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ABSTRACT
Personal Identification Numbers (PINs) are ubiquitously used in
embedded computing systems where user input interfaces are con-
strained. Yet, little attention has been paid to this important kind
of authentication credentials, especially for 6-digit PINs which
dominate in Asian countries and are gaining popularity worldwide.
Unsurprisingly, many fundamental questions (e.g., what’s the dis-
tribution that human-chosen PINs follow?) remain as intact as
about fifty years ago when they first arose. In this work, we conduct
a systematic investigation into the characteristics, distribution and
security of both 4-digit PINs and 6-digit PINs that are chosen by
English users and Chinese users. Particularly, we, for the first time,
perform a comprehensive comparison of the PIN characteristics
and security between these two distinct user groups.

Our results show that there are great differences in PIN choices
between these two groups of users, a small number of popular
patterns prevail in both groups, and surprisingly, over 50% of every
PIN datasets can be accounted for by just the top 5%∼8% most
popular PINs. What’s disturbing is the observation that, as online
guessing is a much more serious threat than offline guessing in
the current PIN-based systems, longer PINs only attain marginally
improved security: human-chosen 4-digit PINs can offer about 6.6
bits of security against online guessing and 8.4 bits of security
against offline guessing, and this figure for 6-digit PINs is 7.2 bits
and 13.2 bits, respectively. We, for the first time, reveal that Zipf’s
law is likely to exist in PINs. Despite distinct language/cultural
backgrounds, both user groups choose PINs with almost the same
Zipf distribution function, and such Zipf PIN-distribution from one
source (about which we may know little information) can be well
predicted by real-world attackers by running Markov-Chains with
PINs from another known source. Our Zipf theory would have
foundational implications for analyzing PIN-based protocols and
for designing PIN creation policies, while our security measure-
ments provide guidance for bank agencies and financial authorities
that are planning to conduct PIN migration from 4-digits to 6-digits.
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1. INTRODUCTION
As one special kind of passwords, personal identification num-

bers (PINs) are typically composed of a fixed-length (e.g., 4 or 6)
of digits and do not entail any letters or symbols. This makes them
especially suitable for resource-constrained environments where
users are only offered a numpad but not a common keyboard, such
as automated teller machines (ATMs), point-of-sales (POS) termi-
nals and mobile phones. While the past half a century has witnessed
the competence of PINs in their banking role, PINs proliferate in
a variety of new embedded applications like electronic door locks,
SIM cards verification and mobile payment. As long as there are
cases where the absence of a full keyboard prevents the use of
textual passwords, PINs will remain an important authentication
method in the foreseeable future.

There have been a number of standards (e.g., ISO 9564 [13] and
the EMV standard [10]) that provide various security guidelines
about PIN selection and management. Typical advice such as “se-
lect a PIN that cannot be easily guessed (i.e., do not use birth date,
partial account numbers or repeated values such as 1111)” [10]
might fail to be effective in practice, for they only enumerate some
kinds of bad practice and never tell common users what constitute
good PINs. Users have long been known to have difficulties in
selecting and maintaining textual passwords [29, 35], and they
are notoriously inclined to favor a small number of popular and
predictable choices [5,33]. Expectedly, the immaturity of these pri-
mary PIN guidelines (e.g., [10,13]) can only add to concerns about
what exactly the security that user-generated PINs can provide.

Despite the ubiquity of PINs, it was not until 2012 that the
first academic research on human-chosen PINs was conducted by
Bonneau et al. [6]. Particularly, they focused on 4-digit banking
PINs that are used in America and Europe. As no real-life dataset
of banking PINs has ever been publicly available, Bonneau et al. [6]
employed two datasets of 4-digit sequences, which are extracted
from 32 million Rockyou passwords and 205K smartphone unlock-
codes, to approximate user choices of banking PINs. The under-
lying rationale is that, the digits and text of a textual password
are generally semantically independent (despite of some exceptions
like june2001), and these digit patterns and text patterns reflect
distinct user behaviors. And thus the digit sequences existing in
passwords highly reveal the user choices of their PINs.

Bonneau et al. [6] reported that Rockyou 4-digit PINs offer about
10.74 bits of entropy and iPhone 4-digit PINs offer about 11.01
bits of entropy. Following this approximating approach, a number
of studies [4, 14, 20, 26] have been conducted on 4-digit PINs by
using passwords: the work in [4, 20] examine the popular patterns
that dominate user choices, while the work in [14, 26] propose
new methods (e.g., mapping and morphing) for aiding users to
memorize more randomly selected PINs.
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1.1 Motivations
Though a handful of studies [4, 6, 14, 20, 26] have reported

some results on human-chosen PINs, many important issues remain
unresolved, e.g., what’s the distribution of human-chosen PINs?
Do longer PINs generally ensure more security? Moreover, to the
best of our knowledge, all previous studies deal with 4-digit PINs
selected by American and European users, little is known about
6-digit PINs that dominate in Asia and are increasingly gaining
popularity worldwide). What is the characteristics of 6-digit PINs
and how is their security as compared to that of 4-digit ones?

Particularly, Chinese users account for the world’s largest Inter-
net population (i.e., 710 million [1]) and largest consumer group
of bank cards (i.e., 3.5 billion [24]), and they have been shown of
great differences in choices when selecting passwords as compared
to English users [21, 31], due to language, culture, economy and
possibly many other confounding factors. What about Chinese
user PINs? Are there any characteristics that differentiate Chinese
user PINs from English user PINs? What are their strengths and
weaknesses as compared to English user PINs? It is expected that,
in a broad sense, settling these basic questions would contribute to
a much better understanding of human-chosen credentials in terms
of language, culture and the informatization process.

It has long been unrealistically assumed that PINs are uniformly
distributed (e.g., “we assume a uniform (PIN) probability distribu-
tion in our experiments” [17] and “our models are correct under
our assumption of uniformly distributed PINs” [27]). Rather than
a theoretically desirable uniform distribution, we will show that in
reality some PINs occur much more frequently than others. More-
over, both these overly popular and unpopular PINs are statistically
significant in every PIN dataset, indicating that such a skewed dis-
tribution cannot be described by the common distribution models,
such as uniform, normal, log-normal or exponential. Passwords
have been found to follow the Zipf’s law [31], yet this does not
necessarily resolve the question of what’s the exact distribution that
Human-chosen PINs follow, because PINs are of a fixed length and
with a much smaller character space. The settlement of this ques-
tion would have foundational implications, ranging from security
formulation of PIN-based cryptographic protocols, PIN creation
policies to ecological validity of PIN user studies.

1.2 Contributions
In this work, we conduct the first systematic investigation into

the two most widely used types of PINs (i.e., 4-digit and 6-digit
ones) used by English and Chinese users, aiming to answer the
above fundamental questions. Our key contributions are three-fold:

First, we compare the selection strategies of 4-digit PINs be-
tween English users and Chinese users, and initiate the study of
human-chosen 6-digit PINs in both user groups. As semantic
patterns are difficult to recognize from these massive and chaotic
numbers, we resort to visualization techniques (i.e., heatmap and
word cloud) and identify the semantic patterns in user choices more
easily. As expected, simple patterns like years/dates, numpad-
based numbers, digit repetition and sequential up/down are preva-
lent in both 4-digit and 6-digit PINs of each user group. By building
effective models on the basis of semantic patterns observed, we
manage to identify a number of unique structural and semantic
characteristics that dwell in PINs of each user group, revealing
distinct PIN selection behaviors between these two user groups.

Second, we, for the first time, shed light on the underlying distri-
butions of user-chosen PINs by using natural language processing
(NLP) techniques. We find that, despite the great differences in
characteristics, PINs from these two distinct user groups exhibit
quite a similar degree of self-organization: Zipf’s law well applies
to all our PIN datasets, and the corresponding parameters of their
exact distribution functions are nearly the same. This not only

outmodes the long-used assumption that PINs are uniformly dis-
tributed [12, 17, 27], but also has some foundational implications.

Third, we employ leading metrics (i.e., statistic-based α-guess-
work [5] and cracking-based Markov algorithm [21]) to measure
PIN strength. Our results show that, when online guessing is cur-
rently the primary threat, longer PINs essentially attain marginally
(i.e., <1 bit) improved security (which is opposed to common be-
lief): 4-digit PINs can offer about 6.6 bits of security against online
guessing and 8.4 bits of security against offline guessing, while
this figure for 6-digit PINs is 7.2 bits and 13.2 bits, respectively.
This provides new insights into the relationship between length and
strength of user chosen credentials.
Roadmap. We discuss related work in Sec. 2 and elaborate on
PIN characteristics in Sec. 4. Sec. 5 devotes to understanding PIN
distributions. Sec. 6 focuses on PIN strength. Sec. 7 concludes.

2. PIN USAGES AND PRIOR ART
Our work builds on a number of previous efforts. In this section,

we first provide a panoramic sketch of PIN usages around the
world, and then review the known research results on PINs.

2.1 PIN usages around the world
Initially, PINs were used in automated dispensing and control

systems at petrol filling stations, and later on they were introduced
to “the Chubb system” deployed by the Westminster Bank in the
UK in 1967 [3]. Since then, PINs have been popular in the banking
industry worldwide. With the rapid development of microelectron-
ic technologies in the 1990s, various embedded devices emerge,
and PINs act like passwords to safe guard these devices (e.g.,
PDAs and smart phones) from unauthorized access. Today, it is
unsurprising to see many stores are equipped with a POS terminal
to facilitate customers who have a bank card and a PIN.

While most mobile devices employ a 4-digit PIN, the lengths
of banking PINs are much diversified, varying from country to
country. Most banks in Europe allow for 4-digit PINs only. Most
banks in America and Canada allow 4-digit PINs, and some banks
(e.g., Bank of America and Royal Bank of Canada) begin allowing
customers to use an up to 12-digit PIN number. South America
countries like Brazil, Peru and Ecuador mainly employ 4-digit
PINs, but some banks also accept up to 6 digits. In Australia and
New Zealand, 4-digit PINs predominate, but many of the machines
also accept up to 12 digits. Banks in Switzerland use 6 to 8 digit
PINs, and banks in Italy typically use 5-digit PINs [6]. ATMs in
Egypt and Nigeria only accept 4-digit PINs, while ATMs in South
Africa accept both 4-digit and 5-digit ones.

