i=1

1

q
E[
|Eq|
|Eq−1|

] = E[
1

q

q∑
q=1

|Eq|
|Eq−1|

]

≥ E[ q

√√√√ q∏
i=1

|Eq|
|Eq−1|

] ≥ E[ q

√
|Eq|
|E0|

] ≥ E[ q

√
1

|K|
] = q

√
1

|K|
.

(34)

A.6. Proof for Theorem 3
In the MR-KMA game, given the message distribution

PrM(·) and the decoy message distribution Prd(·) mod-
eled by the DTE, we denote ωm:=maxm Prd(m). We let
r∗ be the user’s salt value, m∗ be the chosen message
(challenge message), k∗ be the chosen key, and (r∗, c∗) be
the ciphertext. Meanwhile (r∗, c∗) is sent to the MR-KMA
adversary A. A’s goal is to guess the user’s chosen real
message m∗ based on the user ciphertext (r∗, c∗) and the q
message-ciphertext pairs obtained from q queries, denoted
as Qq={(mi, (r

i, ci))}qi=1. We use the set Qq to represent
all possible q message-ciphertext pairs, i.e., Qq ∈ Qq.
Proof idea. We first fix the q message-ciphertext pairs
Qq={(mi, (r

i, ci))}qi=1, and then we give a lower bound
on A’s success rate in the fixed Qq (say, a constant value
denoted as C). Furthermore, in A’s view, Qq follow a
distribution onQq, which could be determined by the system
(A is non-adaptive) or jointly determined by A and the
system (A is adaptive). In any case, since A’s attack strategy
is independent of Qq distribution, A’s expected success rate
(MR-KMA advantage) must be greater than the previously
obtained constant C.
Our Proof. First, we assume that the salt values obtained
from the q Enc queries are different. For a given Qq, we say
if a key k is consistent with the ith Enc query, it means k can
decrypt the ciphertext (ri, ci) into the correct message mi.
According to the process in Fig. 3, for any key k ̸= k∗, if A
decrypts the ith ciphertext (ri, ci) using k, the HE scheme
generates a seed s from ci ⊕ h(ri||k). Here we stress that
since HE schemes are primarily designed for low-entropy
key settings, A can enumerate all low-entropy keys k∈K.

Since we model the hash function h as a random ora-
cle model, s is on a uniform distribution on {0, 1}l, and
the probability of decode(s)=mi is Prd(mi). Hence, the
probability that a key k is consistent with ith Enc query

is Prd(m) ≤ ωm. The probability that the key k ̸=k∗ is
consistent with the q Enc queries is at most ωq

m. We denote
Ak as the event that the key k ̸=k∗ is consistent with q Enc
queries, and by Ak we denote that there exists at least one
Enc query that the key k is inconsistent with. Thus, we
have an MR-KMA advantage

Pr(∩k ̸=k∗Ak) = 1− Pr(∪k ̸=k∗Ak) ≥ 1−
∑
k ̸=k∗

Pr(Ak) ≥ 1− |K|ωq
m.

(35)
Eq. 35 shows that if all the keys except the real key k∗ are

inconsistent at least one of the q Enc queries, A can easily
rule out all keys except the real key and get the real message,
thus winning the game. Considering the above analysis at q
different salt values, we obtain a final lower bound for the
MR-KMA advantage 1− |K|ωq

m −
2q
2l

.

A.7. Analysis on MR-SI security
Oprisanu et al. [24] propose the MR-SI security for HE

schemes. They claim that if the MR-SI adversary A has
κ=⌈log |K|⌉ characters of the challenge message, A’s ad-
vantage is Advmr-si

HE,pM,pK
(A)≥ 1

2κ2 , which is similar to Jaeger
et al.’s MR-KMA result [17]. However, in Oprisanu et al.’s
result [24], Eq is the key set satisfying q-1 characters, and
E[ |Eq|

|Eq-1| ] is the probability that A only finds a message
matching qth characters.

In this section, we revisit the MR-SI security of HE
scheme. In the MR-SI game, we let m∗ be the challenge
message, k∗ be the chosen key, and c∗ be the challenge ci-
phertext. For a given side information I∈I, A can determine
the messages set M I⊂M that contains the message in M
matching I . A does as follows: (1) A decrypts the ciphertext
c∗ using a key k∈K, and if the decrypted message is in
M I , add the key to the key set KI ; (2) After enumerating
all keys, A randomly picks a key from KI and decrypts
the ciphertext. The probability of a key being in KI is
Prd(M

I):=
∑

m∈MI Prd(m). Here we stress that since HE
schemes are primarily designed for low-entropy key settings,
A can enumerate all low-entropy keys k∈K. Therefore, A’s
success rate given side information I is

|K|-1∑
i=0

(|K|-1
i

)
Prd(M

I)i(1-Prd(MI))|K|-i-1

=
1

Prd(MI)|K|
·
[
1− (1− Prd(M

I))|K|
]
.

(36)

Further, for all side information I∈I, A’s expected suc-
cess rate (MR-SI advantage) is

E
[

1

Prd(MI)|K|
·
[
1− (1− Prd(M

I))|K|
]]

= E
[

1

Prd(MI)|K|

]
· E

[
1− (1− Prd(M

I))|K|
]

≥
α

|K|
· E

[
1

Prd(MI)

]
≥

α

|K| · E [Prd(MI)]
,

(37)

where α is a constant less than 1, representing the minimal
value of

[
1-(1-Prd(M I))|K|] for side information I∈I. The

obtained lower bound is related to the Prd(·) which is
induced by a DTE. This lower bound may be useless if
E[Prd(M I)] is large, which is showing that the system may
have been carefully designed for the defense purpose.



Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary
This paper investigates honey encryption, which is an en-

cryption scheme used to protect password vaults wherein in-
stead of simply failing to decrypt when provided the wrong
password, the system instead yields a decoy vault that can
confuse an attacker and waste time. Specifically, a plausible
decoy vault is generated per trial-decryption, which forces
the attack to implement online verification of the credentials
in the vault. The authors introduce new tighter bounds for
DTE security, the encoder and fundamental component of
existing constructions of honey vaults. Finally, the authors
introduce new attacks against specific DTE constructions,
and evaluate their attack success against existing attacks,
highlighting their relative effectiveness.

B.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

B.3. Reasons for Acceptance

1) The paper tackles three aspects of honey vault
security: (1) proving new bounds on attacker ca-
pabilities in honey vault systems, (2) discussing
limitations of prior honey vault system designs that
leads to new attacks, and (3) characterizing the
effectiveness of prior adaptive mechanisms. Over-
all, it provides a fairly substantial analysis of the
theoretical and practical security of honey vault
systems.

2) The paper makes a spectrum of contributions, in-
cluding (1) new upper and lower bounds to success-
ful attacks against honey vaults and (2) the intro-
duction of encoding attacks against honey vaults.

3) The paper practically evaluates the new attacks
attacks against two major honey vault systems,
demonstrating an improved attack efficiency rang-
ing from 1.15 to 4.35 times compared to existing
methods.