Currently, most East and South Asia countries (e.g., China,
Singapore, India, Indonesia and Malaysia) allow for a 6-digit PIN.
Bank of Singapore allows 5-digit PINs. ATMs in Japan, South
Korea, Thailand and Oman only take 4-digit PINs. But in recent
years, there is a trend that many of these countries using 4-digit
PINs would migrate to 6-digit PINs. For example, since Jan. 1st
2015 all UAE card-holders are needed to abandon their 4-digit PIN
codes and use 6-digit PIN codes to make any purchases with their
cards [19]; After the personal data of 20 million South Korean bank
customers (i.e., 40% of Koreans) was leaked after a cyber-attack
earlier in 2014, the national financial authority plans to introduce a
6-digit PIN system to “make banking more secure” [18].

In a nutshell, while most countries in Europe, America, South
America, Africa and Oceania favor 4-digit banking PINs, most
countries in Asia are currently using (or are going to migrate to)
6-digit PINs.1 This implies that 6-digit PINs are now being used by
nearly half of the world’s population and deserves attention. Thus,
in this work we focus on both 4-digit and 6-digit PINs.
1We thank many friends for helping identify PIN practices worldwide.



2.2 PIN characteristics and security
If you lose your ATM card on the street, what’s the chance

that someone correctly guesses your PIN and proceeds to clean
out your savings account? The answer is 18.6%, with just three
tries, according to Nick Berry, the founder of Data Genetics [4].
He extracted 3.4 million passwords with exactly 4-digit long from
leaked password datasets like Rockyou and Yahoo (see Section 4),
and used these extracted passwords to approximate 4-digit PINs,
under the rationale that “if users select a four-digit password for
an online account or other web site, it’s not a stretch to use the
same number for their four-digit bank PIN codes”. He found that
there is a “staggering lack of imagination” when users choose their
PINs. The most popular PIN (i.e., 1234) accounts for 10.71% of
all the 3.4 million PINs collected, which is larger than that of the
lowest 4,200 codes combined. The second most popular one is
1111 (6.01%), followed by 0000 (2%).

If your ATM card was lost in a wallet along with your iden-
tification card, what’s the chance for someone to withdraw your
money? In a seminal work, Bonneau et al. [6] combined their 2
million approximated 4-digit PINs (extracted from Rockyou and
iPhone PIN codes) with the data obtained from a user survey with
1,108 effective US participants, and they estimated that this chance
will be from 5.63% to 8.23%, depending on whether your bank has
employed a blacklist to disallow weak PINs. They observed that
dates dominate user choices of PINs, representing about 23% of
users. Other popular patterns include sequential up/down, repeti-
tion, etc. They further employed statistical metrics [5] to assess
PIN strength, and found that 4-digit banking PINs offer between
12.6 and 12.9 bits of security against offline guessing (which is
acceptable), while the success rate of an attacker allowed up to 10
online guesses with the knowledge of birthday info reaches 8.9%.

As far as we know, the above works mostly focus on 4-digit
PINs, some also deal with 5-digit PINs, yet little attention has been
paid to 6-digit PINs which have been widely used in Asia and are
gaining popularity worldwide. What’s the characteristics of 6-digit
PINs as compared to 4-digit ones? What’s the distribution of 6-
digit PINs? When measuring PIN security, existing studies only
consider an optimal attacker, what’s the PIN strength under the
real-world attackers? Such basic questions all remain unsolved.

2.3 PIN distribution
What’s the distribution that user-chosen PINs follow? It seems

that this question is unlikely to be answered before a satisfactory
solution has been provided to another question: What’s the distri-
bution that user-chosen passwords follow? In 2012, Malone and
Maher [22] made an attempt to examine whether PINs follow a
Zipf distribution, and they concluded that their password datasets
are “unlikely to actually be Zipf distributed”. In the meantime,
Bonneau [5] also investigated the distribution of passwords and
reported that a Zipf distribution is problematic for describing their
password dataset, because the scale parameter of a Zipf distribution
largely depends on the sample size and there is no meaningful way
to determine a non-zero minimum password probability.

Different from the studies of [5, 22] that fit all passwords in
the collected dataset into a Zipf model, the work by Wang et
al. [31] first eliminates the least frequent passwords and then fit
the remaining passwords to a Zipf model, and remarkably good
fitting is achieved. Wang et al.’s underlying rationale is that, these
unfrequent passwords are noise and do not show their true Zipf
behavior due to the law of large numbers, and thus incorporating
them into the fitting would only serve to conceal the good Zipf
property of frequent passwords. They further provided compelling
evidence that unfrequent passwords are also highly likely to follow
the Zipf’s law. More detailed justifications are referred to [31].
This idea has inspired our finding of Zipf’s law in PINs.

3. METHODOLOGY FOR PIN CREATION
We now justify our PIN creation methodology, elaborate on the

PINs creation process, and describe the resulting PIN datasets.

3.1 Why approximate PINs by passwords
As far as we know, no database of real-world banking PINs

has ever been publicly available. Online or on-site user surveys
might be conducted to collect some PINs, even a large number of
participants can be recruited in through Amazon’s Mechanical Turk
crowdsourcing service. However, surveying on sensitive topics
like web passwords is inherently subject to the ecological validity
issue [11], let alone Banking/device-unlocking PINs. Fortunately,
there is another source of PIN data. Dozens of high-profile web
services (e.g., Dropbox and Yahoo [23]) have recently been hacked
and billions of real-life passwords were leaked, and these datasets
can be used to approximate PINs mainly due to three reasons.

Firstly, it is reasonable to assume that the digits and texts in a
password are generally semantically independent. This assump-
tion serves the foundation for the PCFG-based password cracking
technique [34], which has been shown a great success for char-
acterizing password selection [21, 33]. Our scrutiny into password
datasets also confirms this assumption, despite that we come across
a handful of passwords, such as jamesbond007, obama2012
and woaini1314, with their digits and letters not independent.

Secondly, the user cognition capacity is rather limited: generally,
a user’s working memory can only manage a total of 5 to 7 chunks
of independent information [16], and they will probably reuse PIN
sequences as building blocks for their passwords.

Thirdly, our survey on password behaviors of 442 Chinese us-
er reveals that 14.03% users re-use their banking PINs in web
passwords [33], which well accords with English users: “over
a third (34%) of users re-purpose their banking PINs in another
authentication systems”, including web services (15%) [6].

Thus, we use digit sequences with fixed length that are extracted
from real-life password datasets on proxy of user-generated PINs.

3.2 How to approximate PINs by passwords
The idea of using passwords to approximate human choices of

4-digit PINs first appeared in [6], and this work has inspired a
number of further investigations into PINs (e.g., [4, 26]). Initially,
we attempted to repeat the experimentations in [6], but we soon
were confronted with a difficult question: how to extract PINs from
textual passwords as there are 4+ different ways available?

The first approach is to choose the passwords (e.g., 5683) that
only consist of 4 digits as PINs. In this case, password 12345 or
a1234 will be rejected. The second method is to select passwords
that contain digits and the length of consecutive digits is exactly
4. For example, a1234bc5678 is accepted and we can get two
4-digit PINs (i.e., 1234 and 5678) from it. Meanwhile, a12345
is rejected because the length of consecutive digits in it is 5, but not
4. The third way is to choose the passwords containing digits and
the length of consecutive digits is no shorter than 4, and only the
first 4 digits are used. For example, a12345b is accepted and we
can get 1234 from it. The fourth way extends the third one, where
one can get 1234 and 2345 from a12345. Maybe there are some
other ways, here we have mainly considered these four cases.

As far as we know, the work in [4] prefers the first approach;
the work in [6] favors the second approach; Stanekova and Stanek
[26] employ both the second and third approaches. However,
the rationale underlying their choices has never been given. In
this work, we decide to choose the second one mainly for two
reasons. Firstly, even though users may reuse their banking PINs
in common sites, it is unlikely that such PINs are reused without
any alteration (e.g., no appending, concatenation, insertion, or



Table 1: Basic information about the four real-life password datasets
Dataset Web service Location Language Original Miscellany Length>30 All removed After cleansing Unique Passwords
Dodonew Gaming&E-commerce China Chinese 16,283,140 10,774 13,475 0.15% 16,258,891 10,135,260
CSDN Programmer forum China Chinese 6,428,632 355 0 0.01% 6,428,277 4,037,605
Rockyou Social and gaming forum USA English 32,603,387 18,377 3140 0.07% 32,581,870 14,326,970
Yahoo Portal(e.g., E-commerce) USA English 453,491 10,657 0 2.35% 442,834 342,510

Table 2: Basic information about the derived PINs
Dodonew CSDN Rockyou Yahoo

Total 4-digit PINs 1,223,677 444,204 1,780,587 47,540
Unique 4-digit PINs 10,000 9,951 10,000 8,379

Coverage(4-digit PIN) 100.00% 99.51% 100.00% 83.79%
Total 6-digit PINs 2,876,047 809,899 2,758,491 21,020

Unique 6-digit PINs 465,741 224,250 448,186 14,001
Coverage(6-digit PIN) 46.57% 22.43% 44.82% 1.40%

duplication), and only those with the lowest security-consciousness
would directly use a 4-digit PIN as their passwords. Therefore, one
may underestimate the security of PINs by using the first approach.

Secondly, though users reuse PIN sequences as building blocks
for their passwords, so far there has been no information about how
PINs are built into passwords. For instance, it remains an open
problem as to whether there are priorities when users applying
the alteration strategies? Before this question is answered, the
applicability of the PIN extraction approaches like the third one and
the fourth one (which may largely overestimate or underestimate
PIN usages in passwords) cannot be assessed.

Consequently, we prefer a conservative approach, i.e., the sec-
ond one: we extract all consecutive sequences of exactly 4 and
6 digits from our four password datasets and obtain eight corre-
sponding PIN datasets. Though we get fewer PINs as compared
to the third, fourth or other approaches, we avoid destroying the
original connotation in digits and introducing uncertainties. For
example, in the fourth approach, one can get 1994,9940,9404,
4041,0411 from a birthday 19940411. One may get even
more useless information from a telephone number in the third
approach. Such approaches will surely lead to a skew of the PIN
distribution. Meanwhile, we have to admit the disadvantage of our
selected approach – it conservatively ignores some PINs dwelling
in passwords. As for 6-digit PINs, a similar approach is taken.

3.3 PIN datasets description
Table 1 summarizes some basic info about the four password

datasets we collected. They were all hacked by adversaries from
prominent sites and somehow made public over the Internet. They
have been widely used in research [9,21,31,33]. We first carry out
data cleansing for each dataset. Email addresses, user names (and
other non-password info) are removed from the original data. We
then observe that some strings containing non-ASCII letters (i.e.,
“miscellany”), and they are unlikely to be passwords and thus are
purged. We further remove strings whose lengths are abnormally
long (i.e., >30), because they are more likely to be generated by
password managers than by human-beings. This process not only
increases data quality but also eases later data operations.

Then, we extract all consecutive sequences of exactly 4 and 6
digits from these four password datasets, resulting in eight corre-
sponding PIN datasets as summarized in Table 2. While Bonneau
et al. [5] observed that users employ 4-digit sequences significantly
more often than 3- and 5-digit sequences in passwords, Table 2
shows that users manifest a particular affinity for 6-digit sequences
even over 4-digit ones. We leave to future research the interesting
question of to exactly what extent our created PIN datasets are
comparable to real corpus of PINs used in the banking context.

4. PIN CHARACTERISTICS
We now systematically investigate into the characteristics of 4-

digit and 6-digit PINs generated by English and Chinese users.

4.1 Characteristics of 4-digit PINs
Table 3 lists the top ten 4-digit PINs in our datasets. For the

two Chinese datasets, 1234, 1314, 2008 occupy the top three
positions. It is not a surprise to see 1234 being among the most
popular PINs, yet the popularity of 1314 and 2008 is a bit puz-
zling. Then we realize that, 1314 sounds like “forever and ever”
in Chinese, and “2008” is just the year where the 29th Summer
Olympic Games were held in Beijing, China. For English PINs, the
microscopic picture differs: 1234 is indisputably the most popular
one, while the rest of the top-10 list are completely occupied by
years ranging from 1991 to 2009, being consistent with [6].

Table 3: Top ten 4-digit PINs in each PIN dataset
Rank Dodonew CSDN Rockyou Yahoo

1 1314 7.25% 1234 5.91% 1234 3.72% 1234 4.51%
2 1234 3.45% 1314 4.57% 2007 2.23% 2008 2.13%
3 2008 2.09% 2008 2.70% 2006 2.10% 2009 2.06%
4 1987 2.06% 2010 2.31% 2008 1.73% 2007 1.32%
5 1986 1.82% 2009 2.21% 2005 1.33% 2000 0.99%
6 1988 1.58% 1987 1.86% 1994 1.18% 2006 0.97%
7 1989 1.47% 1988 1.76% 1993 1.13% 2005 0.77%
8 1985 1.43% 1989 1.71% 1992 1.13% 2004 0.66%
9 1984 1.21% 1986 1.36% 1995 1.06% 2002 0.61%

10 1990 1.01% 1985 1.03% 1991 1.02% 2001 0.59%
Total 112,917 25.42% 285,973 23.37% 296,112 16.63% 6,946 14.61%

What’s staggering is that, over 23.37% of all 4-digit Chinese
PINs could be guessed by just trying these 10 combinations! This
figure for English PINs is 14.61%, much lower than that of 4-digit
Chinese PINs, yet it is still alarming. Statistically, if 4-digit PINs
were uniformly distributed (i.e., with 104 possible combinations),
we would expect these ten PINs to account for just 0.1% of the total
datasets, but not 23.37% or 14.61% as we have actually encoun-
tered. While “it’s amazing how predictable (US) people are” [4],
it is utterly incredible to see how the lack of imagination Chinese
users are! In the NIST SP-800-63-2 standard for passwords [7],
password security can be largely improved by imposing a policy
that disallows overly popular passwords. A similar policy would
produce PIN distributions with much better resistance to guessing,
yet no standards/guidelines for PINs mention such a policy [6] and
as far as we know, 1234 (or 123456) is allowed on nearly all
ATMs and mobile devices. Our Zipf theory in Sec. 5 implies
that a threshold-based blacklisting approach is much better than
simply blacklisting all popular PINs (see Appendix A), due to the
polynomially decreasing nature of PIN frequency.

After having gained a concrete grasp of the most popular PINs in
each dataset, we now employ a fundamentally different approach
to examining semantic patterns and reveal the user aggravated
behaviors by plotting each PIN distribution in a 2-dimensional grid
(see Fig. 1) using R, a free software programming environment
for statistical computing and graphics. Each grid uses the first two
PIN digits as the x-axis and the second two PIN digits as the y-
axis, and color is employed to represent frequency: the higher the
frequency of a PIN is, the darker the color in a cell will be. And
thus such grids are also called heatmaps. This idea is inspired by
Bonneau et al. [6], and it allows an informative view of the whole
PIN dataset. This is in stark contrast to most previous approaches
that use statistics to just catch a glimpse of one corner of a dataset.

Fig. 1 illustrates several important features that lie in all four PIN
datasets. Firstly, the left bottom corner of four mini-pictures are
invariably with a darker color, indicating the popularity of calendar



(a) Sketch of Dodonew 4-digit PINs (b) Sketch of CSDN 4-digit PINs

(c) Sketch of Rockyou 4-digit PINs (d) Sketch of Yahoo 4-digit PINs

Figure 1: A visualization of the distribution of 4-digit PINs. The darker the color, the more popular the PIN is.

dates in a MMDD or DDMM format. Being more careful, one can
trace the variation in lengths of each month (e.g., there are only 28
days in Feb. and 31 days in Jan., Mar., May, etc.). Secondly, the
lines corresponding to 19XX and 20XX show that users love to use
the year of birth (or possibly the registration year) as their PINs.
Thirdly, a diagonal line of PINs with the same first and last two
digits (e.g., 3737) can be clearly identified. What’s more, a num-
ber of insular cells (e.g., 4869, 1412, 5683 and 2580)2 stand out
like stars in the sky, which reveals some independent events (e.g.,
homonyms of characters famous novels/cartoons, theme of love
and numpad patterns) that may influence PIN popularity. In all,
while some PINs stand out as independent events, some other ones
exhibit a warp and woof of woven fabric divulging certain subtle
links we are unaware of. All this highlights the effectiveness of
visualization in the early stage of data analysis, especially helpful
for eliminating unnecessary experiments.

There are also some substantial differences in the PIN distribu-
tions between both user groups. Perhaps the most obvious one is
that, Chinese users prefer the MMDD date format, while English
users equally favor the MMDD and DDMM date formats. There
are more “stars” standing out in Chinese PINs as compared to
English PINs: nearly all the “stars” (e.g., 2580, 1357, 4869 and
2468) appearing in English PINs have also emerged in Chinese
PINs, while many “stars” (e.g., 1314, 3721, 9527 and 2046)
appearing in Chinese PINs have not emerged in English PINs.
2“4869” relates to the famous cartoon character Sherlock Holmes and
Conan, “1412” to Magic Kaito; For “5683”, on a numpad, “5” can be
mapped to “L”, “6” to “O”, “8” to “V”, “3” to “E”, which make up “LOVE”;
“2580” is the obvious pattern “|” on ATM/phone-style numpads.

Furthermore, English users like to end their PINs with the number
69, which demonstrates users’ affinity and see Fig. 1(c) for the
horizontal line of Rockyou PINs. This observation is consistent
with [4, 6, 20]. In contrast, Chinese users love to begin their PINs
with 52 (which sounds as “I love ...”) and to end their PINs with
88 which sounds as “making a fortune”. All these highlight some
basic linguistic/cultural factors that influence user PIN choices.

The frequent showing up of some numpad-based PINs (e.g.,
2580 and 5683), to some extent, suggests the effectiveness of
extracting PINs from textual passwords. We notice that some full-
size keyboard for PCs and laptops do also have a numpad, yet the
digits on such PC numpads are often inversely arranged (e.g., 7,
instead of 1, is on the top-left) as compared to digits on numpads
for embedded devices. It is, therefore, not as convenient for users
to type 2580 on a PC numpad as on an ATM numpad: the former
first involves a bottom-up and then a jump to 0, while the latter only
involves a vertical top-down swipe. As for 5683, it can be mapped
to “love” on an ATM numpad, but with no evident meaning on a PC
numpad. Thus, their frequent showing up can, arguably, confirms
the validity of our data. As we will show in Sec. 4.2, numpad-based
PINs are even much more popular in the extracted 6-digit PINs.

To quantitatively measure the influencing factors that dominate
the user selection of 4-digit PINs, we devise a model (see Table
4) that contains 12 patterns observed above. Note that, “YYYY”
stands for a year format like 2008, and here we only consider the
years after 1940 according to our observations from the heatmaps.
“Chinese elements” are composed of fourteen PINs, including ten
PINs sounding like meaningful phrases in Chinese (i.e., 1314,
3344, 5200, 5210, 9420, 8520, 5257, 8023, 7758, 9958),



Table 4: A simple model for evaluating patterns in Human-chosen 4-digit PINs (with a focus on Chinese user PINs)

Patterns in our model
Random model Dodonew CSDN Rockyou Yahoo

# of mat- % of # of mat- % of # of mat- % of # of mat- % of # of mat- % of
ched PINs all PINs ched PINs all PINs ched PINs all PINs ched PINs all PINs ched PINs all PINs

All 4-digit PINs 10000 100% 1223677 100.00% 444204 100.00% 1780587 100.00% 47540 100.00%
YYYY (1940∼2014) 75 0.75% 297310 24.30% 123635 27.83% 560003 31.45% 12688 26.69%

MMDD (e.g., 0406, 1230) 365 3.65% 278441 22.75% 119304 26.86% 279606 15.70% 6572 13.82%
One digit repeated (e.g.,1111) 10 0.10% 26906 2.20% 11617 2.62% 14975 0.84% 676 1.42%

Numpad pattern (e.g., 2580, 1357) 68 0.68% 19845 1.62% 4298 0.97% 11905 0.67% 298 0.63%
Sequential up/down (e.g., 1234, 7890) 14 0.14% 50879 4.16% 29840 6.72% 75674 4.25% 2421 5.09%

Chinese elements (e.g., 1314, 5210) 14 0.14% 110830 9.06% 26185 5.89% 3722 0.21% 60 0.13%
Total of the above six patterns* 541 5.41% 763019 62.35% 308233 69.39% 938041 52.68% 22477 47.28%

DDMM (e.g., 0604, 3012) 365 3.65% 191975 15.69% 99260 22.35% 433474 24.34% 9387 19.75%
Couplets repeated (e.g., 1616) 90 0.90% 29413 2.40% 9592 2.16% 59247 3.33% 1708 3.59%
Palindrome (e.g., 1221, 2442) 100 1.00% 48328 3.95% 18985 4.27% 62320 3.50% 1806 3.80%

Beginning with 52 (e.g., 5211) 100 1.00% 19640 1.61% 4155 0.94% 7838 0.44% 245 0.52%
Ending in 88 (e.g., 7688, 5088) 100 1.00% 35091 2.87% 14539 3.27% 28818 1.62% 632 1.33%

Universal elements (e.g., 4869, 5683) 5 0.05% 2926 0.24% 1306 0.29% 5504 0.31% 115 0.24%
Total of the above six patterns* 738 7.38% 296539 24.23% 133988 30.16% 559622 31.43% 12751 26.82%

Random(i.e., beyond the above 12 patterns) 8894 88.94% 391981 32.03% 116724 26.28% 658093 36.96% 20922 44.01%
∗As there are ambiguities when determining to which pattern a PIN belongs to, we manually check: if a PIN shows an obvious pattern tendency, it only
belongs to that pattern; if there is almost equal tendency for 2+ patterns, it is counted by these 2+ patterns. To avoid duplicate counting, we compute the
two “total” statistics in a top-down order of the patterns as arranged in the table. Once a PIN matches with a pattern, then this PIN is marked as counted.

two PINs related to classic Chinese movies (i.e.,2046, 9527) and
two PINs which are names of popular sites in China (i.e., 3721,
8848). “Universal elements” consist of five PINs, including two
PINs related to world-wide famous Characters in cartoons/novels
(i.e., 4869 for Sherlock Holmes and Conan, 1412 for Magic
Kaito), one PIN related to love (i.e., 5683 as said earlier) and two
PINs related to odd/even sequential numbers (i.e., 2468, 1357).

It is worth noting that, in this section (and Sec. 4.2) we take PINs
from Chinese user as a case study and mainly focus on devising an
effective model for evaluating popular patterns in them. It is not
difficult to see that a fine-grained model for English user PINs can
be constructed in a similar way. Though our model is generalized
mainly from two Chinese datasets (assisted with two English ones),
we believe that it is of universal applicability for Chinese user PINs
due to the generality nature of each of its elements.

We also note that some digit sequences may match several d-
ifferent patterns. For example, 0123 collides with the patterns
“sequential numbers” and “MMDD”. However, it is more likely
that users choose it mainly because it is a memorable sequential
number. Meanwhile, there also exist many sequences which don’t
show an obvious tendency. For example, 1221 matches both “M-
MDD” and “palindrome”, yet we cannot determine its bias towards
which pattern. Thus, we prefer to not deal with the ambiguities.
For example, 0123 will be deemed as a date and as a sequential
number. To avoid duplicates when computing the two “total”
statistics, we adhere to the notes under Table 4.

Table 4 shows that one could guess about a quarter of Chinese
PINs (as well as English PINs) by just trying a set of 75 years
ranging from 1940 to 2014. Fourteen Chinese elements account for
9.06% of the Dodonew PIN dataset and 5.89% of the CSDN PIN
dataset, respectively. Interesting, the single Chinese element (i.e.,
1314) makes up 7.25% of the Dodonew PINs and 5.91% of the
CSDN PINs, respectively. Even this element covers 0.12% of the
Rockyou PINs, twelve times higher than a random PIN should do.
This suggests that there would be a non-negligible portion of Chi-
nese users who register in the English site Rockyou. While Chinese
users prefer the date pattern “MMDD”, their English counterparts
favour the date pattern “DDMM”. Both groups of users equally like
to employ simple patterns such as “one digit repeated”, “sequential
up/down”, “couplets repeated” and “palindrome”.

It is staggering to see that a small set of 541 4-digit PINs
(constructed from the top-6 patterns) can account for 62.35% and
69.39% of the entire Dodonew PIN dataset and CSDN PIN
dataset, respectively. The results for English 4-digit PINs are also
impressive: about 50% are covered by 5.41% of all 104 possible

combinations. Further with six other patterns, over 67.97% and
73.72% of these two Chinese PIN datasets can be covered,
respectively. If we had combined more complex patterns (e.g.,
YYMD and vertical swipe) with this model, even more PINs could
be covered. However, we intentionally donot focus on using such
complex patterns, because we aim to show that even using a
simple model like ours, which is merely comprised of a few
simple patterns, can successfully cover a significant fraction of the
PINs. We also find that PINs from each dataset offer significantly
different semantic distributions (pairwise χ2 test, p < 0.01).

Actually, it is interesting to see that our model is also quite
suitable for characterizing English PINs (e.g., 52.68% Rockyou 4-
digit PINs can be covered by the first six patterns), and this figure
would be higher if we had taken into account the English elements
(e.g., popular dates that go beyond birthdays include historical
years 1492 and 1776, and the number 007 for James Bond).
Summary. Whereas there are some notable differences in 4-digit
PIN choices between English users and Chinese users, both groups
of users tend to choose PINs in a predictable way. The effectiveness
of our relatively simple model suggests that, the identified twelve
general patterns well reveal the behaviors when users selecting their
4-digit PINs. In Section 7, we will show the security vulnerabilities
associated with such (weak) patterns in user-generated PINs.

4.2 Characteristics of 6-digit PINs
To the best of our knowledge, so far there has been no published

investigation into the domain of 6-digit PINs, though they have
long been widely used by billions of card holders in the world,
especially in Asia. Still, some conjectures about 6-digit PINs have
been made, such as “the greater the number of digits required,
the more predictable PIN selections become” [4, 20]. Will this
conjecture be true? Are there any prominent features of human-
chosen 6-digit PINs as compared to 4-digit PINs? In the following,
besides suggesting compelling answers to these two questions, we
also make the first attempt to identify the dominant factors that
influence user behaviors of 6-digit PIN choices.

Table 6 shows the top-10 most popular PINs in each 6-digit PIN
dataset. As expected, 123456 tops the list, followed by 111111
and 123123. Surprisingly, these top-3 PINs can occupy from
12.60% to 21.21% of our PIN datasets. Such figures are much
higher than those of the top three 4-digit PINs as shown in Table
3. Based on similar observations, the works in [4, 20] conjectured
that “the greater the number of digits required, the more predictable
PIN selections become”. We confirm that this is largely true as we
will demonstrate in the following explorations.



Table 5: A simple model for evaluating patterns in Human-chosen 6-digit PINs (with a focus on Chinese user PINs)

Patterns in our model
Random model Dodonew CSDN Rockyou Yahoo

# of mat- % of # of mat- % of # of mat- % of # of mat- % of # of mat- % of
ched PINs all PINs ched PINs all PINs ched PINs all PINs ched PINs all PINs ched PINs all PINs

All 6-digit PINs 1000000 100% 2876047 100.00% 809899 100.00% 2758491 100.00% 21020 100.00%
YYYYMM (194001∼201412) 900 0.090% 35708 1.24% 11396 1.41% 17048 0.62% 95 0.45%
YYMMDD (400101∼141231) 27375 2.738% 648974 22.56% 236572 29.21% 277568 10.06% 1824 8.68%
YYYYMD (194011∼201499) 6075 0.608% 149789 5.21% 43237 5.34% 54005 1.96% 267 1.27%

One digit repeated (e.g., 111111) 10 0.001% 123109 4.28% 14126 1.74% 63176 2.29% 610 2.90%
Numpad patterns (e.g., 147258) 262 0.026% 706938 24.58% 122002 15.06% 425381 15.42% 3025 14.39%

Sequential numbers (e.g., 123456) 11 0.001% 503972 17.52% 90692 11.20% 351008 12.72% 2506 11.92%
Chinese elements (e.g., 585520) 21 0.002% 63963 2.22% 10846 1.34% 927 0.03% 47 0.22%

Total of the above 7 patterns∗ 34491 3.449% 1623168 56.44% 423948 52.35% 823927 29.87% 5644 26.85%
YYDDMM (400101∼143112) 27375 2.738% 296178 10.30% 103707 12.80% 280387 10.16% 2139 10.18%
MMYYYY (011940∼122014) 900 0.090% 3032 0.11% 1036 0.13% 37488 1.36% 358 1.70%
MMDDYY (010140∼123114) 27375 2.738% 180278 6.27% 42942 5.30% 787165 28.54% 6347 30.20%
MDYYYY (111940∼992014) 6075 0.608% 12861 0.45% 3772 0.47% 81640 2.96% 773 3.68%

Couplets repeated (e.g., 121212) 90 0.009% 18000 0.63% 3553 0.44% 62112 2.25% 621 2.95%
Double sequential (e.g., 112233) 17 0.002% 13939 0.48% 3289 0.41% 9671 0.35% 62 0.29%

Triple repeated(e.g., 136136) 990 0.099% 135250 4.70% 25597 3.16% 41187 1.49% 498 2.37%
Triple sequential (e.g., 111222) 19 0.002% 6775 0.24% 1806 0.22% 4934 0.18% 59 0.28%

Palindrome (e.g., 123321, 179971) 1000 0.100% 155827 5.42% 23723 2.93% 80606 2.92% 787 3.74%
Universal elements (e.g., 314159) 9 0.001% 3890 0.14% 2907 0.36% 4250 0.15% 42 0.20%

Total of the above 10 patterns∗ 57606 5.761% 632258 21.98% 177879 21.96% 1095346 39.71% 9142 43.49%
Random(i.e., beyond the above 17 patterns) 919094 91.909% 1068148 37.14% 328390 40.55% 1094711 39.69% 8202 39.02%

∗To avoid duplicate counting, we employ the same method as in Table 4.

Table 6: Top ten 6-digit PINs in each PIN dataset
Rank Dodonew CSDN Rockyou Yahoo

1 123456 17.05% 123456 10.73% 123456 11.69% 123456 11.05%
2 111111 2.15% 123123 0.97% 654321 0.56% 111111 0.92%
3 123123 2.01% 111111 0.68% 111111 0.51% 123123 0.63%
4 000000 1.29% 123321 0.53% 000000 0.49% 654321 0.54%
5 321654 1.00% 000000 0.47% 123123 0.40% 000000 0.41%
6 123321 0.55% 654321 0.27% 666666 0.29% 030379 0.39%
7 520131 0.53% 112233 0.24% 121212 0.21% 666666 0.31%
8 520520 0.44% 123654 0.21% 112233 0.21% 123321 0.30%
9 112233 0.30% 520520 0.21% 789456 0.21% 121212 0.29%

10 147258 0.30% 666666 0.20% 159753 0.20% 101471 0.28%
Total 736,843 25.62% 117,516 14.51% 407,429 14.77% 3,178 15.12%

Every PIN in Table 6 (except for these in bold) conforms to
one of three basic patterns: digit repetition, sequential up/down
and palindrome. As for these ten bolded PINs, six PINs (i.e.,
147258, 123654, 321654, 789456 and 159753) obviously
comply with a numpad pattern (e.g., 159753 is a “×” mark over
the numeric keypad), two PINs (i.e., 520520, 520131) intrigu-
ingly sound like “I love you · · · ” in Chinese and two PINs from
Yahoo dataset (i.e., 030379, 101471) seem to be of no obvious
meaning or simple patterns. It is alarming to see that, for every
6-digit PIN dataset, its top-10 PINs can account for more than a
seventh of the entire dataset. Still, this figure is of no significant
difference as compared to the top-10 4-digit PINs (see Table 3).

To further identify the dominant factors that influence user choic-
es of 6-digit PINs, we once again resort to a visualization tech-
nique (i.e., word cloud) due to its intuitiveness and informativeness,
and make use of the wordle diagram http://www.jasondavies.com/
wordcloud/. We provide the raw PINs from each dataset to the
wordle tool which gives greater prominence to PINs that are more
frequent. As a result, the PINs shown in the cloud picture are sized
according to the number of their occurrences.

Due to space constraints, the word clouds for our four 6-digit
PIN datasets can be found in Appendix B. One can see that, patterns
like dates and single-digit/couplets/triple repetition are as prevalent
as that of 4-digit PINs. Interestingly, users prefer using pairs of
numbers that have smaller space gaps between them. For example,
combinations like 12 and 78 are used much more frequently than
17 and 28. One plausible reason is that a smaller space gap is easier
to type. As with 4-digit PINs, meaningful 6-digit PINs are favored
by either Chinese users (e.g., 131452 and 110120) or English
users (e.g., 420420 and 696969), or both groups of users (e.g.,
007007). Note that, 110 and 120 are the alarm/emergency call
in China; 420 is a code for marijuana.

What’s quite different from 4-digit PINs is that numpad patterns
seem to be much more popular in 6-digit PINs: about 26% to
36% of the top-150 PINs in each dataset are with some kind of
numpad patterns like “×” (e.g., 159753), “+” (e.g., 258456),
“=” (e.g., 123654), “≡” (e.g., 134679), “⊤” (e.g., 123580) and
“∥” (e.g., 147369). Interestingly, once again we see corroborative
evidence that extracting exactly 6-digit sequences from passwords
is a good proxy for 6-digit real-world PINs. One can see that many
of these numpad-pattern PINs (e.g., 142536 and 258456) are
utterly awkward to type on a laptop/PC keyboard because the order
of these digits is interlaced on such keyboards. As said earlier, even
though some PC keyboards also have a numpad area, yet the digits
on such PC numpads are often inversely arranged as compared
to a phone-style numpad. Thus, these PINs (e.g., 123580 and
123654) are still inconvenient to type on a PC-based numpad, yet
a phone-style numpad just facilitates such digit sequences. This
suggests that, besides their preference of maintaining easy to type
(and remember) PINs for their credit cards/mobile devices, many
users also seem to tend to re-use their PINs in online passwords,
even though the mnemonics related to numpads (e.g., 123580
relates to a “⊤”) no longer apply to the PC keyboards/numpads.

To quantitatively measure user behaviors, we devise a simple
model (see Table 5) that contains 17 patterns observed above.
Here we only consider the years after 1940 due to the distribution
of years revealed in Fig. 1. The “numpad pattern” incorporates
262=(162+6) PINs, for there are sixteen 3-digit numpad sequential
numbers (i.e., “123, 456, 789, 147, 258, 369, 159, 357; 321,
· · · , 753”) and we also consider six hybrid numpad sequences
such as 159874. “Chinese elements” are composed of 21 PINs,
including 18 PINs (see Appendix C) which sound as meaningful
phrases in Chinese and three PINs which are combinations of well-
known calls in China (i.e., 110120, 110110, 110119). “Uni-
versal elements” consist of 9 individual PINs, including 5 PINs
(i.e., 112358, 314159, 141592, 271828, 142857) which are
important constant numbers and popular in our datasets, two PINs
relate to odd/even sequential numbers (i.e., 135790, 246810),
one PIN stands for James Bond (i.e., 007007) and one PIN (i.e.,
911911) relates to the U.S. emergency number.

For better comprehension, we also provide the combined dic-
tionaries (with duplicates removed) in Table 5. Our results show
to what extent human-beings are lacking of imagination: with
just seven popular patterns observed, we can cover over 50% of
Chinese user PINs and 25% of English user PINs by using a small
dictionary that consists of only 3.449% of all the 106 possible

http://www.jasondavies.com/wordcloud/
http://www.jasondavies.com/wordcloud/
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Figure 2: The percentage of PIN dataset being covered by the top x% PINs. The 20/80 rule is evident.

PINs; Further with ten more patterns, we can cover about 60%
of PINs of both user groups by using a dictionary consisted of
8.09% of the 106 possible PINs. Though popular PINs in 6-digit
datasets are more concentrated than that of 4-digit datasets, yet
there are larger fractions of random 6-digit PINs, implying that 6-
digit user-chosen PINs are more secure against offline guessing.
This partially confirms the conjecture made in [4, 20].

In 6-digit PINs, years and dates are not as popular as that of
4-digit PINs, yet three other patterns (i.e., “one digit repeated”,
“numpad patterns” and “sequential numbers”) are much more
prevalent. For example, a mere 11 sequential numbers can cover
over 11.20% of every PIN dataset. Besides, meaningful Chinese
elements (e.g., 520134) are abundant and they also occupy a
non-negligible fraction of English PINs (up to 0.22%), implying
that many users in English sites are from China. As for “universal
elements” (e.g., 007007), they are so dangerously popular that an
attacker’s cost/success ratio can be as low as 1/360 ∼ 1/140. We
also find that 6-digit PINs from each dataset offer significantly
different semantic distributions (pairwise χ2 test, p < 0.01).

Particularly, as high as 14.39%∼24.58% of PINs of every dataset
can be guessed by the 262 numpad-pattern PINs (which are a
mere 0.026% of all possible 106 6-digit PINs), indicating an over
553(=14.39/0.026) times increase in success rates than 262 ran-
dom PINs should do. In 2014, Das et al. [8] reported that about
43%∼51% of users re-use their textual passwords across various
sites, while our results arguably imply that a non-negligible frac-
tion of “persistent” users (1.31%∼4.35%) who reuse their 6-digit
PINs in textual passwords even though the mnemonics related to
numpads no longer apply to laptop/PC keyboards/numpads. An
important caveat is that some of these 262 PINs can also be based
on other patterns such as “sequential up/down” (e.g., 123456) and
“universal element” (e.g., 135790), meaning some overestimation
of these “persistent” users. Still, most of these 262 PINs mainly fa-
cilitate typing on a numpad (especially unfriendly on a laptop), and
this result provides compelling evidence for PIN reuse in passwords
and highlights this highly vulnerable human behaviors.

We note that the coverage of our evaluation model may possibly
be expanded by leveraging some complex patterns (e.g., a mixture
of odd and even sequences like 135246), but its effectiveness
heavily depends on the target data. We intentionally do not in-
corporate such complex patterns, because we aim to show that our
simple model can well capture the dominant factors that influence
PIN choices of Chinese users (which provides substantial insight
into users’ PIN selection process). That being said, an evaluation
model for 6-digit PINs of English user can be built in a similar way.
Summary. As compared to 4-digit PINs, 6-digit ones are more
likely to be of numpad-based patterns, language-based specific
elements and sequential numbers. While popular 6-digit PINs are
more concentrated than 4-digit ones, a larger fraction of 6-digit

PINs do not follow any obvious pattern. This has critical real-
world implications: 6-digit PINs are more prone to small number
of guessing attempts (i.e., online guessing [33]) yet more secure
against larger numbers of guessing (i.e., offline guessing). Since
the former threat is a much more realistic and serious one, this calls
in question the necessity of migration to longer PINs (e.g., [18]).

5. PIN DISTRIBUTION
After having gained a comprehensive grasp of the PIN character-

istics and seen that some PINs occur significantly more frequently
than others, one may naturally wonder a more fundamental ques-
tion: what is the exact distribution that PINs follow? Since the PIN
frequency distribution indicates the degree of PIN concentration,
the settlement of this question would have foundational implica-
tions for PIN-based cryptographic protocols, PIN strength meters,
creation policies and ecological validity of PIN user studies. In this
section, we make the first attempt to address this issue.

5.1 Cumulative frequency distribution
In Section 4, we have seen the frequency distributions of top-

10 PINs from both user groups. How about top-100 PINs, top-
103 PINs, and so on? We answer this question by presenting a
cumulative frequency distribution graph (see Fig. 2), where the x-
axis is the top x% of PINs and the y-axis is the percentage of total
datasets covered by these top x% of PINs. Statistically, the top-100
PINs (i.e., top 1% for 4-digit PINs and top 0.01% for 6-digit PINs)
of each PIN dataset can cover at least 30% and 40% of the 4-digit
datasets and 6-digit datasets, respectively.

Alarmingly, the 50% cumulative chance threshold of 4- and 6-
digit PINs (except for Yahoo) is passed at just the top 2.75% and
top 2.35%, respectively. This indicates a 18.18(=50/2.75) and a
21.28 (=50/2.35)) times increase in an attacker’s success rates, re-
spectively, if she somehow knows the underlying PIN distributions.

5.2 Frequency distribution
The above CDF graphs (see Fig. 2) show that both these overly

popular PINs and unpopular PINs are statistically significant in
every PIN dataset. This essentially indicates that such a skewed
distribution cannot be described by the common distribution mod-
els, such as normal, log-normal, exponential or Poisson.

Fortunately, we observe that Fig. 2 is much similar to the Fig.
5(a) in [31], which is reminiscent of the Zipf’s law that occurs in an
extraordinarily diverse range of phenomena such as the species per
genus and US firm sizes [2]. Initially, this law was used to describe
that the frequency of any word in a natural language corpus is
inversely proportional to its rank in the frequency table arranged
in decreasing order. Formally, it is formulated as
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(e) Prob. vs. rank plot of 4-digit PINs from four datasets
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(f) Prob. vs. rank plot of 6-digit PINs from four datasets
Figure 3: Zipf’s law in user-generated PINs plotted on a log-log scale. The fittings are remarkably good for PINs of both user groups.

Table 7: Least square linear regression (LR) results of 4-digit PIN datasets. Large R2s indicate the soundness of our Zipf models.
4-digit PIN Total Unique Least PINs used % of PINs Unique PINs Zipf law Absolute value Coefficient of de- KS test

Dataset PINs PINs freq. used in LR used in LR used in LR regression line of the slope (s) termination (R2) p-value
Dodonew 1,223,677 10,000 10 1,223,243 99.965% 9,945 -1.210950-0.908621*x 0.908621 0.978354 0.300168
CSDN 444,204 9,951 10 417,773 94.050% 5,185 -0.957140-1.010156*x 1.010156 0.975388 1.851E-08
Rockyou 1,780,587 10,000 10 1,780,587 100.000% 10,000 -1.093437-0.929672*x 0.929672 0.987545 0.024229
Yahoo 47,540 8,379 10 25,655 53.965% 579 -1.165256-0.926723*x 0.926723 0.988836 0.626134
Overall∗ N/A N/A N/A N/A N/A 25,709 -1.196391-0.912634*x 0.912635 0.972065 N/A

∗“N/A” because the regression of “Overall” is not on PINs but on the total 25,709 unique data points of the four red curves (see Figs. 3(a) to 3(d)).

where fr is the frequency of the word ranked r in the corpus,
and C0 is a constant determined by the corpus. However, in most
cases (e.g., US firm sizes [2]) other than natural languages, a more
general form of Zipf’s law applies:

fr =
C0

rs
, (2)

where the exponent s is a real number and close to 1. Note that,
Eq. 2 can be equally expressed as

pr =
fr

|DS| =
C0/|DS|

rs
=

C

rs
, (3)

where |DS| is the size of dataset, pr is the relative frequency (or
so-called probability of occurrence) of the rth ranked item (i.e.,
pr = fr/|DS|), and C(= C0/|DS|) is a constant determined by
the dataset. We observe that, interestingly, while Eq. 2 is more
intuitive than Eq. 3, the latter facilitates better comparison between
different fitting instantiations.

Generally, for better comprehension, we can plot the data on a
log-log graph (base 10 in this work), with the x-axis being log(rank
order r) and y-axis being log(probability pr). In other words,
log(pr) is linear with log(r):

log pr = log C − s · log r. (4)
We plot the probability vs. rank of 4-digit PINs on a log-log

scale. Due to space constraints, Fig. 3 illustrates the graphs for each
4-digit PIN dataset as well as the aggregated graphs for both 4-digit
and 6-digit PINs (see the red curves). Due to space constraints, here
we only give the aggregated graphs for the 6-digit PINs.

It is worth noting that the relative frequency of each PIN in all
our datasets drops polynomially as its rank becomes lower. An ex-
ception is that the probability of very few PINs at the tail of the rank
lists drop much more sharply than polynomially (see Figs. 3(a) to

3(c)) or much more slowly than polynomially (see Fig. 3(d)). In
other words, most of the data points fall approximately on a straight
log-log line. This strongly indicates that an overwhelming majority
of PINs well follow a Zipf distribution, with the parameter s given
by the absolute value of slope of the straight line.

There are several approaches to determine the parameters of a
Zipf distribution when given empirical data, among which is the
widely used least-squares linear regression [2] and we adopt it for
its simplicity. This method calculates the best-fitted line for the
observed data by minimizing the sum of the squares of the vertical
deviations from each data point to the fitted line. The Coefficient of
Determination (denoted by R2) is used as an indicator of the quality
of the fitting — the fraction of variance of the observed data that
can be explained by the fitted line: the closer to 1 the better. For
instance, an R2=0.978 means that 97.8% of the total variation in
the observed data can be explained by the fitted line, while 2.2%
of the variation remains unexplained. Besides R2, we also employ
the Kolmogorov-Smirnov (KS) test to evaluate the goodness-of-fit.

The regression results on each 4-digit PIN dataset and 6-digit
PIN dataset are listed in Table 7 and Table 8, respectively. The
corresponding regression line for each dataset is depicted in Fig. 3.
Besides linear regressions on individual datasets, we also perform a
similar linear regression (with each dataset in a group contributing
equally) on two groups of PIN datasets, see Figs. 3(e) and 3(f).

It is worth noting that, as shown in Table 7 and 8, we have ex-
cluded the least frequent PINs (i.e., with f <10) in our regression,
because these PINs at the very tail of the rank lists apparently do
not show a Zipf’s law behavior (see Fig. 3): their frequencies
drop either much more quickly or slowly than polynomially. In-
cluding these PINs in the regression would only deteriorate the
good property of the popular PINs, which are the overwhelming



Table 8: Least square linear regression (LR) results of 6-digit PIN datasets. Large R2s indicate the soundness of our Zipf models.
6-digit PIN Total Unique Least PINs used % of PINs Unique PINs Zipf law Absolute value Coefficient of de- KS test

Dataset PINs PINs freq. used in LR used in LR used in LR regression line of the slope (s) termination (R2) p-value
Dodonew 2,876,047 465,741 10 1,941,541 67.507% 26,120 -1.585365-0.874400*x 0.874400 0.972208 0.013623
CSDN 809,899 224,250 10 410,126 50.639% 9,978 -2.278761-0.641415*x 0.641415 0.956394 1.071E-08
Rockyou 2,758,491 448,186 10 1,964,132 71.203% 39,511 -1.898256-0.749407*x 0.749407 0.930145 0.093668
Yahoo 21,020 14,001 10 4,324 20.571% 67 -1.550087-0.992080*x 0.992080 0.952208 3.996E-15
Overall N/A N/A N/A N/A N/A 3,447,258 -1.902151-0.764170*x 0.764171 0.899897 N/A

majority of the dataset. A more essential reason is that these
low frequency PINs are unlikely to exhibit their true probability
distribution according to the law of large numbers (see [31]).

Also note that, the selection of 10 as the threshold of least
frequency used in regression is based on a series of exploratory ex-
periments. Fortunately, the regression results in Table 7 and Table
8 reveal that using 10 as the threshold is satisfactory: every linear
regression on 4-digit PIN datasets is with its R2 larger than 0.975,
which closely approaches to 1 and thus suggests a sound fitting;
Equally good regression results are obtained for all 6-digit PIN
datasets. Besides satisfactory R2, all regressions on 4- and 6-digit
PINs have incorporated at least 94% and 50% of the corresponding
datasets, respectively, while the only exception for Yahoo PINs can
be largely attributed to the insufficient data volume. In addition,
the majority of the KS tests are with a p-value > 0.01, indicating
that we should accept the null hypothesis that PINs follow the
corresponding Zipf distribution functions. All these suggest that
user-generated PINs, no matter 4-digit ones or 6-digit ones, English
ones or Chinese ones, follow a Zipf distribution.

Now a natural question arises: whether digit sequences of other
length (e.g., 3, 5, 7, 8, 9, 10) extracted from passwords also follow
the Zipf’s law? We have performed similar experiments as Fig. 3,
and found that only digit sequences of length 3, 4, and 6 follow this
law. This is somewhat unexpected. A plausible reason is that users
love to use digit chunks of length 3, 4, and 6 as their secrets. This
partly justifies our PIN creation methodology in Sec. 3.
Summary. Our results show that despite great language, culture
differences, PINs from both user groups share almost the same Zipf
distribution, thereby obsoleting the long-used uniform assumption
[12, 17, 27] about user-chosen PINs in cryptography research. Two
critical implications of our Zipf theory are shown in Appendix A.

6. PIN STRENGTH
We now address: How much security can user-generated PINs

provide? Between these two user groups, whose PINs are gen-
erally more secure? Generally, there are two kinds of security
threats against PINs: online guessing (whereby the allowed guess
number is limited [33]) and offline guessing. Other attacks like
malware/shoulder surfing, are largely unrelated to PIN strength. To
measure PIN strength, there are two broad approaches available,
i.e., statistic-based (see [6]) and cracking-based (see [21]). The
former measures resistance against the optimal attacker, while latter
is against real attackers. To be robust, we will employ both.

6.1 Statistical results
Here we mainly adopt the five metrics (i.e., min-entropy, β-

success-rate, shannon entropy, guesswork and α-guesswork) that
have been widely utilized: the first two metrics are used for mea-
suring online guessing, the next two are for offline guessing and
the last one is multi-purpose. Since we are interested in online
guessing in different throttling options, we also examine offline
guessing which can be seen as intensive online guessing. Here
we use the same notation and terminology (see Table 9) from [5]
and take 4-digit PINs for example: the probability distribution of
PINs is denoted by X which is over the set {0000, · · · , 9999};
the user PIN is a stochastic variable X which is randomly drawn
from X , and X may take a value xi ∈ {0000, · · · , 9999} with the
probability pi, where p1 ≥ p2 ≥ · · · ≥ pN and N = 104.

The statistical results are shown in Table 10. “Average_4” stands
for the average of metric results of the above four 4-digit PIN
datasets, similarly for “Average_6”; “Random_4” stands for the
dataset consisting of 104 distinct 4-digit PINs, similarly for “Ran-
dom_6”. 4-digit Rockyou PINs and “Random_4” have also been
gauged in [6], and our corresponding results well agree with [6].

Table 10 shows that, on average, 4-digit PINs can provide an
average of 6.62 bits (=λ̃30) of resistance against online guessing
and 8.41 bits (=G̃0.5) of resistance against offline guessing, while
this figure for 6-digit PINs is 7.24 bits and 13.21 bits, respectively.
This means both types of PINs offer less than 50% of security
as compared to random PINs of the same length. We also find
that 4-digit PINs within the different user group offer significantly
different security distributions (pairwise Wilcoxon test, p < 0.01),
while PINs within the same user group are not (p=0.015 for CS-
DN&Dodonew; p=0.046 for Rockyou&Yahoo). For 6-digit PINs,
Rockyou&CSDN are not significantly different (p=0.39358).

Table 10 also shows that, 4-digit PINs of Chinese users are
less secure as compared to their English counterparts against both
online guessing and offline guessing. As for 6-digit Chinese PINs,
CSDN PINs are comparable to English PINs, while Dodonew PINs
are always weaker than English PINs. When compared to graphic
passwords (i.e., Android unlock patterns [25, 28]), only 6-digit
PINs can provide comparable security against offline guessing, and
both types of PINs are less secure against online guessing.

While being 150% of length with 4-digit PINs, 6-digit PINs gen-
erally can offer expected increase (i.e., from 133.18% to 164.77%)
in security against offline guessing, yet the increase (i.e., 0.62 bit)
in security against online guessing is not significant (less than 10%
relative increase), which is opposed to common belief. The key
issue of PINs lies in a few excessively popular ones, which is
the very nature of a Zipf law distribution (see Sec. 5.2) but not
their length. This would have implications for bank agencies and
authorities that have conducted (or plan to) PIN migration from 4-
digits to 6-digits or even longer ones (see the migration in Korean
[18] and UAE [19]): as online guessing is the primary threat to
PIN-based systems, the additional security gained by enforcing a
longer PIN requirement would not outweigh the increased costs in
deployment and usability (e.g., memorization and typing).

6.2 Cracking-based experimental results
Currently, the state-of-the-art password cracking algorithms in-

clude PCFG-based [34] and Markov-Chain-based [21]. As the
former mainly focuses on exploiting various structures/patterns
(e.g., the structure of “pa$$word123” is L2S2L4D3) that dom-
inate textual password choices, it is not suitable for cracking PINs
which are fixed-length digit-only sequences. In contrast, there is no
conception of “structure” in Markov-based approach [21], and thus
it is effective in cracking PINs and we adopt it here.

In our experiments, since PINs are of fixed length, there is
no normalization problem. Hence, as recommended in [21], we
mainly consider two smoothing techniques (i.e., Laplace and Good-
Turing) to deal with the data sparsity problem and use varying
orders to avoid overfitting. In each attack, we use PINs from one
source as training sets and generate PIN guesses in decreasing order
of probability. Then, we try these guesses sequentially to attack



Table 9: Statistical metrics [5] for measuring PIN resistance against online and offline guessing
Metric Formula Term Description
H1(X )

∑N
i=1 −pi · log pi Shannon entropy A measure of the uncertainty of X to an attacker

H∞(X ) − log2(p1) Min-entropy An asymptotic limit on the number of random bits extracted from X
G(X )

∑N
i=1 pi·i Guesswork Expected number of guesses in optimal order to find the password X

G̃(X ) log2(2·G(X )− 1) Guesswork in bits Bit representation of G(X )
λβ(X )

∑β
i=1 pi β-success rate Expected success rates for an attacker given β guesses

λ̃β(X ) log2(β/λβ(X )) β-success rate in bits Bit representation of λβ(X )
Gα(X ) (1− λµα) · µα +

∑µα
i=1 pi·i α-guesswork Expected number of guesses per account to achieve a success rate α

G̃α(X ) log2(
2·Gα(X )

λµα
− 1) + log2(

1
2−λµα

) α-guesswork in bits Bit representation of Gα(X )

Table 10: Statistical results (in bits) on strength of 4-digit PINs and 6-digit PINs
PIN Dataset Online guessing (i.e., in small guess number) resistance Offline/intensive guessing resistance

H∞ λ̃3 λ̃6 λ̃30 λ̃60 G̃0.1 G̃0.2 G̃0.3 G̃0.5 H1 G̃
Dodonew 3.79 4.55 5.04 6.48 7.24 4.21 5.19 5.99 8.06 10.26 11.36

CSDN 4.08 4.51 4.94 6.33 7.11 4.25 4.99 5.55 7.46 9.77 10.90
4-digit Rockyou [6] 4.75 5.22 5.61 6.66 7.38 5.48 6.08 6.61 8.78 10.74 11.50

PINs Yahoo 4.47 5.11 5.65 7.00 7.61 5.30 6.69 7.43 9.33 11.01 11.54
Average_4 4.27 4.81 5.27 6.62 7.33 4.81 5.74 6.40 8.41 10.44 11.33

Rankdom_4 13.29 13.29 13.29 13.29 13.29 13.29 13.29 13.29 13.29 13.29 13.29
Dodonew 2.55 3.82 4.64 6.67 7.55 2.55 3.74 6.66 12.43 13.52 16.77

CSDN 3.22 4.60 5.46 7.48 8.36 3.22 9.23 12.13 13.90 14.81 16.31
6-digit Rockyou 3.10 4.56 5.43 7.44 8.31 3.10 8.88 12.54 14.05 15.01 16.75

PINs Yahoo 3.18 4.57 5.43 7.36 8.21 3.18 8.01 10.83 12.48 12.30 13.22
Average_6 3.01 4.35 5.19 7.24 8.11 3.01 7.46 10.54 13.21 13.91 15.76

Rankdom_6 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.93
Average_6/Average_4 70.50% 90.34% 98.50% 109.36% 110.54% 62.63% 130.11% 164.77% 157.14% 133.18% 139.18%

Android Defensive [28] – – – – – 8.72 9.10 – 12.69 – –
unlock offensive [28] – – – – – 7.56 7.74 – 8.19 – –

patterns With meter [25] – – – – – 8.96 10.33 11.32 12.92 – –
Without meter [25] – – – – – 7.38 9.56 10.83 12.61 – –

PINs from another source. This is just what the real-world guessing
attackers do. Our results show that there is not much difference
between Laplace Smoothing and Good-Turing (GT) Smoothing.
The detailed PIN generation procedure is given in Appendix D.

Due to space constraints, Fig. 4 only illustrates the cracking
results about 4-digit PINs and the aggregated results about 6-digit
PINs based on Laplace-Smoothing, and the cracking results based
on GT smoothing are omitted. Fig. 4 shows that, the larger the order
is, the better the Markov-based attack performs. The “optimal”
curves in Fig. 4 represent the theoretically optimal attacks related
to the statistic metrics in Sec. 6.1. Remarkably, our best attacking
curves (i.e., order-3 ones) in Figs. 4(a)∼4(d) nearly overlap with
the optimal attacking curves. This suggests that our training sets
and algorithm parameters are rightly chosen and that Markov-based
attacks, when appropriately tuned, can indeed be effective. More
importantly, this highly indicates the potential that the distribution
of PINs from one source (about which we may only know little info)
can be well predicted by using PINs from another known source.

Fig. 4(e) consists of all the best attacks against each 4-digit PIN
dataset. No matter in terms of resistance against online or offline
guessing, PINs from Yahoo offer the highest strength, PINs from
Rockyou are the next most secure, followed PINs from Dodonew,
while PINs from CSDN offer the least security. This well accords
with the statistics-based results (see the upper half of Table 10).

In contrast, 6-digit PINs do not show an indisputable hierarchy
of security (see Fig. 4(f)). Table 10 shows that most of the eleven
statistical results of Yahoo 6-digit PINs are higher than Dodonew
and lower than CSDN, yet Fig. 4(f) illustrates that Yahoo 6-digit
PINs are more secure than both Dodonew and CSDN. However, if
we took no account of Yahoo PINs in Fig. 4(f), then all the cracking
results would be consistent with the statistics-based results. One
plausible reason is that, the 6-digit Rockyou PINs are unsuitable
to be used as the training set for cracking Yahoo, and violating
this may convey a misleading sense of security. This once again
highlights the importance of the selection of appropriate training
sets, revealing the inherent limitations of cracking-based evaluation
metrics. Still, cracking-based approach can be improved with better
knowledge of PIN distribution and characteristics.

7. CONCLUSION
We have conducted a systematic investigation into the charac-

teristics, distribution and security of PINs chosen by English and
Chinese users. By exploiting visulization techniques and building
semantic models, we have identified various differences in struc-
tural and semantic patterns between PINs of these two user groups;
By employing NLP techniques, we have revealed that PINs follow
a Zipf distribution; By adopting the leading statistic metric α-
guesswork and cracking algorithms, we have highlighted that 6-
digit PINs essentially offer marginally improved security over 4-
digit PINs. To our knowledge, this is the first work that examines
6-digit PINs which dominate in Asia and are gaining popularity
worldwide. It is expected that this work would help users and
security engineers gain a deeper understanding of the vulnerability
of human-chosen PINs, and shed light on future PIN research.
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(a) Markov-based attacks on 4-digit PINs of Dodonew
(using 4-digit PINs of CSDN as the training set)
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(b) Markov-based attacks on 4-digit PINs of CSDN
(using 4-digit PINs of Dodonew as the training set)
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(c) Markov-based attacks on 4-digit PINs of Rockyou
(using 4-digit PINs of Yahoo as the training set)
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(d) Markov-based attacks on 4-digit PINs of Yahoo
(using 4-digit PINs of Rockyou as the training set)
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(e) Order-3 Markov-based attacks (i.e., the best ones
against 4-digit PINs) on 4-digit PINs of each dataset
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(f) Order-5 Markov-based attacks (i.e., the best ones
against 6-digit PINs) on 6-digit PINs of each dataset

Figure 4: Markov-based attacks on user-generated PINs using Laplace Smoothing to deal with data sparsity and using varing orders to deal with
overfitting. Attacks (a)∼(d) are against 4-digit PINs of one dataset, while (e) and (f) are against all 4-digit and 6-digit PIN datasets, respectively.
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Figure 5: Online guessing advantages of three different at-
tackers against the Dodonew 4-digit PIN based authentication
service. The Zipf attacker well approximates the real attacker.

APPENDIX
A. SOME IMPLICATIONS

In this section, we briefly sketch two implications that our Zipf
theory is highly likely to carry.

A.1 Implication for PIN creation policies
Perhaps the most immediate implication of the discovery of

Zipf’s law in user-generated PINs is for PIN creation policies. The
polynomially decreasing nature of the popular PINs suggests that
enforcing a simple blacklist (e.g., blacklisting the top 100 PINs as
suggested in [6]) is inherently insufficient. On the one hand, the
CDF graphs (see Fig. 2) evidently show that a small fraction of top
frequent PINs can account for a tremendous percentage of the total
PIN accounts, and simply blacklisting them would annoy a large
fraction of customers (see the analysis of Wp in [31]).

On the other hand, if some most frequent PINs are banned, there
is no way to prevent other PINs to become as frequent as these
banned PINs. Fig. 3 illustrates that the frequency distribution
curves of PINs are smooth, indicating there is a steady supply of
popular PINs. What’s more, as the total PIN space is small (e.g.,
104), blacklisting some PINs might help an attacker to reduce her
search space. This suggests that a threshold approach would be
more desirable: set a popularity threshold T (e.g., T = 103 for a
4-digit PIN bank authentication system with 107 customers) for the
system, only these PINs whose frequency fall below the threshold
are allowed. If a user-chosen PIN unfortunately falls above T ,
the system suggests the user several alternative ones with a low
popularity and with the least edit distance from the user’s originally
input PIN. In this way, a better trade-off between security and
usability can be achieved.

A.2 Implication for PIN-based protocols
As far as we know, the security formulation results of most

existing password- and PIN-based cryptographic protocols (e.g.,
[12, 15, 17, 27]) are based on the unrealistic assumption that user-
chosen PINs/passwords are uniformly distributed. Though these
protocol designers often cast doubt on such an assumption, they
are stuck in the question: if PINs/passwords do not obey a uniform
distribution, then which distribution will they follow? It was not
until very recently that Wang et al. [31] revealed that user-generated
textual passwords comply with a Zipf distribution. How about digit
PINs? Fortunately, we have provided a promising answer in Sec.
5.2, and it is more practical to design PIN-based cryptographic
protocols (e.g., authentication, signature and secret sharing) with
an assumption of the Zipf distribution. Here we use the PIN-based
authentication and key exchange (PAKE) protocols as an example.

Based on our analysis (see [32]) of the implications for
password-based protocols, here we show the implication of Zipf

theory for PIN-based protocols. In most provably secure PAKE
protocols, generally it is formalized in a way that “password/PIN
pwC (for each client C) is chosen independently and uniformly at
random from a dictionary D of size |D|, where |D| is a fixed
constant independent of the security parameter k” [15], then an
adversary model is given, and finally a “standard” description of
security as the one in [15] is presented:

“· · · · · · Protocol P is a secure protocol for
password/PIN-only authenticated key-exchange if, for
all [password/PIN] dictionary sizes |D| and for all
ppt[probabilistic polynomial time] adversaries A
making at most Q(k) on-line attacks, there exists a
negligible function ϵ(·) such that:

AdvA,P(k) ≤ Q(k)/|D|+ ϵ(k), (5)
where AdvA,P(k) is A’s advantage in attacking P .”

The best strategy for a real-world attacker A is to try the most
likely guess first, then the second most likely one and so on [5].
Under the Zipf assumption, it is natural to see that A’s advantage
AdvA,P(k) can be formulated as:

AdvA,P(k) =
C/1s∑|D|
i=1

C
is

+
C/2s∑|D|
i=1

C
is

+· · ·+C/Q(k)s∑|D|
i=1

C
is

=

∑Q(k)
j=1

1
js∑|D|

i=1
1
is

(6)
where s is the absolute value of the slope of Zipf line of D.

Fig. 5 shows that A’s advantage is more accurately captured by
our Zipf model than the uniform model. The latter tends to greatly
underestimates A’s online guessing advantage. For instance, at
100 guesses (i.e., Q(k)=102), the uniform model estimates A’s
advantage against the Dodonew service to be 1.0%, yet the real
value is 44.7%. Our Zipf attacker achieves a success rate 42.4%,
well predicting the real value. This is particularly useful when
bank agencies evaluate the security risks that user-chosen PINs
(i.e., probably the weakest link in the security chain) bring about.

B. WORD CLOUDS FOR 6-DIGIT PINS
To further identify the dominant factors that influence user choic-

es of 6-digit PINs, we once again resort to a visualization technique
(i.e., word cloud) due to its intuitiveness and informativeness [30],
and make use of the wordle diagram http://www.jasondavies.com/
wordcloud/. We provide the raw PINs from each dataset to the
wordle tool which gives greater prominence to PINs that are more
frequent. As a result, the PINs shown in the cloud picture are sized
according to the number of their occurrences.

The word clouds for the top-150 PINs in each PIN dataset can
be found in Fig. 6. One can see that patterns like dates and single-
digit/couplets/triple repetition are as prevalent as that of 4-digit
PINs. An interesting point is that, users prefer using pairs of num-
bers that have smaller numerical gaps between them. For example,
combinations like 12 and 78 are used much more frequently than
17 and 28. One plausible reason may be that a smaller numerical
gap is easier to type on a numpad (and keyboard). As with 4-digit
PINs, a number of meaningful 6-digit PINs are chosen by either
Chinese users (e.g., 131452 and 110120) or English users (e.g.,
420420 and 696969), or both groups of users (e.g., 007007).
More specifically, 131452 sounds like “Forever and ever I love”
in Chinese pronunciation; 110 and 120 are the alarm call and
emergency call in China, respectively; 420 has become a popular
code for marijuana; 69 seems to be a favorite number of English
users; Fans of James Bond should be proud to see 007.

What’s quite different from 4-digit PINs is that numpad patterns
seem to be much more popular in 6-digit PINs: about 26% to
36% of the top-150 PINs in each dataset are with some kind of
numpad patterns like “×” (e.g., 159753), “+” (e.g., 258456),
“=” (e.g., 123654), “≡” (e.g., 134679), “⊤” (e.g., 123580)

http://www.jasondavies.com/wordcloud/
http://www.jasondavies.com/wordcloud/


(a) Word cloud for top-150 6-digit PINs in CSDN (b) Word cloud for top-150 6-digit PINs in Yahoo

(c) Word cloud for top-150 6-digit PINs in Dodonew (d) Word cloud for top-150 6-digit PINs in Rockyou

Figure 6: Word clouds for four 6-digit PIN datasets, with the top-150 most popular PINs in dataset are depicted. PINs underlined
by a solid line relate to love, while PINs underlined by a dashed line relate to famous constants (e.g., π and the Fibonacci number).

Algorithm 1: Generating PIN guesses using Markov-Chains
Input: A training set T S; Max PIN length maxLen; Markov order mkOrder
Output: A PIN guess list L in probability-decreasing order

1 Training:
2 for pin ∈ T S do
3 for i← 1 to length(pin) do
4 preStr ← subStr(pin,max(0, i− mkOrder), i− 1)
5 nextChar ← getChar(pin, i)
6 trainingResult.insert(preStr, nextChar)

7 Laplace smoothing (δ = 0.1):
8 function traResult.getProb(preStr, nextChar)
9 count = traResult.getCount(preStr, nextChar) + δ

10 countSum = traResult.getCount(preStr, charSet) +
δ ∗ traResult.charSet.size()

11 return count/countSum
12 function ProduceGuess(pin, prob)
13 if length(pin) = maxLen then
14 guessSet.insert(pin, prob)
15 else16 preStr ← pin.tailStr(mkOrder)
17 for char ∈ [0− 9] do
18 newPin← pin + char
19 newProb←

prob ∗ traResult.getProb(preStr, nextChar)
20 ProduceGuess(newPin, newProb)

21 Produce guesses:
22 ProduceGuess(null, 1); L← guessSet.sort()

and “∥” (e.g., 147369). Interestingly, once again we see very
compelling evidence that extracting exactly 6-digit sequences from
passwords is a great proxy for 6-digit real-world PINs. One can
confirm that many of these numpad-pattern-based digit sequences
(e.g., 142536 and 258456) are utterly awkward to type on a
laptop/PC keyboard because the order of these digits is interlaced
on such keyboards, but it is quite handy on a phone numpad (i.e.,
following a “⊤” trace). ATMs and other terminals (e.g., electronic
doors) that employ a phone-style numpad just facilitate such digit
sequences. This suggests that, besides their preference of easy
to type (and remember) PINs for credit cards or mobile devices,
users also seem to persist in re-using the same digits of their PINs

for their online passwords, even though the mnemonics related to
numpads (e.g., ⊤) no longer apply to laptop/PC keyboards.

A few other interesting tidbits can also be revealed from Fig. 6.
In the lower-left corner of Fig. 6(a), one can find the PIN 314159,
a random six-digit number, is it? It is deceptively random-looking,
but one would at once become enlightened if she calls to remem-
brance the number π. Then, one will not be surprised to find
the PIN 141592 occurring high up in the PIN lists. Some other
important numbers like the base of the natural logarithm e and the
Fibonacci sequence can also find their silhouettes (e.g., 271828
and 112358) in Fig. 6. A scrutiny into the original datasets can
further identify many other numbers that are frequently used by
both groups of users, e.g, the miraculous number 142857 which
was said to be first found in the Egyptian pyramids.

C. MEANINGFUL CHINESE PINS
The following are eighteen popular 6-digit PINs of Chinese

users which have been identified in both two Chinese 6-digit PIN
datasets. They all sound like meaningful and interesting phrases in
Chinese pronunciation: 584520, 520520, 201314, 521521,
211314, 131421, 131420, 251314, 709394, 521314,
584521, 721521, 564335, 123520, 518518, 520110,
520184, 520134, if one knows that, in Chinese, “5” sounds like
“I”; ‘18” sounds as “get rich”; “20” and “21” sound like “love
you”; “25” sounds like “love me”; “84” sounds like “pledge”;
“335” sounds like “miss me”; “1314” sounds like “forever and
ever”. Accordingly, it is intuitive to understand any combination
of them, with one exception that “520110” sounds like “I love you
one for a hundred million years”.

D. A PIN-CRACKING ALGORITHM
Here we provide a Markov-based PIN-guesses generation proce-

dure using Laplace smoothing as shown in Algorithm 1.
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